data("iris")
dat <- iris
str(dat)
## 'data.frame':    150 obs. of  5 variables:
##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
result_anova <- aov(Sepal.Length ~ Sepal.Width, data = dat)
summary(result_anova)
##              Df Sum Sq Mean Sq F value Pr(>F)
## Sepal.Width   1   1.41  1.4122   2.074  0.152
## Residuals   148 100.76  0.6808
result_anova <- aov(Petal.Length ~ Sepal.Width, data = dat)
summary(result_anova)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Sepal.Width   1   85.2   85.23   33.27 4.51e-08 ***
## Residuals   148  379.1    2.56                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
result_anova <- aov(Petal.Width ~ Sepal.Width, data = dat)
summary(result_anova)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Sepal.Width   1  11.60  11.605   22.91 4.07e-06 ***
## Residuals   148  74.97   0.507                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1