Peer Assessment 2

Impact of Severe Weather Events Towards Population Health and Caused the Economy Consequences In United States

Synopsis

Our objective is to analyze the impact of severe weather events towards both public health and economic problems based on the storm database collected from the U.S. National Oceanic and Atmospheric Administration’s (NOAA) from the year 1950 until the year of 2011 in November. Our overall hypothesis is the excessive heat and tornado are most harmful with respect to population health, while flood and drought have the greatest economic consequences.To investigate the hypothesis, we use the estimates of any fatalities, injuries, property damage and crop damage to determine which types of events are most harmful to the population health and economy. We also specifically obtained the data from the year 1996 to the year 2011 as the most recent years are considered more complete.

Configuration and Libraries

echo=TRUE
options(scipen = 1)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.2
library(R.utils)
## Warning: package 'R.utils' was built under R version 3.2.2
## Loading required package: R.oo
## Warning: package 'R.oo' was built under R version 3.2.2
## Loading required package: R.methodsS3
## Warning: package 'R.methodsS3' was built under R version 3.2.2
## R.methodsS3 v1.7.0 (2015-02-19) successfully loaded. See ?R.methodsS3 for help.
## R.oo v1.19.0 (2015-02-27) successfully loaded. See ?R.oo for help.
## 
## Attaching package: 'R.oo'
## 
## The following objects are masked from 'package:methods':
## 
##     getClasses, getMethods
## 
## The following objects are masked from 'package:base':
## 
##     attach, detach, gc, load, save
## 
## R.utils v2.1.0 (2015-05-27) successfully loaded. See ?R.utils for help.
## 
## Attaching package: 'R.utils'
## 
## The following object is masked from 'package:utils':
## 
##     timestamp
## 
## The following objects are masked from 'package:base':
## 
##     cat, commandArgs, getOption, inherits, isOpen, parse, warnings
library(reshape2)
## Warning: package 'reshape2' was built under R version 3.2.2
library(plyr)
## Warning: package 'plyr' was built under R version 3.2.2
library(data.table)
## Warning: package 'data.table' was built under R version 3.2.2
## 
## Attaching package: 'data.table'
## 
## The following objects are masked from 'package:reshape2':
## 
##     dcast, melt

Data Processing

First, we set the directory, download the file and unzip the file.

setwd('C:/Users/user/Desktop/PeerAssessment2')
getwd()
## [1] "C:/Users/user/Desktop/PeerAssessment2"
list.files()
## [1] "repdata-data-StormData.csv.bz2" "StormData.csv"                 
## [3] "StormData.html"                 "StormData.Rmd"
fileUrl<-"https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
bunzip2("repdata-data-StormData.csv.bz2", "StormData.csv", remove = FALSE, skip = TRUE)
## [1] "StormData.csv"
## attr(,"temporary")
## [1] FALSE

Read the .csv file once the data has existed.

storm_data <- read.csv("StormData.csv") 
head(storm_data)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6
str(storm_data)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436774 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...
dim(storm_data)
## [1] 902297     37

The events started in the year 1950 and end in November 2011. There are few events recorded in the earlier years while most recent years should be considered more complete.

storm_data$year <- as.numeric(format(as.Date(storm_data$BGN_DATE, format = "%m/%d/%Y %H:%M:%S"), "%Y"))
storm_event <- storm_data[storm_data$year < 1955,]
dim(storm_event)
## [1] 1865   38
summary(storm_event$EVTYPE)
##                        TORNADO             HIGH SURF ADVISORY 
##                           1865                              0 
##                  COASTAL FLOOD                    FLASH FLOOD 
##                              0                              0 
##                      LIGHTNING                      TSTM WIND 
##                              0                              0 
##                TSTM WIND (G45)                     WATERSPOUT 
##                              0                              0 
##                           WIND                              ? 
##                              0                              0 
##                ABNORMAL WARMTH                 ABNORMALLY DRY 
##                              0                              0 
##                 ABNORMALLY WET           ACCUMULATED SNOWFALL 
##                              0                              0 
##            AGRICULTURAL FREEZE                  APACHE COUNTY 
##                              0                              0 
##         ASTRONOMICAL HIGH TIDE          ASTRONOMICAL LOW TIDE 
##                              0                              0 
##                       AVALANCE                      AVALANCHE 
##                              0                              0 
##                   BEACH EROSIN                  Beach Erosion 
##                              0                              0 
##                  BEACH EROSION    BEACH EROSION/COASTAL FLOOD 
##                              0                              0 
##                    BEACH FLOOD     BELOW NORMAL PRECIPITATION 
##                              0                              0 
##              BITTER WIND CHILL BITTER WIND CHILL TEMPERATURES 
##                              0                              0 
##                      Black Ice                      BLACK ICE 
##                              0                              0 
##                       BLIZZARD BLIZZARD AND EXTREME WIND CHIL 
##                              0                              0 
##        BLIZZARD AND HEAVY SNOW               Blizzard Summary 
##                              0                              0 
##               BLIZZARD WEATHER         BLIZZARD/FREEZING RAIN 
##                              0                              0 
##            BLIZZARD/HEAVY SNOW             BLIZZARD/HIGH WIND 
##                              0                              0 
##          BLIZZARD/WINTER STORM                  BLOW-OUT TIDE 
##                              0                              0 
##                 BLOW-OUT TIDES                   BLOWING DUST 
##                              0                              0 
##                   blowing snow                   Blowing Snow 
##                              0                              0 
##                   BLOWING SNOW BLOWING SNOW- EXTREME WIND CHI 
##                              0                              0 
## BLOWING SNOW & EXTREME WIND CH BLOWING SNOW/EXTREME WIND CHIL 
##                              0                              0 
##               BREAKUP FLOODING                     BRUSH FIRE 
##                              0                              0 
##                    BRUSH FIRES      COASTAL  FLOODING/EROSION 
##                              0                              0 
##                COASTAL EROSION                  Coastal Flood 
##                              0                              0 
##                  COASTAL FLOOD               coastal flooding 
##                              0                              0 
##               Coastal Flooding               COASTAL FLOODING 
##                              0                              0 
##       COASTAL FLOODING/EROSION                  Coastal Storm 
##                              0                              0 
##                  COASTAL STORM                  COASTAL SURGE 
##                              0                              0 
##            COASTAL/TIDAL FLOOD                   COASTALFLOOD 
##                              0                              0 
##                   COASTALSTORM                           Cold 
##                              0                              0 
##                           COLD                COLD AIR FUNNEL 
##                              0                              0 
##               COLD AIR FUNNELS               COLD AIR TORNADO 
##                              0                              0 
##                 Cold and Frost                 COLD AND FROST 
##                              0                              0 
##                  COLD AND SNOW        COLD AND WET CONDITIONS 
##                              0                              0 
##               Cold Temperature              COLD TEMPERATURES 
##                              0                              0 
##                      COLD WAVE                   COLD WEATHER 
##                              0                              0 
##   COLD WIND CHILL TEMPERATURES                COLD/WIND CHILL 
##                              0                              0 
##                     COLD/WINDS                   COOL AND WET 
##                              0                              0 
##                     COOL SPELL          CSTL FLOODING/EROSION 
##                              0                              0 
##                      DAM BREAK                    DAM FAILURE 
##                              0                              0 
##                Damaging Freeze                DAMAGING FREEZE 
##                              0                              0 
##                      DEEP HAIL                      DENSE FOG 
##                              0                              0 
##                    DENSE SMOKE                      DOWNBURST 
##                              0                              0 
##                DOWNBURST WINDS                   DRIEST MONTH 
##                              0                              0 
##                  Drifting Snow                        DROUGHT 
##                              0                              0 
##         DROUGHT/EXCESSIVE HEAT                       DROWNING 
##                              0                              0 
##                            DRY                        (Other) 
##                              0                              0

As we can see the result above, there is only one event which is Tornado happens before the year 1955 where this analysis consider as incomplete.

hist(storm_data$year,xlab="Year",ylab="Frequency",main = "Event Per Year",breaks=30)

Based on the histogram above, the number of events has significantly increases after the year 1995. Hence, the subset of the data starting the year 1996 will be used to get the more complete records.

event_types <- storm_data[storm_data$year > 1995,]
dim(event_types)
## [1] 653530     38
summary(event_types$EVTYPE)
##                           HAIL                      TSTM WIND 
##                         207715                         128662 
##              THUNDERSTORM WIND                    FLASH FLOOD 
##                          81402                          50999 
##                          FLOOD                        TORNADO 
##                          24247                          23154 
##                      HIGH WIND                     HEAVY SNOW 
##                          19907                          14000 
##                      LIGHTNING                     HEAVY RAIN 
##                          13203                          11509 
##                   WINTER STORM                 WINTER WEATHER 
##                          11317                           6968 
##               MARINE TSTM WIND                   FUNNEL CLOUD 
##                           6175                           6058 
##       MARINE THUNDERSTORM WIND                    STRONG WIND 
##                           5812                           3561 
##           URBAN/SML STREAM FLD                     WATERSPOUT 
##                           3392                           3390 
##                       WILDFIRE                       BLIZZARD 
##                           2732                           2633 
##                        DROUGHT                      ICE STORM 
##                           2433                           1879 
##                 EXCESSIVE HEAT               WILD/FOREST FIRE 
##                           1656                           1443 
##                   FROST/FREEZE                      DENSE FOG 
##                           1342                           1193 
##             WINTER WEATHER/MIX                 TSTM WIND/HAIL 
##                           1104                           1028 
##        EXTREME COLD/WIND CHILL                      HIGH SURF 
##                           1002                            717 
##                           HEAT                 TROPICAL STORM 
##                            716                            682 
##               LAKE-EFFECT SNOW                   EXTREME COLD 
##                            635                            615 
##                  COASTAL FLOOD                      LANDSLIDE 
##                            589                            588 
##                COLD/WIND CHILL                            FOG 
##                            539                            532 
##                    MARINE HAIL                    RIP CURRENT 
##                            442                            432 
##                     DUST STORM                           SNOW 
##                            417                            395 
##                      AVALANCHE                           WIND 
##                            378                            320 
##                   RIP CURRENTS                    STORM SURGE 
##                            302                            253 
##           HEAVY SURF/HIGH SURF              EXTREME WINDCHILL 
##                            228                            204 
##                   STRONG WINDS                  FREEZING RAIN 
##                            184                            176 
##          ASTRONOMICAL LOW TIDE                 DRY MICROBURST 
##                            174                            173 
##                      HURRICANE                     LIGHT SNOW 
##                            170                            152 
##               STORM SURGE/TIDE               MARINE HIGH WIND 
##                            148                            135 
##                  RECORD WARMTH                     DUST DEVIL 
##                            135                            128 
##              UNSEASONABLY WARM               COASTAL FLOODING 
##                            113                            107 
##         ASTRONOMICAL HIGH TIDE                    RIVER FLOOD 
##                            103                            102 
##              MODERATE SNOWFALL              HURRICANE/TYPHOON 
##                            101                             88 
##                     WINTRY MIX                     HEAVY SURF 
##                             82                             77 
##                         FREEZE            TROPICAL DEPRESSION 
##                             67                             60 
##                          SLEET                    GUSTY WINDS 
##                             58                             51 
##             MARINE STRONG WIND                          OTHER 
##                             48                             47 
##               UNSEASONABLY DRY                   FREEZING FOG 
##                             46                             45 
##                     SMALL HAIL             Temperature record 
##                             45                             43 
##                          FROST                    RECORD HEAT 
##                             42                             40 
##                TSTM WIND (G45)               Coastal Flooding 
##                             39                             38 
##          MONTHLY PRECIPITATION                           COLD 
##                             36                             34 
##            MIXED PRECIPITATION                           Snow 
##                             34                             30 
##                    RECORD COLD                 EXCESSIVE SNOW 
##                             29                             25 
##                      ICY ROADS                     GUSTY WIND 
##                             24                             23 
##                LAKESHORE FLOOD            LIGHT FREEZING RAIN 
##                             23                             23 
##                   VOLCANIC ASH                          GLAZE 
##                             22                             21 
##                     Light Snow                         SEICHE 
##                             21                             21 
##                 TIDAL FLOODING                        TSUNAMI 
##                             20                             20 
## EXTREME WINDCHILL TEMPERATURES               LAKE EFFECT SNOW 
##                             19                             19 
##                   THUNDERSTORM                        (Other) 
##                             19                           1150

Impact on Public Health

In this section, the number of fatalities and injuries that are caused by the severe weather events will be determined. The first 20 rows for the most severe types of weather events will be extracted.

combine_data<-function(header_name,top = 20, dataset=storm_data){
        header_title <- which(colnames(dataset) == header_name)
        aggregate_evtype <- aggregate(dataset[,header_title],by=list(dataset$EVTYPE),FUN = "sum")
        names(aggregate_evtype) <- c("EVTYPE",header_name)
        aggregate_evtype <-arrange(aggregate_evtype,aggregate_evtype[,2],decreasing = TRUE)
        aggregate_evtype <-head(aggregate_evtype,n=top)
        aggregate_evtype <-within(aggregate_evtype, EVTYPE <- factor(x=EVTYPE,levels = aggregate_evtype$EVTYPE))
        return(aggregate_evtype)
}

Impact on Economy

Two types of damages, Property damage and Crop damage data will be converted into comparable numerical forms. We have Hundred(H), Thousand(K), Million(M) and Billion(B) in both PROPDMGEXP and CROPDMGEXP columns.

summary(event_types$PROPDMGEXP)
##             -      ?      +      0      1      2      3      4      5 
## 276185      0      0      0      1      0      0      0      0      0 
##      6      7      8      B      h      H      K      m      M 
##      0      0      0     32      0      0 369938      0   7374
event_types$PROPDMGEXP<-as.character(event_types$PROPDMGEXP)
event_types$PROPDMGEXP[event_types$PROPDMGEXP %in% c("-","?","+","1","2","3","4","5","6","7","8")]<-NA
event_types$PROPDMGEXP[event_types$PROPDMGEXP %in% c("","0")]<-0
event_types$PROPDMGEXP<-gsub("B", 10^9, event_types$PROPDMGEXP)
event_types$PROPDMGEXP<-gsub("K", 1000, event_types$PROPDMGEXP)
event_types$PROPDMGEXP<-gsub("H", 100, event_types$PROPDMGEXP)
event_types$PROPDMGEXP<-gsub("M", 10^6, event_types$PROPDMGEXP)
event_types$PROPDMGEXP<-as.numeric(event_types$PROPDMGEXP)
event_types$PROPDMG<-event_types$PROPDMGEXP*event_types$PROPDMG

summary(event_types$CROPDMGEXP)
##             ?      0      2      B      k      K      m      M 
## 373069      0      0      0      4      0 278686      0   1771
event_types$CROPDMGEXP<-as.character(event_types$CROPDMGEXP)
event_types$CROPDMGEXP[event_types$CROPDMGEXP %in% c("?","2")]<-NA
event_types$CROPDMGEXP[event_types$CROPDMGEXP %in% c("","0")]<-0
event_types$CROPDMGEXP<-gsub("B", 10^9, event_types$CROPDMGEXP)
event_types$CROPDMGEXP<-gsub("K", 1000, event_types$CROPDMGEXP)
event_types$CROPDMGEXP<-gsub("M", 10^6, event_types$CROPDMGEXP)
event_types$CROPDMGEXP<-as.numeric(event_types$CROPDMGEXP)
event_types$CROPDMG<-event_types$CROPDMGEXP*event_types$CROPDMG
summary(event_types$CROPDMG)
##       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
##          0          0          0      53180          0 1510000000

Results

Impact on Public Health

Question 1 Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?

We have two sorted lists (fatalities and injuries) of severe weather events by the number of people badly affected with respect to population health.

Fatalities

fatalities <- combine_data("FATALITIES", dataset = event_types)
fatalities
##                     EVTYPE FATALITIES
## 1           EXCESSIVE HEAT       1797
## 2                  TORNADO       1511
## 3              FLASH FLOOD        887
## 4                LIGHTNING        651
## 5                    FLOOD        414
## 6              RIP CURRENT        340
## 7                TSTM WIND        241
## 8                     HEAT        237
## 9                HIGH WIND        235
## 10               AVALANCHE        223
## 11            RIP CURRENTS        202
## 12            WINTER STORM        191
## 13       THUNDERSTORM WIND        130
## 14 EXTREME COLD/WIND CHILL        125
## 15            EXTREME COLD        113
## 16              HEAVY SNOW        107
## 17             STRONG WIND        103
## 18         COLD/WIND CHILL         95
## 19              HEAVY RAIN         94
## 20               HIGH SURF         87
PlotFatalities<-qplot(EVTYPE,data = fatalities,weight=FATALITIES,geom="bar",binwidth=1)+
        theme(axis.text.x = element_text(angle = 90, hjust = 1))+
        xlab("Types of Weather Event")+
        ylab("Number of People Death")+
        ggtitle("The Amount of Fatalities Caused by Weather Events in U.S.(1996-2011)")

PlotFatalities

Injuries

injuries <- combine_data("INJURIES", dataset = event_types)
injuries
##               EVTYPE INJURIES
## 1            TORNADO    20667
## 2              FLOOD     6758
## 3     EXCESSIVE HEAT     6391
## 4          LIGHTNING     4141
## 5          TSTM WIND     3629
## 6        FLASH FLOOD     1674
## 7  THUNDERSTORM WIND     1400
## 8       WINTER STORM     1292
## 9  HURRICANE/TYPHOON     1275
## 10              HEAT     1222
## 11         HIGH WIND     1083
## 12          WILDFIRE      911
## 13              HAIL      713
## 14               FOG      712
## 15        HEAVY SNOW      698
## 16  WILD/FOREST FIRE      545
## 17          BLIZZARD      385
## 18        DUST STORM      376
## 19    WINTER WEATHER      343
## 20    TROPICAL STORM      338
PlotInjuries<-qplot(EVTYPE,data = injuries,weight=INJURIES,geom="bar",binwidth=1)+
        theme(axis.text.x = element_text(angle = 90, hjust = 1))+
        xlab("Types of Weather Event")+
        ylab("Amount of Injuries")+
        ggtitle("The Amount of Injuries Caused by Weather Events in U.S.(1996-2011)")

PlotInjuries

Based on the barplot above, we can conclude that Excessive Heat and Tornado caused the most fatalities while Tornado has also caused the most injuries in United States from the year 1996 to the year 2011.

Impact on Economy

Question 2 Across the United States, which types of events have the greatest economic consequences?

There are two types of damages (Property Damages and Crop Damages) due to the severe weather events have impacted on economy.

prop_dmg <- as.data.table(subset(aggregate(PROPDMG ~ EVTYPE, data = event_types, FUN = "sum"), PROPDMG > 0))
prop_dmg
##                      EVTYPE  PROPDMG
##   1:     HIGH SURF ADVISORY   200000
##   2:            FLASH FLOOD    50000
##   3:              TSTM WIND  8100000
##   4:        TSTM WIND (G45)     8000
##   5: ASTRONOMICAL HIGH TIDE  9425000
##  ---                                
## 172:         WINTER WEATHER 20866000
## 173:     WINTER WEATHER MIX    60000
## 174:     WINTER WEATHER/MIX  6372000
## 175:             Wintry Mix     2500
## 176:             WINTRY MIX    10000
crop_dmg <- as.data.table(subset(aggregate(CROPDMG ~ EVTYPE, data = event_types, FUN = "sum"), CROPDMG > 0))
crop_dmg
##                       EVTYPE     CROPDMG
##  1:      AGRICULTURAL FREEZE    28820000
##  2:                 BLIZZARD     7060000
##  3:          COLD/WIND CHILL      600000
##  4:          Damaging Freeze    34130000
##  5:                  DROUGHT 13367566000
##  6:           DRY MICROBURST       15000
##  7:               DUST STORM     3100000
##  8:              Early Frost    42000000
##  9:           EXCESSIVE HEAT   492402000
## 10:             Extreme Cold    20000000
## 11:             EXTREME COLD  1288973000
## 12:  EXTREME COLD/WIND CHILL       50000
## 13:        EXTREME WINDCHILL    17000000
## 14:              FLASH FLOOD  1334901700
## 15:                    FLOOD  4974778400
## 16:                   Freeze    10500000
## 17:                   FREEZE   146225000
## 18:             Frost/Freeze      100000
## 19:             FROST/FREEZE  1094086000
## 20:               GUSTY WIND       10000
## 21:              GUSTY WINDS      200000
## 22:                     HAIL  2476029450
## 23:              HARD FREEZE    12900000
## 24:                     HEAT      176500
## 25:               HEAVY RAIN   728169800
## 26:     Heavy Rain/High Surf     1500000
## 27:               HEAVY SNOW    71122100
## 28:                HIGH WIND   633561300
## 29:                HURRICANE  2741410000
## 30:        HURRICANE/TYPHOON  2607872800
## 31:                ICE STORM    15660000
## 32:                LANDSLIDE    20017000
## 33:                LIGHTNING     6898440
## 34: MARINE THUNDERSTORM WIND       50000
## 35:                    OTHER     1034400
## 36:                     RAIN      250000
## 37:              RIVER FLOOD     1875000
## 38:           River Flooding    28020000
## 39:               SMALL HAIL    20793000
## 40:              STORM SURGE        5000
## 41:         STORM SURGE/TIDE      850000
## 42:              STRONG WIND    64953500
## 43:        THUNDERSTORM WIND   398331000
## 44:                  TORNADO   283425010
## 45:           TROPICAL STORM   677711000
## 46:                TSTM WIND   553915350
## 47:           TSTM WIND/HAIL    64696250
## 48:                  TSUNAMI       20000
## 49:                  TYPHOON      825000
## 50:        Unseasonable Cold     5100000
## 51:        UNSEASONABLY COLD    25042500
## 52:        UNSEASONABLY WARM       10000
## 53:          UNSEASONAL RAIN    10000000
## 54:     URBAN/SML STREAM FLD     8488100
## 55:         WILD/FOREST FIRE   106782330
## 56:                 WILDFIRE   295472800
## 57:                     WIND      300000
## 58:             WINTER STORM    11944000
## 59:           WINTER WEATHER    15000000
##                       EVTYPE     CROPDMG
economic_consequences <- join_all(list(prop_dmg, crop_dmg), by="EVTYPE")
economic_consequences$TOTAL <- economic_consequences$PROPDMG + economic_consequences$CROPDMG
economic_consequences <- economic_consequences[order(-economic_consequences$TOTAL),][1:20,]
economic_consequences <- transform(economic_consequences, EVTYPE=reorder(EVTYPE, TOTAL) ) 
economic_consequences <- melt(economic_consequences, id=c("EVTYPE"), measure.vars=c("PROPDMG","CROPDMG"))

Let’s combine the data of both damages to determine which is the event has the greatest economic consequences.

ggplot(data=economic_consequences, aes(EVTYPE, value/(10^6), fill=variable)) + 
        geom_bar(stat="identity")+labs(x="Types of Weather Event") + 
        labs(y="Total Damage (in million USD)") +  
        ggtitle("Total Damage Caused by Weather Event") + 
        theme(axis.text.x = element_text(angle = 90, hjust = 1))

list(economic_consequences)
## [[1]]
##                EVTYPE variable        value
##  1:             FLOOD  PROPDMG 143944833550
##  2: HURRICANE/TYPHOON  PROPDMG  69305840000
##  3:       STORM SURGE  PROPDMG  43193536000
##  4:           TORNADO  PROPDMG  24616945710
##  5:              HAIL  PROPDMG  14595143420
##  6:       FLASH FLOOD  PROPDMG  15222203910
##  7:         HURRICANE  PROPDMG  11812819010
##  8:           DROUGHT  PROPDMG   1046101000
##  9:    TROPICAL STORM  PROPDMG   7642475550
## 10:         HIGH WIND  PROPDMG   5247860360
## 11:          WILDFIRE  PROPDMG   4758667000
## 12:         TSTM WIND  PROPDMG   4478026440
## 13:  STORM SURGE/TIDE  PROPDMG   4641188000
## 14: THUNDERSTORM WIND  PROPDMG   3382654440
## 15:         ICE STORM  PROPDMG   3642248810
## 16:  WILD/FOREST FIRE  PROPDMG   3001782500
## 17:      WINTER STORM  PROPDMG   1532743250
## 18:        HEAVY RAIN  PROPDMG    584864440
## 19:      EXTREME COLD  PROPDMG     19760400
## 20:      FROST/FREEZE  PROPDMG      9480000
## 21:             FLOOD  CROPDMG   4974778400
## 22: HURRICANE/TYPHOON  CROPDMG   2607872800
## 23:       STORM SURGE  CROPDMG         5000
## 24:           TORNADO  CROPDMG    283425010
## 25:              HAIL  CROPDMG   2476029450
## 26:       FLASH FLOOD  CROPDMG   1334901700
## 27:         HURRICANE  CROPDMG   2741410000
## 28:           DROUGHT  CROPDMG  13367566000
## 29:    TROPICAL STORM  CROPDMG    677711000
## 30:         HIGH WIND  CROPDMG    633561300
## 31:          WILDFIRE  CROPDMG    295472800
## 32:         TSTM WIND  CROPDMG    553915350
## 33:  STORM SURGE/TIDE  CROPDMG       850000
## 34: THUNDERSTORM WIND  CROPDMG    398331000
## 35:         ICE STORM  CROPDMG     15660000
## 36:  WILD/FOREST FIRE  CROPDMG    106782330
## 37:      WINTER STORM  CROPDMG     11944000
## 38:        HEAVY RAIN  CROPDMG    728169800
## 39:      EXTREME COLD  CROPDMG   1288973000
## 40:      FROST/FREEZE  CROPDMG   1094086000
##                EVTYPE variable        value

Based on the barplot above, we can conclude that Flood has the most impact on economy in U.S, whereas from the list above, we can also conclude that Drought has brought the greatest damages to the crops which would cause the most impact on economy in U.S. from the year 1996 to the year 2011.