library(readxl)
Data_AD <- read_excel("C:/Users/HP/OneDrive/文件/Data_AD.xlsx")
print(Data_AD)
## # A tibble: 306 × 4
##    `Surv status` `Usia pasien saat operasi` `Tahun operasi (1958-1969)`
##            <dbl>                      <dbl>                       <dbl>
##  1             1                         30                          64
##  2             1                         30                          62
##  3             1                         30                          65
##  4             1                         31                          59
##  5             1                         31                          65
##  6             1                         33                          58
##  7             1                         33                          60
##  8             1                         34                          58
##  9             1                         34                          60
## 10             1                         34                          61
## # ℹ 296 more rows
## # ℹ 1 more variable:
## #   `Jumlah kelenjar getah bening yang terdeteksi positif` <dbl>
View(Data_AD)
Y  <- Data_AD$`Surv status` 
X1 <- Data_AD$`Usia pasien saat operasi`
X2 <- Data_AD$`Tahun operasi (1958-1969)`
X3 <- Data_AD$`Jumlah kelenjar getah bening yang terdeteksi positif`

Data <- data.frame(Y,X1,X2,X3)
Data
##     Y X1 X2 X3
## 1   1 30 64  1
## 2   1 30 62  3
## 3   1 30 65  0
## 4   1 31 59  2
## 5   1 31 65  4
## 6   1 33 58 10
## 7   1 33 60  0
## 8   1 34 58 30
## 9   1 34 60  1
## 10  1 34 61 10
## 11  1 34 67  7
## 12  1 34 60  0
## 13  1 35 64 13
## 14  1 35 63  0
## 15  1 36 60  1
## 16  1 36 69  0
## 17  1 37 60  0
## 18  1 37 63  0
## 19  1 37 58  0
## 20  1 37 59  6
## 21  1 37 60 15
## 22  1 37 63  0
## 23  1 38 59  2
## 24  1 38 60  0
## 25  1 38 60  0
## 26  1 38 62  3
## 27  1 38 64  1
## 28  1 38 66  0
## 29  1 38 66 11
## 30  1 38 60  1
## 31  1 38 67  5
## 32  1 39 63  0
## 33  1 39 67  0
## 34  1 39 58  0
## 35  1 39 59  2
## 36  1 39 63  4
## 37  1 40 58  2
## 38  1 40 58  0
## 39  1 40 65  0
## 40  1 41 58  0
## 41  1 41 59  8
## 42  1 41 59  0
## 43  1 41 64  0
## 44  1 41 69  8
## 45  1 41 65  0
## 46  1 41 65  0
## 47  1 42 58  0
## 48  1 42 60  1
## 49  1 42 59  2
## 50  1 42 61  4
## 51  1 42 62 20
## 52  1 42 65  0
## 53  1 42 63  1
## 54  1 43 63 14
## 55  1 43 64  2
## 56  1 43 64  3
## 57  1 43 60  0
## 58  1 43 63  2
## 59  1 43 65  0
## 60  1 43 66  4
## 61  1 44 61  0
## 62  1 44 63  1
## 63  1 44 61  0
## 64  1 44 67 16
## 65  1 45 60  0
## 66  1 45 67  0
## 67  1 45 59 14
## 68  1 45 64  0
## 69  1 45 68  0
## 70  1 45 67  1
## 71  1 46 62  0
## 72  1 46 58  3
## 73  1 46 63  0
## 74  1 47 61  0
## 75  1 47 63  6
## 76  1 47 66  0
## 77  1 47 67  0
## 78  1 47 58  3
## 79  1 47 60  4
## 80  1 47 68  4
## 81  1 47 66 12
## 82  1 48 61  8
## 83  1 48 62  2
## 84  1 48 64  0
## 85  1 48 66  0
## 86  1 49 61  1
## 87  1 49 62  0
## 88  1 49 66  0
## 89  1 49 60  1
## 90  1 49 62  1
## 91  1 49 63  3
## 92  1 49 61  0
## 93  1 49 67  1
## 94  1 50 59  0
## 95  1 50 61  6
## 96  1 50 61  0
## 97  1 50 63  1
## 98  1 50 58  1
## 99  1 50 59  2
## 100 1 50 61  0
## 101 1 50 64  0
## 102 1 50 65  4
## 103 1 50 66  1
## 104 1 51 64  7
## 105 1 51 59  1
## 106 1 51 65  0
## 107 1 51 66  1
## 108 1 52 61  0
## 109 1 52 63  4
## 110 1 52 69  0
## 111 1 52 60  4
## 112 1 52 60  5
## 113 1 52 62  0
## 114 1 52 62  1
## 115 1 52 64  0
## 116 1 52 65  0
## 117 1 52 68  0
## 118 1 53 58  1
## 119 1 53 60  1
## 120 1 53 60  2
## 121 1 53 61  1
## 122 1 53 63  0
## 123 1 54 59  7
## 124 1 54 60  3
## 125 1 54 66  0
## 126 1 54 67 46
## 127 1 54 62  0
## 128 1 54 69  7
## 129 1 54 63 19
## 130 1 54 58  1
## 131 1 54 62  0
## 132 1 55 58  1
## 133 1 55 58  0
## 134 1 55 58  1
## 135 1 55 66 18
## 136 1 55 66  0
## 137 1 55 69  3
## 138 1 55 69 22
## 139 1 55 67  1
## 140 1 56 60  0
## 141 1 56 66  2
## 142 1 56 66  1
## 143 1 56 67  0
## 144 1 56 60  0
## 145 1 57 64  9
## 146 1 57 69  0
## 147 1 57 61  0
## 148 1 57 62  0
## 149 1 57 63  0
## 150 1 57 64  0
## 151 1 57 64  0
## 152 1 57 67  0
## 153 1 58 59  0
## 154 1 58 60  3
## 155 1 58 61  1
## 156 1 58 67  0
## 157 1 58 58  0
## 158 1 58 58  3
## 159 1 58 61  2
## 160 1 59 60  0
## 161 1 59 63  0
## 162 1 59 64  1
## 163 1 59 64  4
## 164 1 59 64  0
## 165 1 59 64  7
## 166 1 59 67  3
## 167 1 60 61  1
## 168 1 60 67  2
## 169 1 60 61 25
## 170 1 60 64  0
## 171 1 61 59  0
## 172 1 61 59  0
## 173 1 61 64  0
## 174 1 61 65  8
## 175 1 61 68  0
## 176 1 61 59  0
## 177 1 62 62  6
## 178 1 62 66  0
## 179 1 62 66  0
## 180 1 62 58  0
## 181 1 63 61  0
## 182 1 63 62  0
## 183 1 63 63  0
## 184 1 63 63  0
## 185 1 63 66  0
## 186 1 63 61  9
## 187 1 63 61 28
## 188 1 64 58  0
## 189 1 64 65 22
## 190 1 64 66  0
## 191 1 64 61  0
## 192 1 64 68  0
## 193 1 65 58  0
## 194 1 65 64  0
## 195 1 65 67  0
## 196 1 65 59  2
## 197 1 65 64  0
## 198 1 65 67  1
## 199 1 66 58  0
## 200 1 66 58  1
## 201 1 66 68  0
## 202 1 67 66  0
## 203 1 67 66  0
## 204 1 67 61  0
## 205 1 67 65  0
## 206 1 68 67  0
## 207 1 68 68  0
## 208 1 69 60  0
## 209 1 69 65  0
## 210 1 69 66  0
## 211 1 70 66 14
## 212 1 70 67  0
## 213 1 70 68  0
## 214 1 70 59  8
## 215 1 70 63  0
## 216 1 71 68  2
## 217 1 72 58  0
## 218 1 72 64  0
## 219 1 72 67  3
## 220 1 73 62  0
## 221 1 73 68  0
## 222 1 74 63  0
## 223 1 75 62  1
## 224 1 76 67  0
## 225 1 77 65  3
## 226 2 34 59  0
## 227 2 34 66  9
## 228 2 38 69 21
## 229 2 39 66  0
## 230 2 41 60 23
## 231 2 41 64  0
## 232 2 41 67  0
## 233 2 42 69  1
## 234 2 42 59  0
## 235 2 43 58 52
## 236 2 43 59  2
## 237 2 43 64  0
## 238 2 43 64  0
## 239 2 44 64  6
## 240 2 44 58  9
## 241 2 44 63 19
## 242 2 45 65  6
## 243 2 45 66  0
## 244 2 45 67  1
## 245 2 46 58  2
## 246 2 46 69  3
## 247 2 46 62  5
## 248 2 46 65 20
## 249 2 47 63 23
## 250 2 47 62  0
## 251 2 47 65  0
## 252 2 48 58 11
## 253 2 48 58 11
## 254 2 48 67  7
## 255 2 49 63  0
## 256 2 49 64 10
## 257 2 50 63 13
## 258 2 50 64  0
## 259 2 51 59 13
## 260 2 51 59  3
## 261 2 52 69  3
## 262 2 52 59  2
## 263 2 52 62  3
## 264 2 52 66  4
## 265 2 53 58  4
## 266 2 53 65  1
## 267 2 53 59  3
## 268 2 53 60  9
## 269 2 53 63 24
## 270 2 53 65 12
## 271 2 54 60 11
## 272 2 54 65 23
## 273 2 54 65  5
## 274 2 54 68  7
## 275 2 55 63  6
## 276 2 55 68 15
## 277 2 56 65  9
## 278 2 56 66  3
## 279 2 57 61  5
## 280 2 57 62 14
## 281 2 57 64  1
## 282 2 59 62 35
## 283 2 60 59 17
## 284 2 60 65  0
## 285 2 61 62  5
## 286 2 61 65  0
## 287 2 61 68  1
## 288 2 62 59 13
## 289 2 62 58  0
## 290 2 62 65 19
## 291 2 63 60  1
## 292 2 65 58  0
## 293 2 65 61  2
## 294 2 65 62 22
## 295 2 65 66 15
## 296 2 66 58  0
## 297 2 66 61 13
## 298 2 67 64  8
## 299 2 67 63  1
## 300 2 69 67  8
## 301 2 70 58  0
## 302 2 70 58  4
## 303 2 72 63  0
## 304 2 74 65  3
## 305 2 78 65  1
## 306 2 83 58  2
 X <- Data[,-1]
 
 #Mengubah data menjadi matriks
 data <- data.matrix(X)
 
 #Mean
 mean <- matrix(colMeans(data),3,1)
 
 #Covarians
 cov.data <- cov(data)
 cov.invers <- solve(cov.data)
 
 #Menghitung nilai diˆ2
 di <- mahalanobis(data, mean, cov.data)
 
 #Peringkat untuk nilai diˆ2
 rank <- rank(di)
 
 #Peluang nilai k
 p <- (rank-0.5)/306
 
 #Nilai Chi Square
 chi.square <- qchisq(p, df=3)
 
 #Membuat Kategori dalam tabel
 Data$di.kuadrat <- di
 Data$k <- rank
 Data$p.k <- p
 Data$Chi.Square <- chi.square
 m <- data.matrix(Data)
 m
##        Y X1 X2 X3   di.kuadrat     k         p.k  Chi.Square
##   [1,] 1 30 64  1  4.921453163 269.0 0.877450980  5.78505723
##   [2,] 1 30 62  3  4.402346783 255.0 0.831699346  5.04821229
##   [3,] 1 30 65  0  5.526192521 280.0 0.913398693  6.57892554
##   [4,] 1 31 59  2  5.133968881 275.0 0.897058824  6.18516023
##   [5,] 1 31 65  4  4.670925411 263.0 0.857843137  5.44187341
##   [6,] 1 33 58 10  5.552949605 283.0 0.923202614  6.85112500
##   [7,] 1 33 60  0  4.215583155 250.0 0.815359477  4.83046679
##   [8,] 1 34 58 30 17.080885240 303.0 0.988562092 11.05390973
##   [9,] 1 34 60  1  3.728154734 228.0 0.743464052  4.04603452
##  [10,] 1 34 61 10  3.620369505 224.0 0.730392157  3.92562725
##  [11,] 1 34 67  7  5.070223703 273.0 0.890522876  6.04424952
##  [12,] 1 34 60  0  3.894892720 234.0 0.763071895  4.23756115
##  [13,] 1 35 64 13  4.177455917 246.0 0.802287582  4.66887780
##  [14,] 1 35 63  0  3.088150912 202.0 0.658496732  3.34445384
##  [15,] 1 36 60  1  3.142079139 204.0 0.665032680  3.39255304
##  [16,] 1 36 69  0  6.904661569 291.0 0.949346405  7.78574501
##  [17,] 1 37 60  0  3.036881339 197.0 0.642156863  3.22762816
##  [18,] 1 37 63  0  2.502593713 169.5 0.552287582  2.65625581
##  [19,] 1 37 58  0  4.347821837 252.0 0.821895425  4.91531092
##  [20,] 1 37 59  6  3.209608324 208.0 0.678104575  3.49127549
##  [21,] 1 37 60 15  4.688394071 264.0 0.861111111  5.49581921
##  [22,] 1 37 63  0  2.502593713 169.5 0.552287582  2.65625581
##  [23,] 1 38 59  2  3.069508023 199.0 0.648692810  3.27379064
##  [24,] 1 38 60  0  2.785564186 186.5 0.607843137  2.99655351
##  [25,] 1 38 60  0  2.785564186 186.5 0.607843137  2.99655351
##  [26,] 1 38 62  3  1.863119187 129.0 0.419934641  1.96326850
##  [27,] 1 38 64  1  2.273641916 152.0 0.495098039  2.33999655
##  [28,] 1 38 66  0  3.404643749 212.0 0.691176471  3.59360275
##  [29,] 1 38 66 11  3.768325432 231.0 0.753267974  4.14005927
##  [30,] 1 38 60  1  2.625376825 178.0 0.580065359  2.82173375
##  [31,] 1 38 67  5  3.757939847 230.0 0.750000000  4.10834494
##  [32,] 1 39 63  0  1.986409796 138.0 0.449346405  2.10622914
##  [33,] 1 39 67  0  3.906132213 235.0 0.766339869  4.27088450
##  [34,] 1 39 58  0  3.883126139 233.0 0.759803922  4.20465666
##  [35,] 1 39 59  2  2.843958325 189.0 0.616013072  3.04995576
##  [36,] 1 39 63  4  1.583323433 108.0 0.351307190  1.64739005
##  [37,] 1 40 58  2  3.402471346 211.0 0.687908497  3.56766619
##  [38,] 1 40 58  0  3.676793271 227.0 0.740196078  4.01541938
##  [39,] 1 40 65  0  2.321996884 155.0 0.504901961  2.39214749
##  [40,] 1 41 58  0  3.487803723 215.0 0.700980392  3.67290440
##  [41,] 1 41 59  8  2.563082880 177.0 0.576797386  2.80180654
##  [42,] 1 41 59  0  2.716263312 183.0 0.596405229  2.92334957
##  [43,] 1 41 64  0  1.722807498 118.5 0.385620915  1.80255506
##  [44,] 1 41 69  8  5.336802597 276.0 0.900326797  6.25886230
##  [45,] 1 41 65  0  2.096965583 146.5 0.477124183  2.24635432
##  [46,] 1 41 65  0  2.096965583 146.5 0.477124183  2.24635432
##  [47,] 1 42 58  0  3.316157496 210.0 0.684640523  3.54196947
##  [48,] 1 42 60  1  1.800092043 123.0 0.400326797  1.87069423
##  [49,] 1 42 59  2  2.271369154 151.0 0.491830065  2.32278516
##  [50,] 1 42 61  4  1.176815796  83.0 0.269607843  1.29469933
##  [51,] 1 42 62 20  5.656653085 285.0 0.929738562  7.05191201
##  [52,] 1 42 65  0  1.889277603 132.0 0.429738562  2.01034936
##  [53,] 1 42 63  1  1.188080374  84.0 0.272875817  1.30846409
##  [54,] 1 43 63 14  2.562326950 176.0 0.573529412  2.78200621
##  [55,] 1 43 64  2  1.068609655  77.0 0.250000000  1.21253290
##  [56,] 1 43 64  3  0.993648061  68.0 0.220588235  1.09031838
##  [57,] 1 43 60  0  1.789128228 122.0 0.397058824  1.85546018
##  [58,] 1 43 63  2  0.896026773  62.0 0.200980392  1.00922576
##  [59,] 1 43 65  0  1.698932943 117.0 0.380718954  1.78007208
##  [60,] 1 43 66  4  1.874892413 130.0 0.423202614  1.97890112
##  [61,] 1 44 61  0  1.236783620  90.5 0.294117647  1.39851716
##  [62,] 1 44 63  1  0.848604975  59.0 0.191176471  0.96870613
##  [63,] 1 44 61  0  1.236783620  90.5 0.294117647  1.39851716
##  [64,] 1 44 67 16  5.053650248 272.0 0.887254902  5.97678635
##  [65,] 1 45 60  0  1.511957089 105.0 0.341503268  1.60394022
##  [66,] 1 45 67  0  2.650248428 179.0 0.583333333  2.84178997
##  [67,] 1 45 59 14  3.568341230 219.0 0.714052288  3.78233373
##  [68,] 1 45 64  0  1.016710786  71.0 0.230392157  1.13095218
##  [69,] 1 45 68  0  3.576660475 220.0 0.717320261  3.81039148
##  [70,] 1 45 67  1  2.500377327 167.5 0.545751634  2.61854084
##  [71,] 1 46 62  0  0.759566205  47.0 0.151960784  0.80596727
##  [72,] 1 46 58  3  2.479270547 166.0 0.540849673  2.59054054
##  [73,] 1 46 63  0  0.726080682  43.0 0.138888889  0.75115367
##  [74,] 1 47 61  0  0.883625387  61.0 0.197712418  0.99572003
##  [75,] 1 47 63  6  0.322464219  10.0 0.031045752  0.25105667
##  [76,] 1 47 66  0  1.645202410 112.0 0.364379085  1.70590889
##  [77,] 1 47 67  0  2.370367063 157.0 0.511437908  2.42735890
##  [78,] 1 47 58  3  2.399253891 158.0 0.514705882  2.44510203
##  [79,] 1 47 60  4  0.955444728  65.0 0.210784314  1.04975269
##  [80,] 1 47 68  4  2.932522007 194.0 0.632352941  3.15973325
##  [81,] 1 47 66 12  2.451892259 161.0 0.524509804  2.49889842
##  [82,] 1 48 61  8  0.736498459  46.0 0.148692810  0.79230285
##  [83,] 1 48 62  2  0.316429038   8.0 0.024509804  0.21284088
##  [84,] 1 48 64  0  0.669243116  39.0 0.125816993  0.69583565
##  [85,] 1 48 66  0  1.536425530 107.0 0.348039216  1.63286628
##  [86,] 1 49 61  1  0.592566121  32.0 0.102941176  0.59726229
##  [87,] 1 49 62  0  0.495021429  23.0 0.073529412  0.46518583
##  [88,] 1 49 66  0  1.444991971 101.0 0.328431373  1.54655175
##  [89,] 1 49 60  1  1.023561513  73.0 0.236928105  1.15809290
##  [90,] 1 49 62  1  0.352520477  11.0 0.034313725  0.26934810
##  [91,] 1 49 63  3  0.134634528   3.0 0.008169935  0.10006131
##  [92,] 1 49 61  0  0.734903167  45.0 0.145424837  0.77861392
##  [93,] 1 49 67  1  2.016538505 140.0 0.455882353  2.13872799
##  [94,] 1 50 59  0  1.749467406 120.0 0.390522876  1.82515112
##  [95,] 1 50 61  6  0.425058981  16.0 0.050653595  0.35513461
##  [96,] 1 50 61  0  0.686557038  40.5 0.130718954  0.71664933
##  [97,] 1 50 63  1  0.246418467   5.0 0.014705882  0.14952489
##  [98,] 1 50 58  1  2.427139540 159.0 0.517973856  2.46293867
##  [99,] 1 50 59  2  1.507570798 104.0 0.338235294  1.58953634
## [100,] 1 50 61  0  0.686557038  40.5 0.130718954  0.71664933
## [101,] 1 50 64  0  0.524314606  26.5 0.084967320  0.51748906
## [102,] 1 50 65  4  0.519792569  25.0 0.080065359  0.49524580
## [103,] 1 50 66  1  1.229382818  89.0 0.289215686  1.37763997
## [104,] 1 51 64  7  0.316768790   9.0 0.027777778  0.23225116
## [105,] 1 51 59  1  1.590028317 110.0 0.357843137  1.67656310
## [106,] 1 51 65  0  0.800535198  54.0 0.174836601  0.90109564
## [107,] 1 51 66  1  1.174273556  82.0 0.266339869  1.28095610
## [108,] 1 52 61  0  0.641894741  36.0 0.116013072  0.65391205
## [109,] 1 52 63  4  0.004259847   1.0 0.001633987  0.03377150
## [110,] 1 52 69  0  3.945862095 238.0 0.776143791  4.37348888
## [111,] 1 52 60  4  0.772211317  50.0 0.161764706  0.84683371
## [112,] 1 52 60  5  0.790337354  51.0 0.165032680  0.86041996
## [113,] 1 52 62  0  0.386566537  12.0 0.037581699  0.28719600
## [114,] 1 52 62  1  0.248978554   6.0 0.017973856  0.17168022
## [115,] 1 52 64  0  0.448759377  19.0 0.060457516  0.40338435
## [116,] 1 52 65  0  0.766280422  48.0 0.155228758  0.81960924
## [117,] 1 52 68  0  2.864542053 192.0 0.625816993  3.11533063
## [118,] 1 53 58  1  2.437413441 160.0 0.521241830  2.48087030
## [119,] 1 53 60  1  0.961382832  66.0 0.214052288  1.06326879
## [120,] 1 53 60  2  0.864606868  60.0 0.194444444  0.98221391
## [121,] 1 53 61  1  0.509792151  24.0 0.076797386  0.48027696
## [122,] 1 53 63  0  0.315574271   7.0 0.021241830  0.19270569
## [123,] 1 54 59  7  1.649737581 115.0 0.374183007  1.75026574
## [124,] 1 54 60  3  0.837766399  56.0 0.181372549  0.92815971
## [125,] 1 54 66  0  1.247973982  93.0 0.302287582  1.43345222
## [126,] 1 54 67 46 35.927197550 305.0 0.995098039 12.88064344
## [127,] 1 54 62  0  0.400979878  13.5 0.042483660  0.31325636
## [128,] 1 54 69  7  3.755749499 229.0 0.746732026  4.07700659
## [129,] 1 54 63 19  4.414009299 256.0 0.834967320  5.09413209
## [130,] 1 54 58  1  2.475524715 162.0 0.527777778  2.51702455
## [131,] 1 54 62  0  0.400979878  13.5 0.042483660  0.31325636
## [132,] 1 55 58  1  2.530979310 172.5 0.562091503  2.71367426
## [133,] 1 55 58  0  2.662998704 180.0 0.586601307  2.86197740
## [134,] 1 55 58  1  2.530979310 172.5 0.562091503  2.71367426
## [135,] 1 55 66 18  4.804171448 266.0 0.867647059  5.60742159
## [136,] 1 55 66  0  1.260600345  94.0 0.305555556  1.44747748
## [137,] 1 55 69  3  3.600444441 222.0 0.723856209  3.86739405
## [138,] 1 55 69 22  9.914833752 299.0 0.975490196  9.39188273
## [139,] 1 55 67  1  1.811079885 124.0 0.403594771  1.88598249
## [140,] 1 56 60  0  1.227563233  87.5 0.284313725  1.35682235
## [141,] 1 56 66  2  1.066030628  76.0 0.246732026  1.19890073
## [142,] 1 56 66  1  1.158877052  81.0 0.263071895  1.26723355
## [143,] 1 56 67  0  1.969395285 136.0 0.442810458  2.07400530
## [144,] 1 56 60  0  1.227563233  87.5 0.284313725  1.35682235
## [145,] 1 57 64  9  0.794307700  52.0 0.168300654  0.87399124
## [146,] 1 57 69  0  3.931761584 237.0 0.772875817  4.33883575
## [147,] 1 57 61  0  0.833747106  55.0 0.178104575  0.91463195
## [148,] 1 57 62  0  0.552674792  28.0 0.089869281  0.53950384
## [149,] 1 57 63  0  0.462552228  21.0 0.066993464  0.43459629
## [150,] 1 57 64  0  0.563379414  29.5 0.094771242  0.56131353
## [151,] 1 57 64  0  0.563379414  29.5 0.094771242  0.56131353
## [152,] 1 57 67  0  2.011559467 139.0 0.452614379  2.12244365
## [153,] 1 58 59  0  2.069439060 144.0 0.468954248  2.20458542
## [154,] 1 58 60  3  1.135555378  80.0 0.259803922  1.25353082
## [155,] 1 58 61  1  0.796549401  53.0 0.171568627  0.88754926
## [156,] 1 58 67  0  2.071066970 145.0 0.472222222  2.22123541
## [157,] 1 58 58  0  2.928509444 193.0 0.629084967  3.13744799
## [158,] 1 58 58  3  2.663729825 181.0 0.589869281  2.88229827
## [159,] 1 58 61  2  0.707797813  42.0 0.135620915  0.73737768
## [160,] 1 59 60  0  1.514211002 106.0 0.344771242  1.61838327
## [161,] 1 59 63  0  0.640101130  35.0 0.112745098  0.63983767
## [162,] 1 59 64  1  0.604178474  33.0 0.106209150  0.61151692
## [163,] 1 59 64  4  0.457901193  20.0 0.063725490  0.41907477
## [164,] 1 59 64  0  0.730630672  44.0 0.142156863  0.76489828
## [165,] 1 59 64  7  0.661242883  38.0 0.122549020  0.68190763
## [166,] 1 59 67  3  1.883625712 131.0 0.426470588  1.99459441
## [167,] 1 60 61  1  1.032655543  74.0 0.240196078  1.17168166
## [168,] 1 60 67  2  2.030345977 142.0 0.462418301  2.17151046
## [169,] 1 60 61 25  9.702873375 298.0 0.972222222  9.11678640
## [170,] 1 60 64  0  0.840271281  57.0 0.184640523  0.94168038
## [171,] 1 61 59  0  2.475593217 164.0 0.534313725  2.55357704
## [172,] 1 61 59  0  2.475593217 164.0 0.534313725  2.55357704
## [173,] 1 61 64  0  0.967255211  67.0 0.217320261  1.07679032
## [174,] 1 61 65  8  1.339414000  99.0 0.321895425  1.51807666
## [175,] 1 61 68  0  3.197680298 205.0 0.668300654  3.41691176
## [176,] 1 61 59  0  2.475593217 164.0 0.534313725  2.55357704
## [177,] 1 62 62  6  1.007795827  69.0 0.223856209  1.10385402
## [178,] 1 62 66  0  1.834597862 126.5 0.411764706  1.92444617
## [179,] 1 62 66  0  1.834597862 126.5 0.411764706  1.92444617
## [180,] 1 62 58  0  3.525330249 217.5 0.709150327  3.74078242
## [181,] 1 63 61  0  1.636299519 111.0 0.361111111  1.69121400
## [182,] 1 63 62  0  1.324334274  96.0 0.312091503  1.47562020
## [183,] 1 63 63  0  1.203318779  85.5 0.277777778  1.32915343
## [184,] 1 63 63  0  1.203318779  85.5 0.277777778  1.32915343
## [185,] 1 63 66  0  1.985970790 137.0 0.446078431  2.09008337
## [186,] 1 63 61  9  1.960086678 135.0 0.439542484  2.05799389
## [187,] 1 63 61 28 12.976820249 302.0 0.985294118 10.50812491
## [188,] 1 64 58  0  3.927800574 236.0 0.769607843  4.30463859
## [189,] 1 64 65 22  8.076143609 295.0 0.962418301  8.44942057
## [190,] 1 64 66  0  2.154687037 149.0 0.485294118  2.28861290
## [191,] 1 64 61  0  1.830759877 125.0 0.406862745  1.90132584
## [192,] 1 64 68  0  3.620906148 225.0 0.733660131  3.95522426
## [193,] 1 65 58  0  4.155050718 244.5 0.797385621  4.61083722
## [194,] 1 65 64  0  1.648624136 113.5 0.369281046  1.72803550
## [195,] 1 65 67  0  2.973232464 196.0 0.638888889  3.20482007
## [196,] 1 65 59  2  3.067171661 198.0 0.645424837  3.25061719
## [197,] 1 65 64  0  1.648624136 113.5 0.369281046  1.72803550
## [198,] 1 65 67  1  2.856114489 190.0 0.619281046  3.07158746
## [199,] 1 66 58  0  4.399644182 253.5 0.826797386  4.98087940
## [200,] 1 66 58  1  4.285639007 251.0 0.818627451  4.87253130
## [201,] 1 66 68  0  3.989773317 239.0 0.779411765  4.40861142
## [202,] 1 67 66  0  2.764895703 184.5 0.601307190  2.95450576
## [203,] 1 67 66  0  2.764895703 184.5 0.601307190  2.95450576
## [204,] 1 67 61  0  2.518200871 171.0 0.557189542  2.68483573
## [205,] 1 67 65  0  2.333657238 156.0 0.508169935  2.40970786
## [206,] 1 68 67  0  3.620024625 223.0 0.727124183  3.89635311
## [207,] 1 68 68  0  4.428013768 257.0 0.838235294  5.14091520
## [208,] 1 69 60  0  3.597019396 221.0 0.720588235  3.83874259
## [209,] 1 69 65  0  2.837477261 188.0 0.612745098  3.02848018
## [210,] 1 69 66  0  3.258418082 209.0 0.681372549  3.51650754
## [211,] 1 70 66 14  5.543509470 281.0 0.916666667  6.66620333
## [212,] 1 70 67  0  4.137936002 243.0 0.792483660  4.55408645
## [213,] 1 70 68  0  4.935627501 270.0 0.880718954  5.84728793
## [214,] 1 70 59  8  4.857350824 267.0 0.870915033  5.66520074
## [215,] 1 70 63  0  2.856667502 191.0 0.622549020  3.09337812
## [216,] 1 71 68  2  5.039384016 271.0 0.883986928  5.91116643
## [217,] 1 72 58  0  6.231414695 290.0 0.946078431  7.64607611
## [218,] 1 72 64  0  3.508737593 216.0 0.704248366  3.69985413
## [219,] 1 72 67  3  4.524797175 259.0 0.844771242  5.23721398
## [220,] 1 73 62  0  3.997899048 240.0 0.782679739  4.44421743
## [221,] 1 73 68  0  5.827123003 287.0 0.936274510  7.27164504
## [222,] 1 74 63  0  4.182991252 247.0 0.805555556  4.70831985
## [223,] 1 75 62  1  4.640809961 261.0 0.851307190  5.33741687
## [224,] 1 76 67  0  6.107909823 289.0 0.942810458  7.51440251
## [225,] 1 77 65  3  5.371614961 278.0 0.906862745  6.41349346
## [226,] 2 34 59  0  4.439441629 258.0 0.841503268  5.18859673
## [227,] 2 34 66  9  4.526527153 260.0 0.848039216  5.28680662
## [228,] 2 38 69 21 11.054868525 300.0 0.978758170  9.70559443
## [229,] 2 39 66  0  3.139776985 203.0 0.661764706  3.36840177
## [230,] 2 41 60 23  8.392539362 297.0 0.968954248  8.87173521
## [231,] 2 41 64  0  1.722807498 118.5 0.385620915  1.80255506
## [232,] 2 41 67  0  3.418131003 213.0 0.694444444  3.61978435
## [233,] 2 42 69  1  5.119700273 274.0 0.893790850  6.11366701
## [234,] 2 42 59  0  2.539468263 174.0 0.566993464  2.74277780
## [235,] 2 43 58 52 46.785476891 306.0 0.998366013 15.22517901
## [236,] 2 43 59  2  2.115192738 148.0 0.482026144  2.27164950
## [237,] 2 43 64  0  1.335072501  97.5 0.316993464  1.49681104
## [238,] 2 43 64  0  1.335072501  97.5 0.316993464  1.49681104
## [239,] 2 44 64  6  0.843816012  58.0 0.187908497  0.95519540
## [240,] 2 44 58  9  3.073068366 200.0 0.651960784  3.29715210
## [241,] 2 44 63 19  4.776008936 265.0 0.864379085  5.55098224
## [242,] 2 45 65  6  1.055712121  75.0 0.243464052  1.18528396
## [243,] 2 45 66  0  1.914786131 133.0 0.433006536  2.02616692
## [244,] 2 45 67  1  2.500377327 167.5 0.545751634  2.61854084
## [245,] 2 46 58  2  2.548335743 175.0 0.570261438  2.76233064
## [246,] 2 46 69  3  4.205968178 248.0 0.808823529  4.74838423
## [247,] 2 46 62  5  0.410962127  15.0 0.047385621  0.33859115
## [248,] 2 46 65 20  5.654691120 284.0 0.926470588  6.94936199
## [249,] 2 47 63 23  7.086960791 292.0 0.952614379  7.93446929
## [250,] 2 47 62  0  0.654041292  37.0 0.119281046  0.66793420
## [251,] 2 47 65  0  1.110987507  78.0 0.253267974  1.22618138
## [252,] 2 48 58 11  3.208737369 206.5 0.673202614  3.45384807
## [253,] 2 48 58 11  3.208737369 206.5 0.673202614  3.45384807
## [254,] 2 48 67  7  2.057512035 143.0 0.465686275  2.18801082
## [255,] 2 49 63  0  0.446089440  18.0 0.057189542  0.38750961
## [256,] 2 49 64 10  0.907914443  63.0 0.204248366  1.02273232
## [257,] 2 50 63 13  1.584123146 109.0 0.354575163  1.66195539
## [258,] 2 50 64  0  0.524314606  26.5 0.084967320  0.51748906
## [259,] 2 51 59 13  2.955252307 195.0 0.635620915  3.18218953
## [260,] 2 51 59  3  1.429100126 100.0 0.325163399  1.53229660
## [261,] 2 52 69  3  3.646195802 226.0 0.736928105  3.98515219
## [262,] 2 52 59  2  1.490054414 103.0 0.334967320  1.57517083
## [263,] 2 52 62  3  0.090342246   2.0 0.004901961  0.07076769
## [264,] 2 52 66  4  0.954856122  64.0 0.207516340  1.03624091
## [265,] 2 53 58  4  2.264608635 150.0 0.488562092  2.30565770
## [266,] 2 53 65  1  0.612926926  34.0 0.109477124  0.62570729
## [267,] 2 53 59  3  1.449545695 102.0 0.331699346  1.56084289
## [268,] 2 53 60  9  1.274878583  95.0 0.308823529  1.46153321
## [269,] 2 53 63 24  7.770481155 294.0 0.959150327  8.26452677
## [270,] 2 53 65 12  1.675936927 116.0 0.377450980  1.76514484
## [271,] 2 54 60 11  1.785908238 121.0 0.393790850  1.84027943
## [272,] 2 54 65 23  7.477477714 293.0 0.955882353  8.09353560
## [273,] 2 54 65  5  0.464244432  22.0 0.070261438  0.44996259
## [274,] 2 54 68  7  2.685874434 182.0 0.593137255  2.90275488
## [275,] 2 55 63  6  0.140041382   4.0 0.011437908  0.12586698
## [276,] 2 55 68 15  4.893509596 268.0 0.874183007  5.72438805
## [277,] 2 56 65  9  1.017408758  72.0 0.233660131  1.14451673
## [278,] 2 56 66  3  1.012030756  70.0 0.227124183  1.11739828
## [279,] 2 57 61  5  0.576033649  31.0 0.099673203  0.58293879
## [280,] 2 57 62 14  2.276115237 154.0 0.501633987  2.37467639
## [281,] 2 57 64  1  0.433651903  17.0 0.053921569  0.37143305
## [282,] 2 59 62 35 19.439866351 304.0 0.991830065 11.78161995
## [283,] 2 60 59 17  5.498080993 279.0 0.910130719  6.49476265
## [284,] 2 60 65  0  1.116601751  79.0 0.256535948  1.23984706
## [285,] 2 61 62  5  0.771961310  49.0 0.158496732  0.83323075
## [286,] 2 61 65  0  1.238436859  92.0 0.299019608  1.41945664
## [287,] 2 61 68  1  3.073847793 201.0 0.655228758  3.32070524
## [288,] 2 62 59 13  4.106339493 242.0 0.789215686  4.51693924
## [289,] 2 62 58  0  3.525330249 217.5 0.709150327  3.74078242
## [290,] 2 62 65 19  5.708016179 286.0 0.933006536  7.15918328
## [291,] 2 63 60  1  2.019968561 141.0 0.459150327  2.15508322
## [292,] 2 65 58  0  4.155050718 244.5 0.797385621  4.61083722
## [293,] 2 65 61  2  1.849141015 128.0 0.416666667  1.94769560
## [294,] 2 65 62 22  8.135288330 296.0 0.965686275  8.65073327
## [295,] 2 65 66 15  4.665323543 262.0 0.854575163  5.38908977
## [296,] 2 66 58  0  4.399644182 253.5 0.826797386  4.98087940
## [297,] 2 66 61 13  3.813282069 232.0 0.756535948  4.17215968
## [298,] 2 67 64  8  2.274264404 153.0 0.498366013  2.35729319
## [299,] 2 67 63  1  1.930842513 134.0 0.436274510  2.04204810
## [300,] 2 69 67  8  4.073473319 241.0 0.785947712  4.48032159
## [301,] 2 70 58  0  5.551451242 282.0 0.919934641  6.75684366
## [302,] 2 70 58  4  5.354712358 277.0 0.903594771  6.33491956
## [303,] 2 72 63  0  3.485142736 214.0 0.697712418  3.64621639
## [304,] 2 74 65  3  4.210921309 249.0 0.812091503  4.78909235
## [305,] 2 78 65  1  5.867661095 288.0 0.939542484  7.38984037
## [306,] 2 83 58  2 11.077777616 301.0 0.982026144 10.07079293
ks.test(di, "pchisq", df = 3)
## Warning in ks.test.default(di, "pchisq", df = 3): ties should not be present
## for the one-sample Kolmogorov-Smirnov test
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  di
## D = 0.061354, p-value = 0.1996
## alternative hypothesis: two-sided
#Plot Normalitas
plot(Data$di.kuadrat, Data$Chi.Square,
main = "QQ Plot",
xlab = "Diˆ2",
ylab = "Xˆ2",
col = "blue")
abline(lm(Data$Chi.Square~Data$di.kuadrat), col = "red")

 cor(X)
##             X1           X2           X3
## X1  1.00000000  0.089529446 -0.063176102
## X2  0.08952945  1.000000000 -0.003764474
## X3 -0.06317610 -0.003764474  1.000000000
#Uji asumsi Homogenitas matriks varians kovarians
library(biotools)
## Warning: package 'biotools' was built under R version 4.4.3
## Loading required package: MASS
## ---
## biotools version 4.2
X <- as.matrix(Data[,-1])
Y <- Data[[1]]
Y <- as.factor(Y)
 
#Pisahkan data berdasarkan kelompok Y
grup.data <- split(as.data.frame(X),Y)
 
#Hitung matriks kovarian tiap klp
Sj_list <- lapply(grup.data, function(grup) {
grup <- as.matrix(grup)
if (nrow(grup) > 1) {cov(grup)} else {stop("Ada grup dengan kurang dari 2 observasi. Tidak bisa menghitung kovarians.")}
})
 
# Tampilkan hasil
Sj_list
## $`1`
##                      X1          X2          X3  di.kuadrat           k
## X1         121.26753968  6.27478175  -5.5498413   0.3923483    6.005089
## X2           6.27478175 10.38718254   0.7076984   0.9740786   27.783661
## X3          -5.54984127  0.70769841  34.4606349  12.7389145  176.040089
## di.kuadrat   0.39234826  0.97407861  12.7389145   9.2834523  175.477160
## k            6.00508929 27.78366071 176.0400893 175.4771598 7380.121607
## p.k          0.01962447  0.09079628   0.5752944   0.5734548   24.118044
## Chi.Square   0.68670798  0.82934100   7.4242999   5.6507768  171.453116
##                    p.k  Chi.Square
## X1          0.01962447   0.6867080
## X2          0.09079628   0.8293410
## X3          0.57529441   7.4242999
## di.kuadrat  0.57345477   5.6507768
## k          24.11804447 171.4531165
## p.k         0.07881714   0.5603043
## Chi.Square  0.56030430   4.7192213
## 
## $`2`
##                     X1           X2         X3  di.kuadrat          k
## X1         103.3706790  -5.54367284  -8.939043  -0.3172266  160.09097
## X2          -5.5436728  11.16975309  -2.195062  -2.9123401  -19.86736
## X3          -8.9390432  -2.19506173  84.376235  39.1566875  423.77847
## di.kuadrat  -0.3172266  -2.91234012  39.156687  32.3145921  297.90102
## k          160.0909722 -19.86736111 423.778472 297.9010160 8841.28125
## p.k          0.5231731  -0.06492602   1.384897   0.9735327   28.89308
## Chi.Square   3.9762899  -0.89410677  19.401829  13.9255825  250.36561
##                    p.k  Chi.Square
## X1          0.52317311   3.9762899
## X2         -0.06492602  -0.8941068
## X3          1.38489697  19.4018285
## di.kuadrat  0.97353273  13.9255825
## k          28.89307598 250.3656106
## p.k         0.09442182   0.8181883
## Chi.Square  0.81818827   8.9371835
#Matrriks kovarians Gabungan (W)
#Hitung jumlah sampel per kelompok
n <- sapply(grup.data, nrow)

#Hitung Matriks kovarians gabungan (W)
W <-(((14*Sj_list[[1]])+(14*Sj_list[[2]])) / (sum(n)- length(n)))
W
##                     X1           X2          X3  di.kuadrat           k
## X1         10.34518112  0.033669489 -0.66725126  0.00345955   7.6491607
## X2          0.03366949  0.992753614 -0.06849699 -0.08926204   0.3645664
## X3         -0.66725126 -0.068496995  5.47275057  2.38992904  27.6232232
## di.kuadrat  0.00345955 -0.089262043  2.38992904  1.91569941  21.8003107
## k           7.64916073  0.364566429 27.62322323 21.80031073 747.0382895
## p.k         0.02499726  0.001191394  0.09027197  0.07124285   2.4413016
## Chi.Square  0.21474332 -0.002982634  1.23541381  0.90154286  19.4258624
##                    p.k   Chi.Square
## X1         0.024997257  0.214743324
## X2         0.001191394 -0.002982634
## X3         0.090271971  1.235413811
## di.kuadrat 0.071242846  0.901542863
## k          2.441301600 19.425862434
## p.k        0.007978110  0.063483211
## Chi.Square 0.063483211  0.628913379
#Hitung determinan matriks kovarians per kelompok
det.Sj <- sapply(Sj_list, det)

#Hitung determinan matriks W
det.W <- det(W)
 
#Hitung nilai lambda
 lambda <- ((det.Sj[[1]]^((n[1]- 1) / 2)) *
 (det.Sj[[2]]^((n[2]- 1) / 2))) /
 ((det.W/28)^((sum(n)- length(n)) / 2))

ln <--2 * log(lambda)
 
#Hitung nilai box's M
BoxM <- (sum(n)- length(n)) * log(det.W/28)
(((n[[1]]-1) * log(det.Sj[[1]])) + ((n[[2]]-1) * log(det.Sj[[2]])))
## Warning in log(det.Sj[[2]]): NaNs produced
## [1] NaN
#Rata-rata kelompok 1
klp1 <- Data[1:225, c("X1","X2","X3")]
x1 <- colMeans(klp1)
x1
##        X1        X2        X3 
## 52.017778 62.862222  2.791111
#Rata-rata kelompok 2
klp2 <- Data[226:306, c("X1","X2","X3")]
x2 <- colMeans(klp2)
x2
##       X1       X2       X3 
## 53.67901 62.82716  7.45679
#Selisisih rata2 klp 1 dengan klp 2
x1.x2 <- x1-x2
x1.x2
##          X1          X2          X3 
## -1.66123457  0.03506173 -4.66567901
#Matriks kovarian klp 1 (S1)
s1 <- cov(klp1)
s1
##            X1         X2         X3
## X1 121.267540  6.2747817 -5.5498413
## X2   6.274782 10.3871825  0.7076984
## X3  -5.549841  0.7076984 34.4606349
#Matriks kovarian klp 2 (S2)
s2 <- cov(klp2)
s2
##            X1        X2        X3
## X1 103.370679 -5.543673 -8.939043
## X2  -5.543673 11.169753 -2.195062
## X3  -8.939043 -2.195062 84.376235
#Matriks kovarians gabungan (Spl)
g <- Data[, c("X1","X2","X3")]
spl <- cov(g)
spl
##            X1        X2        X3
## X1 116.714583  3.142912 -4.907082
## X2   3.142912 10.558631 -0.087946
## X3  -4.907082 -0.087946 51.691118
#Inversmatrikskovariangabungan(Splˆ-1)
Spl.inv<-solve(spl)
Spl.inv
##               X1            X2            X3
## X1  0.0086716602 -2.574411e-03  8.188281e-04
## X2 -0.0025744110  9.547487e-02 -8.195245e-05
## X3  0.0008188281 -8.195245e-05  1.942328e-02
#Kombinasilinearfisher
a<-Spl.inv %*%x1.x2
a
##            [,1]
## X1 -0.018316314
## X2  0.008006578
## X3 -0.091985911
#rataanskordiskriminanklp1
z11<-0.125121317 * klp1$X1
z12<-0.069125866 * klp1$X2
z13<-0.005156851 * klp1$X3

Z1<-z11 +z12 + z13

z1.bar<-sum(Z1)/15
z1.bar
## [1] 163.025
#rataanskordiskriminanklp1
z21<-0.125121317 * klp2$X1
z22<-0.069125866 * klp2$X2
z23<-0.005156851 * klp2$X3

Z2<-z21 +z22 + z23

z2.bar<-sum(Z2)/15
z2.bar
## [1] 59.92825
#CuttingScore
n1<-225
n2<-81
m<-(n1* z1.bar +n2 *z2.bar) / (n1+ n2)
m
## [1] 135.7347
#Cara cepat analisis diskriminan
library(MASS)
fit <- lda(Y~X1+X2+X3, data=Data)
fit
## Call:
## lda(Y ~ X1 + X2 + X3, data = Data)
## 
## Prior probabilities of groups:
##         1         2 
## 0.7352941 0.2647059 
## 
## Group means:
##         X1       X2       X3
## 1 52.01778 62.86222 2.791111
## 2 53.67901 62.82716 7.456790
## 
## Coefficients of linear discriminants:
##            LD1
## X1  0.02826395
## X2 -0.01235497
## X3  0.14194367
 #Hit Rasio
fit.val <- predict(fit, Data[,-1])
ct <- table(Data$Y, fit.val$class)
ct
##    
##       1   2
##   1 215  10
##   2  67  14
#Percent Correct for each category of 3
diag(prop.table(ct,1))
##         1         2 
## 0.9555556 0.1728395
#Akurasi
sum(diag(prop.table(ct)))
## [1] 0.748366