Importing the Dataset
dataset <- read.csv("~/R Studio/Machine Learning A-Z (Codes and Datasets)/Part 2 - Regression/Section 6 - Polynomial Regression/R/Position_Salaries.csv")
dataset = dataset[2:3]
head(dataset)
## Level Salary
## 1 1 45000
## 2 2 50000
## 3 3 60000
## 4 4 80000
## 5 5 110000
## 6 6 150000
Splitting the Dataset into the Training Set and Test Set
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
set.seed(123)
trainIndex <- createDataPartition(dataset$Salary, p = 2/3, list = FALSE)
training_set <- dataset[trainIndex, ]
test_set <- dataset[-trainIndex, ]
Feature Scaling (for Numeric Columns)
numeric_cols <- sapply(training_set, is.numeric)
training_set[numeric_cols] <- scale(training_set[numeric_cols])
test_set[numeric_cols] <- scale(test_set[numeric_cols])
Fitting Linear Regression to the Dataset
lin_reg = lm(formula = Salary ~ .,
data = dataset)
summary(lin_reg)
##
## Call:
## lm(formula = Salary ~ ., data = dataset)
##
## Residuals:
## Min 1Q Median 3Q Max
## -170818 -129720 -40379 65856 386545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -195333 124790 -1.565 0.15615
## Level 80879 20112 4.021 0.00383 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 182700 on 8 degrees of freedom
## Multiple R-squared: 0.669, Adjusted R-squared: 0.6277
## F-statistic: 16.17 on 1 and 8 DF, p-value: 0.003833
Fitting Polynomial Regression to the Dataset
dataset$Level2 = dataset$Level^2
dataset$Level3 = dataset$Level^3
dataset$Level4 = dataset$Level^4
poly_reg = lm(formula = Salary ~ .,
data = dataset)
summary(poly_reg)
##
## Call:
## lm(formula = Salary ~ ., data = dataset)
##
## Residuals:
## 1 2 3 4 5 6 7 8 9 10
## -8357 18240 1358 -14633 -11725 6725 15997 10006 -28695 11084
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 184166.7 67768.0 2.718 0.04189 *
## Level -211002.3 76382.2 -2.762 0.03972 *
## Level2 94765.4 26454.2 3.582 0.01584 *
## Level3 -15463.3 3535.0 -4.374 0.00719 **
## Level4 890.2 159.8 5.570 0.00257 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20510 on 5 degrees of freedom
## Multiple R-squared: 0.9974, Adjusted R-squared: 0.9953
## F-statistic: 478.1 on 4 and 5 DF, p-value: 1.213e-06
Visualising the Linear Regression Results
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = dataset$Level, y = predict(lin_reg, newdata = dataset)),
colour = 'blue') +
ggtitle('Truth or Bluff (Linear Regression)') +
xlab('Level') +
ylab('Salary')

Visualising the Polynomial Regression Results
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = dataset$Level, y = predict(poly_reg, newdata = dataset)),
colour = 'blue') +
ggtitle('Truth or Bluff (Polynomial Regression)') +
xlab('Level') +
ylab('Salary')

Visualising the Regression Model Results (for Higher Resolution and
Smoother Curve)
x_grid = seq(min(dataset$Level), max(dataset$Level), 0.1)
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = x_grid, y = predict(poly_reg,
newdata = data.frame(Level = x_grid,
Level2 = x_grid^2,
Level3 = x_grid^3,
Level4 = x_grid^4))),
colour = 'blue') +
ggtitle('Truth or Bluff (Polynomial Regression)') +
xlab('Level') +
ylab('Salary')
