library(ggplot2)
program 5
Implement a R program to create a histogram ilustrating the distribution of a continuous variable, with overlays of density curves for each group, using ggplot2.
step1 : load necessary libraries
step2Explore the inbulit dataset
str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
step 3: Create Histogram with Group-wise Density Curves
step 3.1: Initialize the ggplot with aesthetic mappings
<- ggplot(data = iris, aes(x=Petal.Length , fill = Species))
p p
Step3.2: add histogram layers
<- p + geom_histogram(aes(y = ..density..),
p alpha = 0.4,
position = "identity",
bins=30)
p
Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
ℹ Please use `after_stat(density)` instead.
step 3.3: Add Density Curve Layer
<- p +
p geom_density(aes(color = Species),
size = 1.2)
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
p
step 3.4:
<- p +labs(
p title = "Distribution of Petal Length with Group-wise Density Curves",
x = "Petal Length",
y ="Density"
+
)theme_minimal()
p