library(tidyverse)
library(tidyr)
library(dplyr)
library(effsize)
#### read data in r
data_r_w <- read.csv("读写成绩.csv")
head(data_r_w)
## pre_test post_test
## 1 11 17
## 2 12 16
## 3 9 16
## 4 13 18
## 5 14 19
## 6 14 20
#### You have 40 participants. You want to compare whether their performance in reading and writing is different before and after "some test". The statistical method you should use is paired t-test (or dependent t-test, two names).
t.test(data_r_w$pre_test, data_r_w$post_test, paired = TRUE)
##
## Paired t-test
##
## data: data_r_w$pre_test and data_r_w$post_test
## t = -12.303, df = 39, p-value = 5.299e-15
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -5.036038 -3.613962
## sample estimates:
## mean difference
## -4.325
The result is shown above. You can ask DeepSeek how to interpret the
results. You can ask DeepSeek this question: 我做了一个paired t-test,
结果是……(省略号这里你就把上面的Paired
t-tes的结果直接复制过来就好),请帮我解读一下这个结果,并告诉我在论文中应该如何报告这些结果。
#### Next, you should do a Cohen's d test.
effect_size <- cohen.d(data_r_w$pre_test, data_r_w$post_test, paired = TRUE)
print(effect_size)
##
## Cohen's d
##
## d estimate: -1.978062 (large)
## 95 percent confidence interval:
## lower upper
## -2.528406 -1.427719
Ask DeepSeek two questions: (1) Why do I have to do a Cohen’d test
after the paired t-test? (2) How to interpret the results of Cohen’s
d.