##
## Pearson's product-moment correlation
##
## data: hr$satisfaction_level and hr$last_evaluation
## t = 12.933, df = 14997, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.08916727 0.12082195
## sample estimates:
## cor
## 0.1050212
##
## Call:
## lm(formula = last_evaluation ~ satisfaction_level, data = hr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.37337 -0.15433 0.00013 0.15158 0.31953
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.671793 0.003697 181.70 <2e-16 ***
## satisfaction_level 0.072302 0.005591 12.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1702 on 14997 degrees of freedom
## Multiple R-squared: 0.01103, Adjusted R-squared: 0.01096
## F-statistic: 167.3 on 1 and 14997 DF, p-value: < 2.2e-16
##
## Pearson's product-moment correlation
##
## data: hr$number_project and hr$last_evaluation
## t = 45.656, df = 14997, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3352028 0.3633053
## sample estimates:
## cor
## 0.3493326
#Correlation Coefficient (r = 0.3493): ## The correlation between
number of projects and last evaluation is positive and moderate (r ≈
0.35).
## As the number of projects increases, the last evaluation score tends
to increase as well.
#P-Value (< 2.2e-16): ## The p-value is extremely small (less than 0.05), which means we reject the null hypothesis. ## This confirms that the relationship between these two variables is significant and unlikely due to chance.
##
## Call:
## lm(formula = last_evaluation ~ satisfaction_level, data = hr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.37337 -0.15433 0.00013 0.15158 0.31953
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.671793 0.003697 181.70 <2e-16 ***
## satisfaction_level 0.072302 0.005591 12.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1702 on 14997 degrees of freedom
## Multiple R-squared: 0.01103, Adjusted R-squared: 0.01096
## F-statistic: 167.3 on 1 and 14997 DF, p-value: < 2.2e-16
##
## Pearson's product-moment correlation
##
## data: hr$satisfaction_level and hr$average_montly_hours
## t = -2.4556, df = 14997, p-value = 0.01408
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.036040356 -0.004045605
## sample estimates:
## cor
## -0.02004811
##
## Call:
## lm(formula = average_montly_hours ~ satisfaction_level, data = hr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -106.914 -45.176 -0.619 43.985 109.301
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 203.518 1.085 187.648 <2e-16 ***
## satisfaction_level -4.027 1.640 -2.456 0.0141 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 49.93 on 14997 degrees of freedom
## Multiple R-squared: 0.0004019, Adjusted R-squared: 0.0003353
## F-statistic: 6.03 on 1 and 14997 DF, p-value: 0.01408
##
## Pearson's product-moment correlation
##
## data: hr$time_spend_company and hr$number_project
## t = 24.579, df = 14997, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1813532 0.2121217
## sample estimates:
## cor
## 0.1967859
#Confidence Interval (0.1814, 0.2121): ## 95% confident that the true correlation lies between 0.181 and 0.212, further supporting a weak positive relationship.