Data analysis for Hayden

This meta-analysis output data was generated by Katie Robinson. The analysis includes 344 effect sizes

#Data table

Meta-analysis in METAFOR

This is a multilevel analysis of the OVERALL effects. It provides a comparison to check against later. We will not use these results.

## 
## Multivariate Meta-Analysis Model (k = 344; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc   
## -438.3953   876.7906   882.7906   894.3038   882.8614   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed          factor 
## sigma^2.1  0.6857  0.8281     72     no        study_id 
## sigma^2.2  0.3130  0.5595    344     no  study_id/es_id 
## 
## Test for Heterogeneity:
## Q(df = 343) = 3471.1484, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.6386  0.1070  5.9711  <.0001  0.4290  0.8483  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Overall \(I^2\)

The \(I^2\) statistic measures the percentage of variation across studies in a meta-analysis that is due to heterogeneity rather than chance. It helps assess the extent to which the results of the studies are consistent, with higher values indicating greater variability in study outcomes.

OR

\(I^2\) is the percentage of variability in the effect sizes which is not caused by sampling error.

## [1] 95.39122

Between studies I2 and between effect sizes E1

## [1] 65.49438 29.89684

Publication bias

Results that are statistically non-significant or unfavourable are less likely to be published than statistically significant results, and hence are less easily identified by systematic reviews This leads to syntheses over-estimating or under-estimating the true effects.

Eggers regression result

Egger’s test assesses the presence of publication bias in a meta-analysis by evaluating the asymmetry of the funnel plot.

## 
## Regression Test for Funnel Plot Asymmetry
## 
## Model:     mixed-effects meta-regression model
## Predictor: standard error
## 
## Test for Funnel Plot Asymmetry: z =  12.3208, p < .0001
## Limit Estimate (as sei -> 0):   b = -0.6481 (CI: -0.8781, -0.4181)

Fail safe N

## 
## Fail-safe N Calculation Using the Rosenthal Approach
## 
## Observed Significance Level: <.0001
## Target Significance Level:   0.05
## 
## Fail-safe N: 185829

Funnel plot

MetaSEM overall results

This is where we combined effect sizes using a structural equation modelling approach to multilevel meta-analysis. The main advantage of this approach is that it is not limited by the assumption of independence (i.e., effect sizes are nested within studies), and multiple effect sizes can be included from each study. Unconditional mixed-effects models using maximum likelihood estimation were conducted to calculate the overall pooled effect size. For each pooled effect size, 95% likelihood-based CIs were calculated. All analyses were conducted using the metaSEM package in R Version 2024.12.1+563.

## 
## Call:
## meta3L(y = d, v = sampling_variance, cluster = study_id, data = data)
## 
## 95% confidence intervals: z statistic approximation (robust=FALSE)
## Coefficients:
##           Estimate Std.Error   lbound   ubound z value  Pr(>|z|)    
## Intercept 0.638416  0.106138 0.430389 0.846443  6.0150 1.799e-09 ***
## Tau2_2    0.312811  0.039053 0.236268 0.389355  8.0098 1.110e-15 ***
## Tau2_3    0.672387  0.145024 0.388145 0.956629  4.6364 3.546e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Q statistic on the homogeneity of effect sizes: 3471.148
## Degrees of freedom of the Q statistic: 343
## P value of the Q statistic: 0
## 
## Heterogeneity indices (based on the estimated Tau2):
##                               Estimate
## I2_2 (Typical v: Q statistic)   0.3027
## I2_3 (Typical v: Q statistic)   0.6506
## 
## Number of studies (or clusters): 72
## Number of observed statistics: 344
## Number of estimated parameters: 3
## Degrees of freedom: 341
## -2 log likelihood: 879.9901 
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values may indicate problems.)

Meta regression results

Study design

This works out how many studies in each variable

## # A tibble: 2 × 2
##   study_design distinct_points
##          <dbl>           <int>
## 1            1              36
## 2            2              36

This works out how many effect sizes in each variable

1 = RCT, 2 = Quasiexperimental

## 
##   1   2 
## 143 201

This performs the meta regression in study design

## 
## Call:
## meta3L(y = d, v = sampling_variance, cluster = study_id, x = cbind(rct, 
##     quasi), data = data, intercept.constraints = 0, intervals.type = "LB", 
##     I2 = "I2q", R2 = TRUE)
## 
## 95% confidence intervals: Likelihood-based statistic
## Coefficients:
##         Estimate Std.Error  lbound  ubound z value Pr(>|z|)
## Slope_1  0.41606        NA 0.12727 0.70557      NA       NA
## Slope_2  0.85864        NA 0.56997 1.14904      NA       NA
## Tau2_2   0.31370        NA 0.24544 0.40106      NA       NA
## Tau2_3   0.61894        NA 0.40375 0.95904      NA       NA
## 
## Q statistic on the homogeneity of effect sizes: 3471.148
## Degrees of freedom of the Q statistic: 343
## P value of the Q statistic: 0
## 
## Explained variances (R2):
##                        Level 2 Level 3
## Tau2 (no predictor)    0.31281  0.6724
## Tau2 (with predictors) 0.31370  0.6189
## R2                     0.00000  0.0795
## 
## Number of studies (or clusters): 72
## Number of observed statistics: 344
## Number of estimated parameters: 4
## Degrees of freedom: 340
## -2 log likelihood: 875.476 
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values may indicate problems.)

Population age

This works out how many studies in each variable

## # A tibble: 2 × 2
##     age distinct_points
##   <dbl>           <int>
## 1     1              15
## 2     2              57

This works out how many effect sizes in each variable

1 = Adolescents, 2 = Children

## 
##   1   2 
##  62 282

This performs the meta regression in population age

## 
## Call:
## meta3L(y = d, v = sampling_variance, cluster = study_id, x = cbind(adolescent, 
##     child), data = data, intercept.constraints = 0, intervals.type = "LB", 
##     I2 = "I2q", R2 = TRUE)
## 
## 95% confidence intervals: Likelihood-based statistic
## Coefficients:
##         Estimate Std.Error  lbound  ubound z value Pr(>|z|)
## Slope_1  0.82676        NA 0.36279 1.30303      NA       NA
## Slope_2  0.59039        NA 0.35203 0.82700      NA       NA
## Tau2_2   0.31253        NA 0.24459 0.39946      NA       NA
## Tau2_3   0.67259        NA 0.44424 1.03376      NA       NA
## 
## Q statistic on the homogeneity of effect sizes: 3471.148
## Degrees of freedom of the Q statistic: 343
## P value of the Q statistic: 0
## 
## Explained variances (R2):
##                           Level 2 Level 3
## Tau2 (no predictor)    0.31281127  0.6724
## Tau2 (with predictors) 0.31253156  0.6726
## R2                     0.00089419  0.0000
## 
## Number of studies (or clusters): 72
## Number of observed statistics: 344
## Number of estimated parameters: 4
## Degrees of freedom: 340
## -2 log likelihood: 879.1867 
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values may indicate problems.)

Sex

This works out how many studies in each variable

## # A tibble: 4 × 2
##   gender distinct_points
##    <dbl>           <int>
## 1      1               6
## 2      2              12
## 3      3              44
## 4      4              10

This works out how many effect sizes in each variable

1 = Boys, 2 = Girls, 3 = Both, 4 = Non-binary, 5=Boys and girls and non-binary

## 
##   1   2   3   4 
##  21  69 210  44

This performs the meta regression in population age

## 
## Call:
## meta3L(y = d, v = sampling_variance, cluster = study_id, x = cbind(female, 
##     male, mixed, nr), data = data, intercept.constraints = 0, 
##     intervals.type = "LB", I2 = "I2q", R2 = TRUE)
## 
## 95% confidence intervals: Likelihood-based statistic
## Coefficients:
##          Estimate Std.Error    lbound    ubound z value Pr(>|z|)
## Slope_1  0.503998        NA -0.241528  1.252137      NA       NA
## Slope_2  0.606245        NA  0.092702  1.118516      NA       NA
## Slope_3  0.644313        NA  0.374756  0.915484      NA       NA
## Slope_4  0.729273        NA  0.164437  1.304010      NA       NA
## Tau2_2   0.312832        NA  0.244783  0.399924      NA       NA
## Tau2_3   0.670918        NA  0.442021  1.032484      NA       NA
## 
## Q statistic on the homogeneity of effect sizes: 3471.148
## Degrees of freedom of the Q statistic: 343
## P value of the Q statistic: 0
## 
## Explained variances (R2):
##                        Level 2 Level 3
## Tau2 (no predictor)    0.31281  0.6724
## Tau2 (with predictors) 0.31283  0.6709
## R2                     0.00000  0.0022
## 
## Number of studies (or clusters): 72
## Number of observed statistics: 344
## Number of estimated parameters: 6
## Degrees of freedom: 338
## -2 log likelihood: 879.7429 
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values may indicate problems.)

Type of MSA

This works out how many studies in each variable

## # A tibble: 4 × 2
##   type_of_MSA distinct_points
##         <dbl>           <int>
## 1           1               8
## 2           2              52
## 3           3               4
## 4           4              10

This works out how many effect sizes in each variable

1 = Body weight , 2 = Combined, 3 = Plyometric, 4=Traditional

## 
##   1   2   3   4 
##  29 230  12  73

This performs the meta regression in population age

## 
## Call:
## meta3L(y = d, v = sampling_variance, cluster = study_id, x = cbind(bw, 
##     combined, plyometric, tm), data = data, intercept.constraints = 0, 
##     intervals.type = "LB", I2 = "I2q", R2 = TRUE)
## 
## 95% confidence intervals: Likelihood-based statistic
## Coefficients:
##         Estimate Std.Error   lbound   ubound z value Pr(>|z|)
## Slope_1  0.24651        NA -0.37831  0.87379      NA       NA
## Slope_2  0.64772        NA  0.40986  0.88721      NA       NA
## Slope_3  0.98539        NA  0.30141  1.67192      NA       NA
## Slope_4  0.79653        NA  0.30635  1.28801      NA       NA
## Tau2_2   0.31323        NA  0.24512  0.40040      NA       NA
## Tau2_3   0.64049        NA  0.42035  0.98798      NA       NA
## 
## Q statistic on the homogeneity of effect sizes: 3471.148
## Degrees of freedom of the Q statistic: 343
## P value of the Q statistic: 0
## 
## Explained variances (R2):
##                        Level 2 Level 3
## Tau2 (no predictor)    0.31281  0.6724
## Tau2 (with predictors) 0.31323  0.6405
## R2                     0.00000  0.0474
## 
## Number of studies (or clusters): 72
## Number of observed statistics: 344
## Number of estimated parameters: 6
## Degrees of freedom: 338
## -2 log likelihood: 877.2806 
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values may indicate problems.)

Facilitator

This works out how many studies in each variable

## # A tibble: 3 × 2
##   facilitator distinct_points
##         <dbl>           <int>
## 1           1              61
## 2           2               9
## 3           3               2

This works out how many effect sizes in each variable

1 = teacher/School Satff, 2 = External provider , 3 = both

## 
##   1   2   3 
## 273  65   6

This performs the meta regression in population age

## 
## Call:
## meta3L(y = d, v = sampling_variance, cluster = study_id, x = cbind(teacher, 
##     external, both), data = data, intercept.constraints = 0, 
##     intervals.type = "LB", I2 = "I2q", R2 = TRUE)
## 
## 95% confidence intervals: Likelihood-based statistic
## Coefficients:
##         Estimate Std.Error   lbound   ubound z value Pr(>|z|)
## Slope_1  0.61593        NA  0.38858  0.84330      NA       NA
## Slope_2  0.50849        NA -0.07391  1.09526      NA       NA
## Slope_3  2.11712        NA  0.78177  3.50800      NA       NA
## Tau2_2   0.31095        NA  0.24340  0.39734      NA       NA
## Tau2_3   0.65580        NA  0.43673  0.99918      NA       NA
## 
## Q statistic on the homogeneity of effect sizes: 3471.148
## Degrees of freedom of the Q statistic: 343
## P value of the Q statistic: 0
## 
## Explained variances (R2):
##                          Level 2 Level 3
## Tau2 (no predictor)    0.3128113  0.6724
## Tau2 (with predictors) 0.3109453  0.6558
## R2                     0.0059651  0.0247
## 
## Number of studies (or clusters): 72
## Number of observed statistics: 344
## Number of estimated parameters: 5
## Degrees of freedom: 339
## -2 log likelihood: 875.0313 
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values may indicate problems.)

Body region

This works out how many studies in each variable

## # A tibble: 4 × 2
##   body_region distinct_points
##         <dbl>           <int>
## 1           1              46
## 2           2              25
## 3           3              59
## 4           4               7

This works out how many effect sizes in each variable

1 = Upper, 2 = Core 3 = lower, 4 = combined

## 
##   1   2   3   4 
## 125  39 158  22

This performs the meta regression in population age

## 
## Call:
## meta3L(y = d, v = sampling_variance, cluster = study_id, x = cbind(upper, 
##     core, lower, combined), data = data, intercept.constraints = 0, 
##     intervals.type = "LB", I2 = "I2q", R2 = TRUE)
## 
## 95% confidence intervals: Likelihood-based statistic
## Coefficients:
##         Estimate Std.Error  lbound  ubound z value Pr(>|z|)
## Slope_1  0.53448        NA 0.30281 0.76714      NA       NA
## Slope_2  0.94765        NA 0.64681 1.24827      NA       NA
## Slope_3  0.63603        NA 0.41400 0.86140      NA       NA
## Slope_4  0.55542        NA 0.11588 0.99449      NA       NA
## Tau2_2   0.30093        NA 0.23471 0.38555      NA       NA
## Tau2_3   0.64637        NA 0.42451 0.99905      NA       NA
## 
## Q statistic on the homogeneity of effect sizes: 3471.148
## Degrees of freedom of the Q statistic: 343
## P value of the Q statistic: 0
## 
## Explained variances (R2):
##                         Level 2 Level 3
## Tau2 (no predictor)    0.312811  0.6724
## Tau2 (with predictors) 0.300926  0.6464
## R2                     0.037996  0.0387
## 
## Number of studies (or clusters): 72
## Number of observed statistics: 344
## Number of estimated parameters: 6
## Degrees of freedom: 338
## -2 log likelihood: 869.741 
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values may indicate problems.)