summaries <- map_dfc(
list(TotalN = SoilDF$TotalN, TotalC = SoilDF$TotalC,
Nitrate = SoilDF$Nitrate, AmmoniumN = SoilDF$AmmoniumN, P = SoilDF$P),
summary
)
pivot_table <- SoilDF %>%
mutate(Month = factor(Month, levels = month.name)) %>%
select(Month, Severity, TotalN, TotalC, Nitrate, Nitratelbs, P, AmmoniumN, Ammoniumlbs) %>%
group_by(Severity, Month) %>%
summarise(across(
c(TotalN, TotalC, Nitrate, Nitratelbs, P, AmmoniumN, Ammoniumlbs),
list(Avg = ~ mean(.x, na.rm = TRUE)),
.names = "Avg_{col}"
), .groups = "drop")
kable(pivot_table)
Severity | Month | Avg_TotalN | Avg_TotalC | Avg_Nitrate | Avg_Nitratelbs | Avg_P | Avg_AmmoniumN | Avg_Ammoniumlbs |
---|---|---|---|---|---|---|---|---|
High | May | 1391.0606 | 1.788879 | 0.9939394 | 2.303030 | 6.272727 | 4.607273 | 11.090909 |
High | July | 1482.7941 | 2.136029 | 2.0941176 | 4.941177 | 7.985294 | 4.943529 | 11.941176 |
Low | May | 839.1818 | 1.958182 | 0.8727273 | 2.090909 | 3.181818 | 3.764546 | 9.000000 |
Low | July | 930.4545 | 1.976909 | 1.3818182 | 3.363636 | 4.100000 | 2.157273 | 5.181818 |
Medium | May | 1223.8214 | 1.811893 | 1.1500000 | 2.785714 | 4.114286 | 4.272143 | 10.214286 |
Medium | July | 1327.3333 | 1.990704 | 0.8555556 | 2.148148 | 4.907407 | 3.057778 | 7.296296 |
Unburned | May | 1488.9412 | 2.257588 | 0.5529412 | 1.352941 | 3.864706 | 4.165882 | 10.058824 |
Unburned | July | 1622.8235 | 2.295118 | 0.7882353 | 1.764706 | 3.117647 | 3.724118 | 9.058824 |
Very high | May | 1836.1818 | 2.307909 | 0.7909091 | 1.818182 | 7.872727 | 4.927273 | 11.818182 |
Very high | July | 1566.2727 | 2.273364 | 1.8363636 | 4.363636 | 5.472727 | 3.830909 | 9.272727 |
ggplot(SoilDF, aes(x = TotalN)) +
geom_histogram(binwidth = 100, fill = "skyblue", color = "black", alpha = 1) + facet_wrap(~Month)+
labs(title = "Total Nitrogen",
x = "ppm",
y= "Frequency") +
theme_minimal()
ggplot(SoilDF, aes(x = TotalC)) +
geom_histogram(binwidth = .2, fill = "skyblue", color = "black", alpha = 1) +
facet_wrap(~Month)+
labs(title = "Total Carbon",
x = "Percentage %",
y= "Frequency") +
theme_minimal()
ggplot(SoilDF, aes(x = Nitrate)) +
geom_histogram(binwidth = .5, fill = "skyblue", color = "black", alpha = 1) + facet_wrap(~Month)+
labs(title = "Total Nitrate",
x = "ppm",
y= "Frequency") +
theme_minimal()
ggplot(SoilDF, aes(x = P)) +
geom_histogram(binwidth = 1, fill = "skyblue", color = "black", alpha = 1) + facet_wrap(~Month)+
labs(title = "Total Phosporus",
x = "ppm",
y= "Frequency") +
theme_minimal()
ggplot(SoilDF, aes(x = AmmoniumN)) +
geom_histogram(binwidth = 1, fill = "skyblue", color = "black", alpha = 1) + facet_wrap(~Month)+
labs(title = "Total AmmoniumN",
x = "ppm",
y= "Frequency") +
theme_minimal()
SoilDF_long <- SoilDF %>%
pivot_longer(cols = c(TotalN), names_to = "Variable", values_to = "Value")
ggplot(SoilDF_long, aes(x = Value, y = Severity, fill = Variable)) +
geom_boxplot() +
labs(
title = "Total Nitrogen",
x = "Value",
y = "Severity",
fill = "Nutrient"
) +
theme_minimal()
# Reshape the data for combined box plots
SoilDF_long <- SoilDF %>%
pivot_longer(
cols = c(Nitrate, AmmoniumN, P),
names_to = "Variable",
values_to = "Value"
)
# Create a combined box plot
ggplot(SoilDF_long, aes(x = Value, y = Severity, fill = Variable)) +
geom_boxplot() +
labs(
title = "Combined Box Plot for Nitrate, AmmoniumN, and P",
x = "PPM",
y = "Severity",
fill = "Nutrient"
) +
theme_minimal()
Nut_grid <- SoilDATA %>%
mutate(
Month = factor(Month, levels = month.name),
Severity = factor(Severity, levels = c("Unburned", "Low", "Med", "High", "Very High"))
) %>%
pivot_longer(
cols = c("Nitrate", "Nitratelbs", "P", "AmmoniumN", "Ammoniumlbs", "TotalN", "TotalC"),
names_to = "Nutrient",
values_to = "Nutr_val",
values_drop_na = FALSE
) %>%
group_by(Month, Severity, Nutrient) %>%
summarise(
nut_mn = mean(Nutr_val, na.rm = TRUE),
nut_sd = sd(Nutr_val, na.rm = TRUE),
count = n(),
nut_se = nut_sd / sqrt(count),
.groups = "drop"
) %>%
filter(Nutrient %in% c("AmmoniumN", "Nitrate", "P", "TotalC", "TotalN")) %>%
ggplot(aes(x = Severity, y = nut_mn, color = Month)) +
geom_line() +
geom_point() +
geom_errorbar(aes(ymin = nut_mn - nut_se, ymax = nut_mn + nut_se), width = 0.2, position = position_dodge(0.05)) +
labs(
title = "Nutrient vs Fire",
x = "Severity",
y = "Mean ± SE"
) +
theme_bw() +
facet_wrap(~ Nutrient, ncol = 3, scales = "free")
print(Nut_grid)
# Forage Quality Distributions
# Factorize the Month variable and create the histogram in a single pipeline
ForageAmended %>%
mutate(Month = factor(Month, levels = month.name)) %>%
ggplot(aes(x = Moisture)) +
geom_histogram(binwidth = 0.1, fill = "skyblue", color = "black", alpha = 1) +
facet_wrap(~ Month) +
labs(
title = "Moisture Content",
x = "Percentage As Received",
y = "Frequency"
) +
theme_minimal()
Prot_grid <- ForageAmended %>%
mutate(Month = factor(Month, levels = month.name)) %>%
pivot_longer(
cols = c("ProteinDW"),
names_to = "Crude",
values_to = "Prot_val",
values_drop_na = TRUE
) %>%
group_by(Month, EcoSite, Fire, Crude) %>%
summarise(
Prot_mn = mean(Prot_val, na.rm = TRUE),
Prot_sd = sd(Prot_val, na.rm = TRUE),
count = n(),
Prot_se = Prot_sd / sqrt(count),
.groups = "drop"
) %>%
filter(Crude == "ProteinDW") %>%
ggplot(aes(x = Month, y = Prot_mn, group = EcoSite, color = Fire)) +
theme_light() +
geom_point() +
geom_errorbar(aes(ymin = Prot_mn - Prot_se, ymax = Prot_mn + Prot_se), width = 0.2, position = position_dodge(0.05)) +
labs(
title = "ProteinDW",
x = "Month",
y = "Mean ± SE"
) +
scale_color_manual(values = c('red', 'blue', 'orange', 'green')) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + # Add angled month labels
facet_wrap(~EcoSite, ncol = 2, scales = "free")
print(Prot_grid)
When Ecosite is removed
Process data and generate ProteinDW grid plot
Prot_grid <- ForageAmended %>%
mutate(Month = factor(Month, levels = month.name)) %>%
pivot_longer(
cols = c("ProteinDW"),
names_to = "Crude",
values_to = "Prot_val",
values_drop_na = TRUE
) %>%
group_by(Month, Fire, Crude) %>%
summarise(
Prot_mn = mean(Prot_val, na.rm = TRUE),
Prot_sd = sd(Prot_val, na.rm = TRUE),
count = n(),
Prot_se = Prot_sd / sqrt(count),
.groups = "drop"
) %>%
filter(Crude == "ProteinDW") %>%
ggplot(aes(x = Month, y = Prot_mn, group = Fire, color = Fire)) +
theme_light() +
geom_point() +
geom_errorbar(aes(ymin = Prot_mn - Prot_se, ymax = Prot_mn + Prot_se), width = 0.2, position = position_dodge(0.05)) +
labs(
title = "ProteinDW",
x = "Month",
y = "Mean ± SE"
) +
scale_color_manual(values = c('red', 'blue', 'orange', 'green')) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + # Angled month labels
facet_wrap(~ Fire, ncol = 3, scales = "free")
print(Prot_grid)
# Process data and generate Dry Matter grid plot with tilted month labels
DM_grid <- ForageAmended %>%
mutate(Month = factor(Month, levels = month.name)) %>%
pivot_longer(
cols = c("DM"),
names_to = "Dry",
values_to = "Dry_val",
values_drop_na = TRUE
) %>%
group_by(Month, EcoSite, Fire, Dry) %>%
summarise(
DM_mn = mean(Dry_val, na.rm = TRUE),
DM_sd = sd(Dry_val, na.rm = TRUE),
count = n(),
DM_se = DM_sd / sqrt(count),
.groups = "drop"
) %>%
filter(Dry == "DM") %>%
ggplot(aes(x = Month, y = DM_mn, group = EcoSite, color = Fire)) +
theme_light() +
geom_point() +
geom_errorbar(aes(ymin = DM_mn - DM_se, ymax = DM_mn + DM_se), width = 0.2, position = position_dodge(0.05)) +
labs(
title = "Dry Matter",
x = "Month",
y = "Mean ± SE"
) +
scale_color_manual(values = c('red', 'blue', 'orange', 'green')) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + # Tilt month labels
facet_wrap(~ EcoSite, ncol = 2, scales = "free")
print(DM_grid)
break
# Process data and generate TDNDW grid plot
TD_grid <- ForageAmended %>%
mutate(Month = factor(Month, levels = month.name)) %>%
pivot_longer(
cols = c("TDNDW"),
names_to = "Energy",
values_to = "TD_val",
values_drop_na = TRUE
) %>%
group_by(Month, EcoSite, Fire, Energy) %>%
summarise(
TD_mn = mean(TD_val, na.rm = TRUE),
TD_sd = sd(TD_val, na.rm = TRUE),
count = n(),
TD_se = TD_sd / sqrt(count),
.groups = "drop"
) %>%
filter(Energy == "TDNDW") %>%
ggplot(aes(x = Month, y = TD_mn, group = EcoSite, color = Fire)) +
theme_light() +
geom_point() +
geom_errorbar(aes(ymin = TD_mn - TD_se, ymax = TD_mn + TD_se), width = 0.2, position = position_dodge(0.05)) +
labs(
title = "TDNDW(%)",
x = "Month",
y = "Mean ± SE"
) +
scale_color_manual(values = c('red', 'blue', 'orange', 'green')) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + # Tilt month labels
facet_wrap(~ EcoSite, ncol = 3, scales = "free")
print(TD_grid)
# Process data and generate LactationDW grid plot
Lac_grid <- ForageAmended %>%
mutate(Month = factor(Month, levels = month.name)) %>%
pivot_longer(
cols = c("LactationDW"),
names_to = "Lactate",
values_to = "Lac_val",
values_drop_na = TRUE
) %>%
group_by(Month, EcoSite, Fire, Lactate) %>%
summarise(
Lac_mn = mean(Lac_val, na.rm = TRUE),
Lac_sd = sd(Lac_val, na.rm = TRUE),
count = n(),
Lac_se = Lac_sd / sqrt(count),
.groups = "drop"
) %>%
filter(Lactate == "LactationDW") %>%
ggplot(aes(x = Month, y = Lac_mn, group = EcoSite, color = Fire)) +
theme_light() +
geom_point() +
geom_errorbar(aes(ymin = Lac_mn - Lac_se, ymax = Lac_mn + Lac_se), width = 0.2, position = position_dodge(0.05)) +
labs(
title = "LactationDW(Mcal/lbs)",
x = "Month",
y = "Mean ± SE"
) +
scale_color_manual(values = c('red', 'blue', 'orange', 'green')) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + # Tilt month labels
facet_wrap(~ EcoSite, ncol = 3, scales = "free")
print(Lac_grid)
ManLong <- ForageAmended %>%
pivot_longer(
cols = c("MaintDW"),
names_to = "Maintenance",
values_to = "Man-val",
values_drop_na = TRUE
)
Man_mean <- ManLong %>%
group_by(Month, EcoSite, Fire, Maintenance ) %>%
summarise(
Man_mn = mean(`Man-val`, na.rm = TRUE),
Man_sd = sd(`Man-val`, na.rm = TRUE),
count = n(),
Man_se = Man_sd / sqrt(count)
) %>%
ungroup()
Man_dat <- Man_mean %>% filter(Maintenance=="MaintDW")
Man_dat$Month <- factor(Man_dat$Month, levels = month.name)
Man<- ggplot(Man_dat, aes(x=Month, y=Man_mn, group=EcoSite, color=Fire)) +
theme_light() +
geom_point()+
geom_errorbar(aes(ymin=Man_mn-Man_se, ymax=Man_mn+Man_se), width=.2,
position=position_dodge(0.05)) +
labs(title="MaintenanceDW(Mcal/lbs)", x="Month", y = "MeanSE+-")+
scale_color_manual(values=c('red','blue','orange','green'))
Man_grid <- Man + facet_wrap(~EcoSite, ncol = 3, scales = "free")
print(Man_grid)
GALong <- ForageAmended %>%
pivot_longer(
cols = c("GainDW"),
names_to = "Gain",
values_to = "GA-val",
values_drop_na = TRUE
)
GA_mean <- GALong %>%
group_by(Month, EcoSite, Fire, Gain ) %>%
summarise(
GA_mn = mean(`GA-val`, na.rm = TRUE),
GA_sd = sd(`GA-val`, na.rm = TRUE),
count = n(),
GA_se = GA_sd / sqrt(count)
) %>%
ungroup()
GA_dat <- GA_mean %>% filter(Gain=="GainDW")
GA_dat$Month <- factor(GA_dat$Month, levels = month.name)
GA<- ggplot(GA_dat, aes(x=Month, y=GA_mn, group=EcoSite, color=Fire)) +
theme_light() +
geom_point()+
geom_errorbar(aes(ymin=GA_mn-GA_se, ymax=GA_mn+GA_se), width=.2,
position=position_dodge(0.05)) +
labs(title="GainDW(Mcal/lbs)", x="Month", y = "MeanSE+-")+
scale_color_manual(values=c('red','blue','orange','green'))
GA_grid <- GA + facet_wrap(~EcoSite, ncol = 3, scales = "free")
print(GA_grid)