1. Simulace alternativného rozdělení
sample(c(0, 1), size = 1000, replace = TRUE)
## [1] 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1
## [38] 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1
## [75] 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0
## [112] 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0
## [149] 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1
## [186] 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1
## [223] 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0
## [260] 1 0 0 1 0 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0
## [297] 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1
## [334] 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0
## [371] 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1
## [408] 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0
## [445] 1 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1
## [482] 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0 1
## [519] 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1
## [556] 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1
## [593] 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 0 1 0
## [630] 1 1 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0
## [667] 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 1 1
## [704] 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1
## [741] 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1
## [778] 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1
## [815] 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1
## [852] 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
## [889] 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1
## [926] 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0
## [963] 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 1
## [1000] 1
barplot(table(sample(c(0, 1), size = 1000, replace = TRUE)), xlab = "číslo", ylab = "četnost", main = "Hody mincí")

2. Deskriptivní analýza výšek studentů Statistiky I
data <- read.csv("data_vyska.txt")
mean(data$vyska) #průměr
## [1] 170.9797
median(data$vyska) #medián
## [1] 169
sd(data$vyska) #směrodatná odchylka
## [1] 9.467914
var(data$vyska) #rozptyl
## [1] 89.6414
quantile(data$vyska, probs = c(0.25, 0.75)) # dolní kvartil, horní kvartil
## 25% 75%
## 164 177
quantile(data$vyska, probs = c(0.5))
## 50%
## 169
hist(data$vyska) #histogram

boxplot(data$vyska) #krabicový graf
