library(ggplot2)
Program 5
Implement an R program to create a histogram illustrating the distribution of a continuous variable, with overlays of density curves of each group, using ggplot2.
Step 1 : Load the libraries
Step 2 : Explore the Inbuilt Dataset
str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
Step 3 : Create Histogram with Group-wise Density Curves
Step 3.1: Initialize the ggplot with aesthetic mappings
<- ggplot(data = iris, aes(x= Petal.Length, fill= Species))
p p
Step 3.2: Add Histogram layer
<- p + geom_histogram(aes(y= ..density..),
p alpha=0.4,
position = "identity",
bins=30)
p
Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
ℹ Please use `after_stat(density)` instead.
Step 3.3: Add density curve layer
<- p + geom_density(aes(color= Species),
p size=1.2)
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
p
Step 3.4: Add labels and themes
<- p + labs(
p title = "Distribution of Petal Length with Group-wise Density curves",
x="Petal Length",
y="Density") +
theme_minimal()
p
Step 5 : Display the plot
# Finally, render the plot
p