Librerias
setwd("P:/2025-1/ADD 1/2do Parcial/simulation Monte")
library(triangle)
## Warning: package 'triangle' was built under R version 4.4.3
Simulacion de Montecarlo
Set seed for reproducibility
Simulate costs for each activity using different distributions
activity1 <- rnorm(n, mean = 10000, sd = 2000) # Normal distribution
activity2 <- rlnorm(n, meanlog = 9.491, sdlog = 0.5) # Log-normal distribution (mean ~15,000)
activity3 <- runif(n, min = 5000, max = 25000) # Uniform distribution
activity4 <- rtriangle(n, a = 8000, b = 15000, c = 10000) # Triangular distribution
activity5 <- 2000 + rbeta(n, 2, 5) * 8000 # Beta distribution scaled to 2000-10000
Calculo de Montecarlo
Calculate total project cost
total_cost <- activity1 + activity2 + activity3 + activity4 + activity5
Analyze results
Calculo del intervalo de confianza al 90%
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 29227 48013 54274 55247 61112 126569
quantile(total_cost, probs = c(0.05, 0.95)) # 90% confidence interval
## 5% 95%
## 40396.84 73293.88
Plot histogram
hist(total_cost, breaks = 50, main = "Project Cost Distribution",
xlab = "Total Cost", col = "skyblue", border = "white")

Calculate probability of exceeding different budget thresholds
cat("Probability cost exceeds $70,000:", mean(total_cost > 70000), "\n")
## Probability cost exceeds $70,000: 0.0781
cat("Probability cost exceeds $80,000:", mean(total_cost > 80000), "\n")
## Probability cost exceeds $80,000: 0.0196