#Ejercicio 1

library()
install.packages("MASS", repos = "https://cran.rstudio.com")
## 
## The downloaded binary packages are in
##  /var/folders/xp/c0xqrv7n48b2lthl79p3jfrc0000gn/T//RtmpxsXPfs/downloaded_packages
install.packages("survival", repos = "https://cran.rstudio.com")
## 
## The downloaded binary packages are in
##  /var/folders/xp/c0xqrv7n48b2lthl79p3jfrc0000gn/T//RtmpxsXPfs/downloaded_packages
??Rcmdr

#Ejercicio 2

reproduccion_asistida_50 <- read.delim("~/Desktop/MASTER_BIOINFO/Datos/reproduccion_asistida_50.txt")
#View(reproduccion_asistida_50)
head(reproduccion_asistida_50)
##            Paciente Edad Ovulos_extraidos
## Paciente_1       31   12               Sí
## Paciente_2       44    8               Sí
## Paciente_3       39    6               No
## Paciente_4       35   18               No
## Paciente_5       32   10               No
## Paciente_6       31   10               No
summary(reproduccion_asistida_50)
##     Paciente          Edad       Ovulos_extraidos  
##  Min.   :25.00   Min.   : 5.00   Length:50         
##  1st Qu.:31.00   1st Qu.:10.00   Class :character  
##  Median :35.00   Median :13.00   Mode  :character  
##  Mean   :34.86   Mean   :13.18                     
##  3rd Qu.:39.00   3rd Qu.:17.00                     
##  Max.   :44.00   Max.   :19.00
hormonas <- read.csv("~/Desktop/MASTER_BIOINFO/Datos/hormonas.csv")
#View(hormonas)
fivenum(hormonas$FSH)
## [1]  5.00  6.70  7.95  9.70 11.90
fivenum(hormonas$LH)
## [1] 3.00 4.60 7.05 8.10 9.60

#Ejercicio 3

library("MASS")
data("anorexia")
head(anorexia)
##   Treat Prewt Postwt
## 1  Cont  80.7   80.2
## 2  Cont  89.4   80.1
## 3  Cont  91.8   86.4
## 4  Cont  74.0   86.3
## 5  Cont  78.1   76.1
## 6  Cont  88.3   78.1
table(is.na(anorexia))
## 
## FALSE 
##   216
table(is.null(anorexia))
## 
## FALSE 
##     1
anorexia_F<- factor(anorexia$Treat,levels=c("CBT","Cont","FT"),labels=c("Cogn Beh Tr","Contr","Fam Tr"))
anorexia_F
##  [1] Contr       Contr       Contr       Contr       Contr       Contr      
##  [7] Contr       Contr       Contr       Contr       Contr       Contr      
## [13] Contr       Contr       Contr       Contr       Contr       Contr      
## [19] Contr       Contr       Contr       Contr       Contr       Contr      
## [25] Contr       Contr       Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr
## [31] Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr
## [37] Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr
## [43] Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr
## [49] Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr
## [55] Cogn Beh Tr Fam Tr      Fam Tr      Fam Tr      Fam Tr      Fam Tr     
## [61] Fam Tr      Fam Tr      Fam Tr      Fam Tr      Fam Tr      Fam Tr     
## [67] Fam Tr      Fam Tr      Fam Tr      Fam Tr      Fam Tr      Fam Tr     
## Levels: Cogn Beh Tr Contr Fam Tr

#Ejercicio 4

library(MASS)
data("biopsy")
head("biopsy")
## [1] "biopsy"
write.csv(biopsy, file="~/Desktop/MASTER_BIOINFO/Datos/biopsy.csv")

data("Melanoma")
write.csv(Melanoma, file="~/Desktop/MASTER_BIOINFO/Datos/melanoma.csv")
write.table(Melanoma, file="~/Desktop/MASTER_BIOINFO/Datos/melanoma.table")
install.packages("openxlsx", repos = "https://cran.rstudio.com")
## 
## The downloaded binary packages are in
##  /var/folders/xp/c0xqrv7n48b2lthl79p3jfrc0000gn/T//RtmpxsXPfs/downloaded_packages
library(openxlsx)
write.xlsx(Melanoma, file="~/Desktop/MASTER_BIOINFO/Datos/melanoma.xlsx")

summary(Melanoma$age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    4.00   42.00   54.00   52.46   65.00   95.00
resumen <- summary(Melanoma$age)
write (resumen, file="~/Desktop/MASTER_BIOINFO/Datos/resumen.doc")

#Ejercicio 5

library(MASS)
data("birthwt")
#View(birthwt)
head(birthwt)
##    low age lwt race smoke ptl ht ui ftv  bwt
## 85   0  19 182    2     0   0  0  1   0 2523
## 86   0  33 155    3     0   0  0  0   3 2551
## 87   0  20 105    1     1   0  0  0   1 2557
## 88   0  21 108    1     1   0  0  1   2 2594
## 89   0  18 107    1     1   0  0  1   0 2600
## 91   0  21 124    3     0   0  0  0   0 2622
max(birthwt$age)
## [1] 45
min(birthwt$age)
## [1] 14
rank(birthwt$age)
##   [1]  43.5 182.0  60.5  75.5  30.5  75.5  88.0  19.5 159.0 139.5  43.5  43.5
##  [13]  88.0 166.0  30.5  30.5   5.0 128.0  60.5 151.0 177.5 172.0 187.5 151.0
##  [25] 128.0 151.0  19.5 159.0 139.5  19.5  19.5 114.0 185.5 128.0 128.0 159.0
##  [37]  43.5 145.0 172.0 182.0  75.5  43.5 101.0  75.5  30.5  30.5 177.5  43.5
##  [49] 114.0  88.0  88.0 101.0  88.0 166.0  43.5  10.0  75.5 166.0  60.5  19.5
##  [61]  19.5 101.0 114.0 151.0 139.5  60.5 114.0 151.0  60.5  88.0  88.0 172.0
##  [73] 101.0  10.0  10.0  30.5 128.0 177.5  60.5 101.0  88.0 177.5 166.0  60.5
##  [85] 101.0  19.5  43.5 101.0 187.5  88.0 114.0  75.5  43.5 128.0  10.0 159.0
##  [97] 159.0  43.5  43.5 166.0 114.0  43.5 114.0 101.0  60.5 128.0 166.0  88.0
## [109]  30.5  10.0 177.5  30.5 159.0 182.0  60.5 151.0   2.0 151.0 128.0  10.0
## [121]  60.5 139.5  75.5  88.0 128.0 172.0 185.5  43.5 114.0 189.0 151.0 159.0
## [133] 184.0 128.0 128.0 145.0 101.0 114.0 114.0  75.5 177.5  43.5 128.0  10.0
## [145] 128.0  60.5  75.5 114.0  75.5  60.5 128.0  43.5  43.5 139.5 114.0  19.5
## [157]  60.5  88.0 145.0  60.5  19.5 128.0  60.5  30.5  30.5  60.5  75.5 139.5
## [169] 172.0   5.0 101.0  60.5 114.0   5.0 101.0 166.0  88.0  19.5 101.0  19.5
## [181] 139.5  60.5 139.5   2.0 151.0   2.0 101.0  19.5  75.5
rank_edad <- max(birthwt$age) - min(birthwt$age) 
rank_edad 
## [1] 31
birthwt$smoke[birthwt$bwt==min(birthwt$bwt)]
## [1] 1
birthwt$bwt[birthwt$age==max(birthwt$age)]
## [1] 4990
birthwt$bwt[birthwt$ftv<=2]
##   [1] 2523 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750 2769 2769
##  [16] 2778 2807 2821 2835 2836 2863 2877 2877 2906 2920 2920 2920 2920 2948 2948
##  [31] 2977 2977 2977 2977 2922 3005 3033 3042 3062 3062 3062 3062 3062 3090 3090
##  [46] 3090 3100 3104 3132 3147 3175 3175 3203 3203 3203 3225 3225 3232 3232 3234
##  [61] 3260 3274 3274 3317 3317 3317 3321 3331 3374 3374 3402 3416 3444 3459 3460
##  [76] 3473 3544 3487 3544 3572 3572 3586 3600 3614 3614 3629 3629 3637 3643 3651
##  [91] 3651 3651 3651 3699 3728 3756 3770 3770 3770 3790 3799 3827 3856 3860 3884
## [106] 3884 3912 3940 3941 3941 3969 3983 3997 3997 4054 4054 4111 4153 4167 4174
## [121] 4238 4593 4990  709 1021 1135 1330 1474 1588 1588 1701 1729 1790 1818 1885
## [136] 1893 1899 1928 1928 1928 1936 1970 2055 2055 2082 2084 2084 2100 2125 2187
## [151] 2187 2211 2225 2240 2240 2282 2296 2296 2325 2353 2353 2367 2381 2381 2381
## [166] 2410 2410 2410 2424 2438 2442 2466 2466 2466 2495 2495 2495

#Ejercicio 6

library(MASS)
data(anorexia)
matr_anorexia <- matrix(c(anorexia$Prewt, anorexia$Postwt), ncol=2)
head(matr_anorexia)
##      [,1] [,2]
## [1,] 80.7 80.2
## [2,] 89.4 80.1
## [3,] 91.8 86.4
## [4,] 74.0 86.3
## [5,] 78.1 76.1
## [6,] 88.3 78.1

#Ejercicio 7

Identificador <- c("I1","I2","I3","I4","I5","I6","I7","I8","I9","I10","I11","I12","I13","I14","I15","I16","I17","I18","I19","I20","I21","I22","I23","I24","I25")
Edad <- c(23,24,21,22,23,25,26,24,21,22,23,25,26,24,22,21,25,26,24,21,25,27,26,22,29)
Sexo <-c(1,2,1,1,1,2,2,2,1,2,1,2,2,2,1,1,1,2,2,2,1,2,1,1,2) #1 para mujeres y 2 para hombres
Peso <- c(76.5,81.2,79.3,59.5,67.3,78.6,67.9,100.2,97.8,56.4,65.4,67.5,87.4,99.7,87.6,93.4,65.4,73.7,85.1,61.2,54.8,103.4,65.8,71.7,85.0)
Alt <- c(165,154,178,165,164,175,182,165,178,165,158,183,184,164,189,167,182,179,165,158,183,184,189,166,175) #altura en cm
Fuma <- c("SÍ","NO","SÍ","SÍ","NO","NO","NO","SÍ","SÍ","SÍ","NO","NO","SÍ","SÍ","SÍ","SÍ","NO","NO","SÍ","SÍ","SÍ","NO","SÍ","NO","SÍ")
Trat_Pulmon <-data.frame(Identificador,Edad,Sexo,Peso,Alt,Fuma)
Trat_Pulmon
##    Identificador Edad Sexo  Peso Alt Fuma
## 1             I1   23    1  76.5 165   SÍ
## 2             I2   24    2  81.2 154   NO
## 3             I3   21    1  79.3 178   SÍ
## 4             I4   22    1  59.5 165   SÍ
## 5             I5   23    1  67.3 164   NO
## 6             I6   25    2  78.6 175   NO
## 7             I7   26    2  67.9 182   NO
## 8             I8   24    2 100.2 165   SÍ
## 9             I9   21    1  97.8 178   SÍ
## 10           I10   22    2  56.4 165   SÍ
## 11           I11   23    1  65.4 158   NO
## 12           I12   25    2  67.5 183   NO
## 13           I13   26    2  87.4 184   SÍ
## 14           I14   24    2  99.7 164   SÍ
## 15           I15   22    1  87.6 189   SÍ
## 16           I16   21    1  93.4 167   SÍ
## 17           I17   25    1  65.4 182   NO
## 18           I18   26    2  73.7 179   NO
## 19           I19   24    2  85.1 165   SÍ
## 20           I20   21    2  61.2 158   SÍ
## 21           I21   25    1  54.8 183   SÍ
## 22           I22   27    2 103.4 184   NO
## 23           I23   26    1  65.8 189   SÍ
## 24           I24   22    1  71.7 166   NO
## 25           I25   29    2  85.0 175   SÍ
select1 <- subset(Trat_Pulmon, Edad>22)
select1
##    Identificador Edad Sexo  Peso Alt Fuma
## 1             I1   23    1  76.5 165   SÍ
## 2             I2   24    2  81.2 154   NO
## 5             I5   23    1  67.3 164   NO
## 6             I6   25    2  78.6 175   NO
## 7             I7   26    2  67.9 182   NO
## 8             I8   24    2 100.2 165   SÍ
## 11           I11   23    1  65.4 158   NO
## 12           I12   25    2  67.5 183   NO
## 13           I13   26    2  87.4 184   SÍ
## 14           I14   24    2  99.7 164   SÍ
## 17           I17   25    1  65.4 182   NO
## 18           I18   26    2  73.7 179   NO
## 19           I19   24    2  85.1 165   SÍ
## 21           I21   25    1  54.8 183   SÍ
## 22           I22   27    2 103.4 184   NO
## 23           I23   26    1  65.8 189   SÍ
## 25           I25   29    2  85.0 175   SÍ
select2 <- Trat_Pulmon[3,4]
select2
## [1] 79.3
select3 <- subset(Trat_Pulmon, Edad<27, select = -c(Alt))
select3
##    Identificador Edad Sexo  Peso Fuma
## 1             I1   23    1  76.5   SÍ
## 2             I2   24    2  81.2   NO
## 3             I3   21    1  79.3   SÍ
## 4             I4   22    1  59.5   SÍ
## 5             I5   23    1  67.3   NO
## 6             I6   25    2  78.6   NO
## 7             I7   26    2  67.9   NO
## 8             I8   24    2 100.2   SÍ
## 9             I9   21    1  97.8   SÍ
## 10           I10   22    2  56.4   SÍ
## 11           I11   23    1  65.4   NO
## 12           I12   25    2  67.5   NO
## 13           I13   26    2  87.4   SÍ
## 14           I14   24    2  99.7   SÍ
## 15           I15   22    1  87.6   SÍ
## 16           I16   21    1  93.4   SÍ
## 17           I17   25    1  65.4   NO
## 18           I18   26    2  73.7   NO
## 19           I19   24    2  85.1   SÍ
## 20           I20   21    2  61.2   SÍ
## 21           I21   25    1  54.8   SÍ
## 23           I23   26    1  65.8   SÍ
## 24           I24   22    1  71.7   NO

#Ejercicio 8

library(datasets)
data.frame("ChickWeight")
##   X.ChickWeight.
## 1    ChickWeight
head(ChickWeight)
##   weight Time Chick Diet
## 1     42    0     1    1
## 2     51    2     1    1
## 3     59    4     1    1
## 4     64    6     1    1
## 5     76    8     1    1
## 6     93   10     1    1
plot(ChickWeight$weight)

boxplot(ChickWeight$Time)

#Ejercicio 9

library(MASS)
data("anorexia")
post_pre<- c(anorexia$Postwt-anorexia$Prewt)
post_pre
##  [1]  -0.5  -9.3  -5.4  12.3  -2.0 -10.2 -12.2  11.6  -7.1   6.2  -0.2  -9.2
## [13]   8.3   3.3  11.3   0.0  -1.0 -10.6  -4.6  -6.7   2.8   0.3   1.8   3.7
## [25]  15.9 -10.2   1.7   0.7  -0.1  -0.7  -3.5  14.9   3.5  17.1  -7.6   1.6
## [37]  11.7   6.1   1.1  -4.0  20.9  -9.1   2.1  -1.4   1.4  -0.3  -3.7  -0.8
## [49]   2.4  12.6   1.9   3.9   0.1  15.4  -0.7  11.4  11.0   5.5   9.4  13.6
## [61]  -2.9  -0.1   7.4  21.5  -5.3  -3.8  13.4  13.1   9.0   3.9   5.7  10.7
anorexia_treat_C_df <- data.frame(anorexia,post_pre)
head(anorexia_treat_C_df)
##   Treat Prewt Postwt post_pre
## 1  Cont  80.7   80.2     -0.5
## 2  Cont  89.4   80.1     -9.3
## 3  Cont  91.8   86.4     -5.4
## 4  Cont  74.0   86.3     12.3
## 5  Cont  78.1   76.1     -2.0
## 6  Cont  88.3   78.1    -10.2
subset(anorexia_treat_C_df, anorexia_treat_C_df$Treat=="Cont" & post_pre>0)
##    Treat Prewt Postwt post_pre
## 4   Cont  74.0   86.3     12.3
## 8   Cont  75.1   86.7     11.6
## 10  Cont  78.4   84.6      6.2
## 13  Cont  81.3   89.6      8.3
## 14  Cont  78.1   81.4      3.3
## 15  Cont  70.5   81.8     11.3
## 21  Cont  85.5   88.3      2.8
## 22  Cont  84.4   84.7      0.3
## 23  Cont  79.6   81.4      1.8
## 24  Cont  77.5   81.2      3.7
## 25  Cont  72.3   88.2     15.9

#Ejercicio 10