Program 5

Author

1NT23IS244 - SECTION D - VARSHA S

Implement an R program to create a histogram illustrating the distribution of a continuous variable, with overlays of density curves of each group, using ggplot2.

Step 1 : Load the libraries

library(ggplot2)

Step 2 : Explore the Inbuilt Dataset

str(iris)
'data.frame':   150 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

Step 3 : Create Histogram with Group-wise Density Curves

Step 3.1: Initialize the ggplot with aesthetic mappings

p <- ggplot(data = iris, aes(x= Petal.Length, fill= Species))
p

Step 3.2: Add Histogram layer

p <-  p + geom_histogram(aes(y= ..density..),
                       alpha=0.4,
                       position = "identity",
                       bins=30)
p
Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
ℹ Please use `after_stat(density)` instead.

Step 3.3: Add density curve layer

p <- p + geom_density(aes(color= Species),
                      size=1.2)
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
p

Step 3.4: Add labels and themes

p <- p + labs(
  title = "Distribution of Petal Length with Group-wise Density curves",
  x="Petal Length",
  y="Density") +
  theme_minimal()
p

Step 5 : Display the plot

# Finally, render the plot
p