1. Input Dataset
library(readxl)
wineclustering <- read_excel("D:/Meisya/Kuliah/Semester 4/Statistika Multivariat/wine_clustering.xlsx")
View(wineclustering)

Dataset ini terdiri dari 13 variabel dan 178 objek.

  1. Menentukan variabel yang digunakan
resumecca <- wineclustering[,2:7]
resumecca
## # A tibble: 178 × 6
##      Ash Ash_Alcanity Magnesium Total_Phenols Alcohol Flavanoids
##    <dbl>        <dbl>     <dbl>         <dbl>   <dbl>      <dbl>
##  1  2.43         15.6       127          2.8     14.2       3.06
##  2  2.14         11.2       100          2.65    13.2       2.76
##  3  2.67         18.6       101          2.8     13.2       3.24
##  4  2.5          16.8       113          3.85    14.4       3.49
##  5  2.87         21         118          2.8     13.2       2.69
##  6  2.45         15.2       112          3.27    14.2       3.39
##  7  2.45         14.6        96          2.5     14.4       2.52
##  8  2.61         17.6       121          2.6     14.1       2.51
##  9  2.17         14          97          2.8     14.8       2.98
## 10  2.27         16          98          2.98    13.9       3.15
## # ℹ 168 more rows

Set kelompok 1 (X) terdiri dari variabel Ash, Ash_Alcanity, dan Magnesium. Sedangkan set kelompok 2 (Y) terdiri dari Total_Phenols, Alcohol, dan Flavanoiod.

  1. Uji asumsi
  1. Uji linearitas
library(ggplot2) 
library(GGally)
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
selected_vars <- scale(resumecca)  # Standarisasi data 

ggpairs(selected_vars, 
        title = "Scatterplot Matrix: Linearitas Variabel X dan Y", 
        lower = list(continuous = wrap("smooth", method = "lm", se = FALSE, color = "red")),
        upper = list(continuous = wrap("cor", size = 4)),
        diag = list(continuous = wrap("densityDiag", alpha = 0.5, fill = "lightblue"))) # Distribusi variabel

Beberapa pasangan variabel menunjukkan hubungan linear yang cukup kuat, seperti Flavanoids vs Total Phenols (Corr = 0.865), Flavanoids vs Alcohol (Corr = -0.538), dan Total Phenols vs Alcohol (Corr = -0.321). Ada juga hubungan yang tidak terlalu linear, misalnya Magnesium vs variabel lain (Corr ≈ -0.08 hingga 0.27). Secara keseluruhan, beberapa variabel memiliki hubungan linear kuat, tetapi tidak semua pasangan variabel menunjukkan pola linear.

  1. Uji normalitas
hist(selected_vars)  # Histogram

qqnorm(selected_vars); qqline(selected_vars)  # Q-Q Plot

Histogram berbentuk simetris, mendekati distribusi normal dan tidak ada skewness yang signifikan (tidak terlalu condong ke kanan/kiri). Sedangkan pada Q-Q Plot, sebagian besar titik berada di sepanjang garis diagonal, yang menunjukkan bahwa data hampir normal. Ada sedikit penyimpangan di ekor (bagian kiri dan kanan), yang bisa mengindikasikan sedikit kurtosis (lebih banyak nilai ekstrem dari normal). Jadi, secara visual, data ini sudah cukup mendekati distribusi normal.

  1. Uji multikolinearitas
corr_matrix <- cor(selected_vars)
corr_matrix
##                     Ash Ash_Alcanity   Magnesium Total_Phenols    Alcohol
## Ash           1.0000000   0.44336719  0.28658669     0.1289795  0.2115446
## Ash_Alcanity  0.4433672   1.00000000 -0.08333309    -0.3211133 -0.3102351
## Magnesium     0.2865867  -0.08333309  1.00000000     0.2144012  0.2707982
## Total_Phenols 0.1289795  -0.32111332  0.21440123     1.0000000  0.2891011
## Alcohol       0.2115446  -0.31023514  0.27079823     0.2891011  1.0000000
## Flavanoids    0.1150773  -0.35136986  0.19578377     0.8645635  0.2368149
##               Flavanoids
## Ash            0.1150773
## Ash_Alcanity  -0.3513699
## Magnesium      0.1957838
## Total_Phenols  0.8645635
## Alcohol        0.2368149
## Flavanoids     1.0000000

korelasi antar variabel independen di atas 0,8 dapat menjadi indikasi multikolinearitas.Berdasarkan matriks korelasi diatas, ada beberapa nilai korelasi antar anggota kelompok peubah berkisar pada ≤ 0,8, artinya tidak ada masalah multikolinearitas.

  1. Standarisasi data
std_data <- scale(resumecca)
std_data
##                Ash Ash_Alcanity   Magnesium Total_Phenols     Alcohol
##   [1,]  0.23139979 -1.166303174  1.90852151   0.806721729  1.51434077
##   [2,] -0.82566722 -2.483840525  0.01809398   0.567048088  0.24559683
##   [3,]  1.10621386 -0.267982252  0.08810981   0.806721729  0.19632522
##   [4,]  0.48655389 -0.806974805  0.92829983   2.484437221  1.68679140
##   [5,]  1.83522559  0.450674485  1.27837900   0.806721729  0.29486844
##   [6,]  0.30430096 -1.286079296  0.85828399   1.557699140  1.47738706
##   [7,]  0.30430096 -1.465743481 -0.26196936   0.327374446  1.71142720
##   [8,]  0.88751034 -0.567422559  1.48842650   0.487156874  1.30493643
##   [9,] -0.71631546 -1.645407665 -0.19195352   0.806721729  2.25341491
##  [10,] -0.35180959 -1.046527051 -0.12193769   1.094330099  1.05857838
##  [11,] -0.24245783 -0.447646437  0.36817315   1.046395371  1.35420804
##  [12,] -0.16955666 -0.806974805 -0.33198519  -0.151972837  1.37884384
##  [13,]  0.15849862 -1.046527051 -0.75208020   0.487156874  0.92308146
##  [14,]  0.08559744 -2.423952463 -0.61204853   1.286069013  2.15487169
##  [15,]  0.04914686 -2.244288279  0.15812565   1.605633868  1.69910930
##  [16,]  1.21556562 -0.687198682  0.85828399   0.886612943  0.77526663
##  [17,]  1.28846679  0.151234178  1.41841067   0.806721729  1.60056608
##  [18,]  0.92396093  0.151234178  1.06833150   1.046395371  1.02162467
##  [19,]  0.41365272 -0.896806897  0.57822065   1.605633868  1.46506916
##  [20,]  0.70525741 -1.286079296  1.13834733   0.646939302  0.78758453
##  [21,] -0.31535901 -1.046527051  1.83850567   1.126286585  1.30493643
##  [22,]  1.03331269 -0.267982252  0.15812565   0.183570261 -0.08698653
##  [23,] -0.02375431 -0.866862867  0.08810981   0.503135117  0.87380985
##  [24,]  0.55945507 -0.507534498 -0.33198519   0.295417961 -0.18552975
##  [25,]  0.88751034  0.151234178 -0.26196936   0.375309174  0.61513390
##  [26,]  3.11099611  1.648435713  1.69847400   0.535091602  0.06082829
##  [27,]  0.92396093 -1.016583020 -0.47201686   0.886612943  0.47963697
##  [28,] -0.82566722 -0.747086744 -0.40200103   0.167592018  0.36877585
##  [29,]  1.58007149 -0.028430007  0.50820482   1.046395371  1.07089628
##  [30,] -0.57051311 -1.046527051 -0.26196936   0.567048088  1.25566482
##  [31,]  1.21556562  0.899834945  0.08810981   1.126286585  0.89844565
##  [32,] -0.02375431 -0.118262099  0.43818899   0.902591186  0.71367712
##  [33,] -0.02375431 -0.687198682  0.29815732   0.199548504  0.83685614
##  [34,]  1.21556562  0.001514024  2.25860068   1.046395371  0.93539936
##  [35,]  1.03331269 -0.148206130  0.71825232   0.087700804  0.62745180
##  [36,]  0.15849862  0.300954331  0.01809398   0.646939302  0.59049809
##  [37,]  1.72587383 -1.196247204  0.71825232   0.487156874  0.34414005
##  [38,]  0.66880683 -0.447646437 -0.12193769   0.247483232  0.06082829
##  [39,] -0.97146956 -1.196247204 -0.12193769   0.167592018  0.08546410
##  [40,]  0.52300448 -1.884959911  1.97853734   1.126286585  1.50202286
##  [41,] -0.20600725 -0.986638989  1.20836316   1.365960227  0.68904131
##  [42,] -0.89856839 -0.208094191 -0.68206436   0.247483232  0.50427278
##  [43,]  0.81460917 -1.345967358  0.08810981   1.525742654  1.08321419
##  [44,] -0.27890842 -0.597366590  0.22814148   0.551069845  0.29486844
##  [45,] -0.97146956 -0.747086744  0.50820482   1.126286585  0.06082829
##  [46,]  0.26785038 -0.178150160  0.78826816   0.886612943  1.48970496
##  [47,] -0.31535901 -1.046527051  0.15812565   1.525742654  1.69910930
##  [48,] -0.89856839 -1.046527051  0.08810981   1.286069013  1.10784999
##  [49,]  0.12204803 -0.208094191  0.22814148   0.726830515  1.35420804
##  [50,] -0.35180959 -0.627310621  0.57822065   0.934547672  1.15712160
##  [51,] -1.19017308 -2.124512156 -0.54203270   0.678895787  0.06082829
##  [52,]  0.85105976 -0.687198682 -0.40200103   0.247483232  1.02162467
##  [53,]  0.19494920 -1.645407665  0.78826816   2.532371949  1.00930677
##  [54,]  1.14266445 -0.717142713  1.06833150   1.126286585  0.94771726
##  [55,] -0.42471076 -0.926750928  1.27837900   0.487156874  0.91076355
##  [56,]  0.34075155  0.300954331  1.13834733   1.062373614  0.68904131
##  [57,] -0.24245783 -0.956694959  1.27837900   1.445851440  1.50202286
##  [58,]  1.14266445 -0.806974805  0.15812565   1.126286585  0.35645795
##  [59,]  0.48655389 -0.836918836  0.57822065   1.765416296  0.88612775
##  [60,] -3.66881295 -2.663504709 -0.82209603  -0.503494178 -0.77678907
##  [61,] -0.31535901 -1.046527051  0.08810981  -0.391646479 -0.82606067
##  [62,] -1.26307425 -0.806974805  0.01809398  -0.439581207 -0.44420570
##  [63,] -1.62758012 -0.447646437 -0.40200103  -0.311755265  0.82453824
##  [64,] -0.75276604 -0.148206130 -0.89211187   1.925198724 -0.77678907
##  [65,]  0.59590565 -0.148206130  0.29815732  -0.647298363 -1.02314711
##  [66,]  0.70525741 -0.417702406 -0.12193769   0.199548504 -0.77678907
##  [67,] -2.42949302 -1.345967358 -1.52225438   1.094330099  0.13473571
##  [68,] -1.62758012  0.031458055 -1.52225438  -0.295777022 -0.77678907
##  [69,] -0.02375431 -0.747086744  0.71825232   0.375309174  0.41804746
##  [70,] -2.24724008 -0.806974805  3.58890153  -0.711211334 -0.97387550
##  [71,] -0.57051311  0.271010300  0.22814148  -1.909579543 -0.87533228
##  [72,]  1.10621386  1.648435713 -0.96212770   1.046395371  1.05857838
##  [73,] -0.46116135  1.348995406 -0.89211187  -0.663276606  0.60281600
##  [74,]  0.85105976  3.145637249  2.74871152   1.605633868 -0.01307912
##  [75,] -0.24245783  0.450674485  0.08810981   1.733459810 -1.28182306
##  [76,] -1.62758012 -1.046527051 -0.19195352  -1.094689161 -1.65136013
##  [77,] -2.39304243 -1.046527051 -0.96212770  -0.551428907  0.03619249
##  [78,] -0.49761194 -0.447646437  0.85828399  -0.918928490 -1.42963789
##  [79,] -1.51822836 -1.405855419  2.53866402  -0.631320120 -0.82606067
##  [80,]  0.12204803  1.049555099  0.08810981   0.854656458 -0.37029829
##  [81,] -1.33597542 -0.148206130 -0.96212770   0.199548504 -1.23255145
##  [82,] -0.60696370 -0.208094191 -0.96212770  -0.151972837 -0.34566248
##  [83,]  0.52300448  1.348995406 -1.52225438  -0.471537693 -1.13400823
##  [84,] -0.16955666  0.899834945 -1.03214354  -1.030776190  0.06082829
##  [85,]  0.77815859 -0.447646437 -0.40200103  -0.151972837 -1.42963789
##  [86,] -0.46116135 -0.447646437 -0.05192185  -0.151972837 -0.40725200
##  [87,] -0.20600725  0.989667037 -0.68206436  -0.823059034 -1.03546501
##  [88,]  0.92396093  1.947876020 -0.82209603  -0.599363635 -1.66367803
##  [89,]  0.34075155  0.630338669 -1.10215937  -0.551428907 -1.67599593
##  [90,] -0.24245783  1.229219283 -2.08238105  -0.151972837 -1.13400823
##  [91,] -0.16955666 -0.297926283 -1.31220687  -1.110667404 -1.13400823
##  [92,]  0.19494920  0.750114792 -0.96212770  -1.350341045 -1.23255145
##  [93,] -0.38826018  0.360842393 -1.38222271  -1.462188745 -0.38261619
##  [94,] -0.53406252 -0.447646437 -0.82209603   0.247483232 -0.87533228
##  [95,] -0.31535901 -0.447646437 -0.12193769   1.158243070 -1.70063174
##  [96,] -0.60696370 -0.148206130  4.35907571   0.327374446 -0.65361004
##  [97,]  1.36136797  0.600394638  2.39863235  -1.110667404 -1.46659160
##  [98,] -1.40887660 -1.046527051 -1.03214354   0.407265660 -0.87533228
##  [99,] -0.97146956 -0.297926283 -0.82209603   1.957155209 -0.77678907
## [100,] -0.57051311 -0.447646437 -0.82209603   0.886612943 -0.87533228
## [101,] -2.42949302 -0.597366590 -0.19195352  -0.104038109 -1.13400823
## [102,] -1.70048129 -0.297926283 -0.82209603  -1.350341045 -0.49347731
## [103,]  0.34075155  0.450674485 -0.12193769   0.423243903 -0.81374277
## [104,] -1.77338246  0.001514024 -0.96212770   0.327374446 -1.45427369
## [105,] -1.40887660  0.300954331 -1.03214354  -0.151972837 -0.60433843
## [106,] -0.35180959  0.750114792 -0.68206436  -0.982841462 -0.71519955
## [107,] -0.89856839 -0.148206130 -1.38222271  -1.030776190 -0.92460389
## [108,] -0.31535901  0.899834945 -1.10215937  -1.462188745 -0.34566248
## [109,] -1.55467894 -0.148206130 -0.54203270   0.103679047 -0.96155760
## [110,]  1.21556562  0.151234178 -0.40200103   0.710852273 -1.71294964
## [111,] -1.99208598  0.001514024  0.50820482   1.413894955 -1.89771818
## [112,] -0.71631546  0.450674485 -0.82209603   0.407265660 -0.59202053
## [113,]  2.01747852  0.151234178  0.22814148  -0.870993762 -1.52818111
## [114,]  0.48655389  0.450674485 -0.82209603   0.295417961 -1.95930769
## [115,]  0.48655389  0.899834945 -1.10215937   0.423243903 -1.13400823
## [116,] -0.60696370  0.600394638 -1.03214354   0.263461475 -2.42738798
## [117,] -1.37242601  0.390786423 -0.96212770  -0.503494178 -1.45427369
## [118,] -0.64341428  0.899834945  0.57822065  -0.471537693 -0.71519955
## [119,] -1.40887660 -1.046527051 -1.38222271  -1.062732675 -0.28407297
## [120,] -1.33597542 -0.148206130 -0.89211187  -0.471537693 -1.23255145
## [121,]  0.19494920  0.151234178 -0.26196936   0.966504157 -1.91003608
## [122,]  3.14744670  2.696476788  1.34839483   1.413894955 -1.77453915
## [123,]  1.32491738  2.097596174  0.15812565  -0.151972837 -0.71519955
## [124,] -0.86211780  0.600394638 -0.96212770   0.519113359  0.06082829
## [125,]  0.08559744  0.450674485 -1.24219104   0.902591186 -1.39268418
## [126,] -0.71631546  0.450674485 -1.03214354   0.487156874 -1.14632613
## [127,] -0.27890842  0.600394638 -0.96212770   0.710852273 -0.70288165
## [128,]  1.50717031  2.696476788 -0.54203270  -0.263820537 -1.49122740
## [129,] -0.24245783  1.498715559 -0.82209603  -0.120016352 -0.77678907
## [130,]  0.04914686  0.750114792 -1.38222271  -0.311755265 -1.18327984
## [131,] -0.16955666 -0.447646437  1.55844234  -1.254471589 -0.17321185
## [132,]  0.12204803  0.151234178  0.29815732  -1.590014687 -0.14857605
## [133,]  0.12204803  1.348995406 -0.12193769  -1.829688329 -0.23480136
## [134,] -0.02375431  0.600394638  0.43818899  -0.950884976 -0.37029829
## [135,] -0.42471076 -0.597366590 -1.03214354  -0.471537693 -0.60433843
## [136,] -0.60696370 -0.297926283 -0.40200103  -1.078710918 -0.49347731
## [137,]  0.63235624  0.450674485 -0.75208020  -1.462188745 -0.92460389
## [138,]  0.99686210  1.648435713 -0.26196936  -0.807080791 -0.57970263
## [139,] -0.64341428  0.001514024 -0.82209603  -1.078710918  0.60281600
## [140,]  0.88751034  1.348995406  0.08810981   0.039766076 -0.19784766
## [141,]  1.21556562  0.450674485 -0.26196936  -1.206536860 -0.08698653
## [142,] -0.06020490  0.151234178 -0.75208020  -1.430232259  0.44268327
## [143,]  1.28846679  1.199275252 -0.19195352  -1.190558618  0.63976970
## [144,] -0.06020490  0.151234178 -0.54203270  -0.471537693  0.76294873
## [145,] -0.60696370 -0.297926283  0.85828399  -1.462188745 -0.92460389
## [146,] -0.78921663  0.450674485  0.15812565  -1.270449832  0.19632522
## [147,] -0.49761194  0.151234178 -1.38222271  -2.101318456  1.08321419
## [148,]  0.41365272  0.600394638 -0.96212770  -0.950884976 -0.16089395
## [149,]  0.04914686  0.600394638 -0.54203270  -0.583385392  0.39341166
## [150,] -0.02375431  0.600394638  0.92829983  -1.414254017  0.09778200
## [151,]  0.92396093  1.348995406  1.62845817  -1.430232259  0.61513390
## [152,]  0.41365272  0.750114792  0.85828399  -1.302406317 -0.25943717
## [153,]  1.39781855  1.798155867  1.13834733  -0.151972837  0.13473571
## [154,] -0.31535901 -0.297926283 -0.12193769  -0.791102548  0.28255053
## [155,] -0.97146956  0.151234178  0.22814148  -1.302406317 -0.51811312
## [156,] -0.16955666  0.750114792 -0.47201686  -0.886972005  0.20864312
## [157,]  0.04914686  0.001514024 -0.75208020  -0.791102548  1.03394258
## [158,]  0.99686210  2.247316327 -0.19195352  -0.631320120 -0.67824585
## [159,]  1.21556562  1.648435713 -0.12193769   0.806721729  1.64983769
## [160,]  0.99686210  0.899834945 -0.75208020   0.487156874  0.59049809
## [161,]  0.04914686  0.450674485 -0.82209603   0.007809591 -0.78910697
## [162,]  0.63235624  0.151234178  0.50820482  -0.743167820  0.84917404
## [163,]  0.77815859  0.750114792  0.43818899  -1.030776190 -0.18552975
## [164,] -0.06020490 -0.297926283  0.43818899  -1.446210502 -0.05003283
## [165,] -0.24245783  0.750114792 -0.68206436  -1.510123473  0.96003516
## [166,] -0.38826018  0.899834945 -0.82209603  -1.621971173  0.89844565
## [167,]  0.85105976  1.049555099  0.78826816  -0.950884976  0.55354439
## [168,] -0.24245783  0.001514024 -0.82209603  -1.302406317 -0.22248346
## [169,]  1.17911504  1.498715559  0.36817315  -1.190558618  0.71367712
## [170,]  1.79877500  1.648435713  0.85828399  -0.503494178  0.49195487
## [171,] -0.16955666 -0.148206130 -0.26196936  -1.669905901 -0.98619340
## [172,] -0.31535901  0.001514024 -0.96212770  -1.446210502 -0.28407297
## [173,]  0.41365272  0.151234178 -0.61204853  -0.982841462  1.42811545
## [174,]  0.30430096  0.300954331 -0.33198519  -0.982841462  0.87380985
## [175,]  0.41365272  1.049555099  0.15812565  -0.791102548  0.49195487
## [176,] -0.38826018  0.151234178  1.41841067  -1.126645647  0.33182214
## [177,]  0.01269627  0.151234178  1.41841067  -1.030776190  0.20864312
## [178,]  1.36136797  1.498715559 -0.26196936  -0.391646479  1.39116174
##           Flavanoids
##   [1,]  1.0319080692
##   [2,]  0.7315652835
##   [3,]  1.2121137407
##   [4,]  1.4623993954
##   [5,]  0.6614853002
##   [6,]  1.3622851335
##   [7,]  0.4912910549
##   [8,]  0.4812796287
##   [9,]  0.9518166597
##  [10,]  1.1220109049
##  [11,]  1.2922051502
##  [12,]  0.4011882192
##  [13,]  0.7315652835
##  [14,]  1.6626279192
##  [15,]  1.6125707883
##  [16,]  0.8817366764
##  [17,]  1.1119994787
##  [18,]  1.3722965597
##  [19,]  1.9029021478
##  [20,]  1.0018737906
##  [21,]  1.1420337573
##  [22,]  0.3811653668
##  [23,]  0.8517023978
##  [24,]  0.3411196621
##  [25,]  0.5813938906
##  [26,]  0.6514738740
##  [27,]  0.9117709549
##  [28,]  0.1609139906
##  [29,]  0.9418052335
##  [30,]  0.3010739573
##  [31,]  1.2221251668
##  [32,]  1.1620566097
##  [33,]  0.6614853002
##  [34,]  0.7115424311
##  [35,]  0.5013024811
##  [36,]  0.9518166597
##  [37,]  0.6514738740
##  [38,]  0.4011882192
##  [39,]  0.6114281692
##  [40,]  1.0118852168
##  [41,]  1.2621708716
##  [42,]  0.6514738740
##  [43,]  1.5324793788
##  [44,]  0.6014167430
##  [45,]  0.9718395121
##  [46,]  0.6214395954
##  [47,]  1.1420337573
##  [48,]  1.3622851335
##  [49,]  0.8917481025
##  [50,]  1.5124565264
##  [51,]  1.2421480192
##  [52,]  0.9618280859
##  [53,]  1.7126850502
##  [54,]  0.7615995621
##  [55,]  0.8717252502
##  [56,]  0.7515881359
##  [57,]  0.9718395121
##  [58,]  1.2021023145
##  [59,]  1.6426050669
##  [60,] -1.4609370523
##  [61,] -0.9403428904
##  [62,] -0.6199772522
##  [63,] -0.2395430570
##  [64,]  1.0719537740
##  [65,] -0.2795887618
##  [66,]  0.6214395954
##  [67,]  1.1520451835
##  [68,] -0.0293031070
##  [69,] -0.7301029403
##  [70,] -0.7501257927
##  [71,] -1.0104228737
##  [72,]  0.8316795454
##  [73,] -0.1894859260
##  [74,]  0.8617138240
##  [75,]  0.1108568597
##  [76,] -0.4597944332
##  [77,]  0.0007311716
##  [78,] -0.7100800880
##  [79,] -0.1794744999
##  [80,]  0.5213253335
##  [81,]  0.2309939740
##  [82,]  0.5013024811
##  [83,] -0.4497830070
##  [84,] -0.4397715808
##  [85,]  0.1809368430
##  [86,] -0.0893716641
##  [87,] -0.3396573189
##  [88,] -0.4197487284
##  [89,] -0.3396573189
##  [90,] -0.4397715808
##  [91,] -0.5298744165
##  [92,] -0.7801600713
##  [93,] -0.5699201213
##  [94,]  0.2209825478
##  [95,]  0.2309939740
##  [96,]  0.2410054002
##  [97,] -1.0404571523
##  [98,]  0.4712682025
##  [99,]  1.7226964764
## [100,]  0.9618280859
## [101,]  0.1408911382
## [102,] -0.6700343832
## [103,]  0.0808225811
## [104,] -0.3897144499
## [105,] -0.1093945165
## [106,] -0.1894859260
## [107,]  0.0007311716
## [108,] -0.2695773356
## [109,]  0.0107425978
## [110,]  0.8917481025
## [111,]  0.5513596121
## [112,]  0.2410054002
## [113,]  0.0007311716
## [114,] -0.0192916808
## [115,]  0.2610282525
## [116,]  0.1408911382
## [117,] -0.4297601546
## [118,]  0.0607997287
## [119,] -0.7801600713
## [120,] -0.3897144499
## [121,]  0.7615995621
## [122,]  3.0542161597
## [123,]  0.1008454335
## [124,]  0.6214395954
## [125,]  1.0018737906
## [126,]  0.6214395954
## [127,]  1.1220109049
## [128,]  0.2109711216
## [129,]  0.4212110716
## [130,] -0.2795887618
## [131,] -0.7801600713
## [132,] -0.8101943499
## [133,] -0.9403428904
## [134,] -0.8302172023
## [135,] -1.4509256261
## [136,] -1.3708342166
## [137,] -1.5610513142
## [138,] -1.4309027737
## [139,] -1.5510398880
## [140,] -1.4309027737
## [141,] -1.5310170356
## [142,] -1.5310170356
## [143,] -1.5109941832
## [144,] -1.2306742499
## [145,] -1.2506971023
## [146,] -1.4809599046
## [147,] -1.6911998547
## [148,] -1.3808456427
## [149,] -1.2707199546
## [150,] -0.6400001046
## [151,] -0.4597944332
## [152,] -0.6700343832
## [153,] -0.7501257927
## [154,] -1.2006399713
## [155,] -1.4509256261
## [156,] -1.4008684951
## [157,] -1.2006399713
## [158,] -1.4509256261
## [159,] -0.7200915142
## [160,] -0.9303314642
## [161,] -1.1105371356
## [162,] -1.4709484785
## [163,] -1.4309027737
## [164,] -1.3307885118
## [165,] -1.3508113642
## [166,] -1.5610513142
## [167,] -1.1105371356
## [168,] -1.3708342166
## [169,] -1.1906285451
## [170,] -1.0704914308
## [171,] -1.5410284618
## [172,] -1.5210056094
## [173,] -1.3307885118
## [174,] -1.4208913475
## [175,] -1.2807313808
## [176,] -1.3407999380
## [177,] -1.3508113642
## [178,] -1.2707199546
## attr(,"scaled:center")
##           Ash  Ash_Alcanity     Magnesium Total_Phenols       Alcohol 
##      2.366517     19.494944     99.741573      2.295112     13.000618 
##    Flavanoids 
##      2.029270 
## attr(,"scaled:scale")
##           Ash  Ash_Alcanity     Magnesium Total_Phenols       Alcohol 
##     0.2743440     3.3395638    14.2824835     0.6258510     0.8118265 
##    Flavanoids 
##     0.9988587

standarisasi data diperlukan karena tiap variabel memiliki satuan yang berbeda.

  1. Analisis korelasi kanonik
X <- wineclustering[,2:4]
X
## # A tibble: 178 × 3
##      Ash Ash_Alcanity Magnesium
##    <dbl>        <dbl>     <dbl>
##  1  2.43         15.6       127
##  2  2.14         11.2       100
##  3  2.67         18.6       101
##  4  2.5          16.8       113
##  5  2.87         21         118
##  6  2.45         15.2       112
##  7  2.45         14.6        96
##  8  2.61         17.6       121
##  9  2.17         14          97
## 10  2.27         16          98
## # ℹ 168 more rows
Y <- wineclustering[,5:7]
Y
## # A tibble: 178 × 3
##    Total_Phenols Alcohol Flavanoids
##            <dbl>   <dbl>      <dbl>
##  1          2.8     14.2       3.06
##  2          2.65    13.2       2.76
##  3          2.8     13.2       3.24
##  4          3.85    14.4       3.49
##  5          2.8     13.2       2.69
##  6          3.27    14.2       3.39
##  7          2.5     14.4       2.52
##  8          2.6     14.1       2.51
##  9          2.8     14.8       2.98
## 10          2.98    13.9       3.15
## # ℹ 168 more rows
library(CCA) 
## Warning: package 'CCA' was built under R version 4.4.3
## Loading required package: fda
## Warning: package 'fda' was built under R version 4.4.3
## Loading required package: splines
## Loading required package: fds
## Warning: package 'fds' was built under R version 4.4.3
## Loading required package: rainbow
## Warning: package 'rainbow' was built under R version 4.4.3
## Loading required package: MASS
## Loading required package: pcaPP
## Loading required package: RCurl
## Warning: package 'RCurl' was built under R version 4.4.3
## Loading required package: deSolve
## Warning: package 'deSolve' was built under R version 4.4.3
## 
## Attaching package: 'fda'
## The following object is masked from 'package:graphics':
## 
##     matplot
## Loading required package: fields
## Warning: package 'fields' was built under R version 4.4.3
## Loading required package: spam
## Warning: package 'spam' was built under R version 4.4.3
## Spam version 2.11-1 (2025-01-20) is loaded.
## Type 'help( Spam)' or 'demo( spam)' for a short introduction 
## and overview of this package.
## Help for individual functions is also obtained by adding the
## suffix '.spam' to the function name, e.g. 'help( chol.spam)'.
## 
## Attaching package: 'spam'
## The following objects are masked from 'package:base':
## 
##     backsolve, forwardsolve
## Loading required package: viridisLite
## 
## Try help(fields) to get started.
cancor_result <- cancor(X, Y) 
cancor_result$cor 
## [1] 0.61998890 0.09019750 0.02461195

Korelasi kanonik pertama = 0.62 menunjukkan hubungan kuat antara kombinasi variabel dari X dan Y. Korelasi kanonik kedua = 0.09 dan korelasi kanonik ketiga = 0.02 menunjukkan hubungan yang lemah dan hampir tidak ada hubungan. Dapat disimpulkan bahwa hanya pasangan kanonik pertama yang memiliki hubungan yang cukup berarti, sedangkan dua lainnya sangat lemah.

cancor_result$xcoef
##                      [,1]         [,2]         [,3]
## Ash           0.196850839 -0.086312233 -0.247668147
## Ash_Alcanity -0.021954248 -0.013168559  0.003922992
## Magnesium     0.001046548 -0.003096211  0.004628132

Untuk koefisien variabel dalam X yang terdiri dari Ash, Ash_Alcanity, dan Magnesium. Ash memiliki pengaruh terbesar pada semua kombinasi di X.

cancor_result$ycoef
##                     [,1]        [,2]        [,3]
## Total_Phenols 0.00905679 -0.11187530  0.21512204
## Alcohol       0.06242076 -0.05457323 -0.04986541
## Flavanoids    0.03943973  0.11627623 -0.08581775

Untuk koefisien variabel dalam Y yang terdiri dari Total_Phenols, Alcohol, dan Flavonoids. Alcohol memiliki kontribusi tersebar dalam kombinasi pertama Y, Flavonoids memiliki kontribusi terbesar pada kombinasi kedua Y, dan Total_Phenols memiliki kontribusi terbesar pada kombinasi ketiga Y.

cancor_result$xcenter
##          Ash Ash_Alcanity    Magnesium 
##     2.366517    19.494944    99.741573
cancor_result$ycenter
## Total_Phenols       Alcohol    Flavanoids 
##      2.295112     13.000618      2.029270

Ini merupakan data yang telah dimean-centering, artinya nilai variabel dikurangi dengan rata-rata sebelum analisis dilakukan.

  1. Uji hipotesis
  1. Uji korelasi kanonik secara keseluruhan

H0:Σ12 = 0 ( 𝜌1 ∗ = 𝜌2 ∗ = ⋯ = 𝜌𝑝 ∗ = 0) (semua korelasi kanonik tidak signifikan)

H1: ada 𝜌𝑖 ≠ 0 ,𝑖 = 1,2,…,𝑘 (paling tidak ada satu korelasi kanonik signifikan)

# Uji Bartlett untuk signifikansi korelasi kanonik 
rho <- cancor_result$cor  # Korelasi kanonik 
rho 
## [1] 0.61998890 0.09019750 0.02461195
n <- nrow(X)  # Jumlah sampel 
p <- ncol(X)  # Jumlah variabel X 
q <- ncol(Y)  # Jumlah variabel Y 

# Hitung statistik uji Bartlett 
stat_bartlett <- -((n - 1) - ((p + q + 1) / 2)) * log(prod(1 - rho^2)) 
stat_bartlett 
## [1] 85.69344
# Hitung p-value 
df <- (p*q) 
p_value <- pchisq(stat_bartlett, df = df, lower.tail = FALSE) 
p_value 
## [1] 1.18591e-14
# Hasil 
cat("Statistik Uji Bartlett:", stat_bartlett, "\n") 
## Statistik Uji Bartlett: 85.69344
cat("p-value:", p_value, "\n") 
## p-value: 1.18591e-14

Karena p-value 1.18591e-14 < 0.05, maka tolak H0 atau dapat disimpulkan bahwa semua korelasi kanonik signifikan.

  1. Uji korelasi kanonik secara sebagian

H0^(𝑘) : 𝜌1 ∗ = 0,𝜌2 ∗ = 0,…,𝜌𝑘∗ = 0 (korelasi kanonik tidak signifikan)

H1^(𝑘) : 𝜌𝑖 ≠ 0 ,𝑖 = 1,2,…,𝑘 (korelasi kanonik signifikan)

rho3 <- c(0.61998890, 0.09019750, 0.02461195) 
log(prod(1 - rho3^2)) 
## [1] -0.4939103
rho2 <- c(0.09019750, 0.02461195) 
log(prod(1 - rho2^2)) 
## [1] -0.008774795
rho1 <- (0.02461195) 
log(prod(1 - rho1^2)) 
## [1] -0.0006059316
stat_bartlett <- -((n - 1) - (((p-1) + (q-1) + 1) / 2)) * log(prod(1 - rho3^2)) 
stat_bartlett 
## [1] 86.18735
stat_bartlett <- -((n - 1) - (((p-2) + (q-2) + 1) / 2)) * log(prod(1 - rho2^2)) 
stat_bartlett 
## [1] 1.539977
stat_bartlett <- -((n - 1) - (((p-3) + (q-3) + 1) / 2)) * log(prod(1 - rho1^2)) 
stat_bartlett
## [1] 0.1069469

Hipotesis nol ditolak pada taraf signifikan α jika 𝐵 > 𝜒2 dengan derajat bebas (𝑝−𝑟)(𝑞−𝑟). 𝜒2 hitung = 86.18735 > 𝜒2 kritis = 30,579.5 sehingga dapat disimpulkan hanya pasangan korelasi kanonik 1 yang ada hubungan signifikan antara dua set variabel secara keseluruhan.

  1. Redudansi
#Uji Redudansi
X <- as.matrix(wineclustering[,2:4])
Y <- as.matrix(wineclustering[,5:7])
#Kanonik
rhosq<-cancor_result$cor^2 
RIx<-colMeans(cancor_result$xcoef^2)*rhosq 
RIy<-colMeans(cancor_result$ycoef^2)*rhosq 
RIx 
## [1] 5.026918e-03 2.069911e-05 1.239286e-05
RIy 
## [1] 7.090478e-04 7.868330e-05 1.133329e-05

RIX menunjukkan bahwa variabel kanonik dari Y hanya menjelaskan varians kecil dari X (nilai sangat kecil). RIY menunjukkan bahwa variabel kanonik dari X juga hanya menjelaskan varians kecil dari Y. Karena nilai-nilai ini sangat kecil (< 0.01 atau 1%), ini menunjukkan hubungan antara X dan Y tidak terlalu kuat dalam menjelaskan varians satu sama lain.