data("iris")
dat <- iris
str(dat)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
result_anova <- aov(Sepal.Length ~ Sepal.Width, data = dat)
summary(result_anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## Sepal.Width 1 1.41 1.4122 2.074 0.152
## Residuals 148 100.76 0.6808
result_anova <- aov(Petal.Length ~ Sepal.Width, data = dat)
summary(result_anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## Sepal.Width 1 85.2 85.23 33.27 4.51e-08 ***
## Residuals 148 379.1 2.56
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
result_anova <- aov(Petal.Width ~ Sepal.Width, data = dat)
summary(result_anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## Sepal.Width 1 11.60 11.605 22.91 4.07e-06 ***
## Residuals 148 74.97 0.507
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1