#Ejercicio 1
library()
install.packages("MASS", repos = "https://cran.rstudio.com")
##
## The downloaded binary packages are in
## /var/folders/xp/c0xqrv7n48b2lthl79p3jfrc0000gn/T//RtmpxsXPfs/downloaded_packages
install.packages("survival", repos = "https://cran.rstudio.com")
##
## The downloaded binary packages are in
## /var/folders/xp/c0xqrv7n48b2lthl79p3jfrc0000gn/T//RtmpxsXPfs/downloaded_packages
??Rcmdr
#Ejercicio 2
reproduccion_asistida_50 <- read.delim("~/Desktop/MASTER_BIOINFO/Datos/reproduccion_asistida_50.txt")
#View(reproduccion_asistida_50)
head(reproduccion_asistida_50)
## Paciente Edad Ovulos_extraidos
## Paciente_1 31 12 Sí
## Paciente_2 44 8 Sí
## Paciente_3 39 6 No
## Paciente_4 35 18 No
## Paciente_5 32 10 No
## Paciente_6 31 10 No
summary(reproduccion_asistida_50)
## Paciente Edad Ovulos_extraidos
## Min. :25.00 Min. : 5.00 Length:50
## 1st Qu.:31.00 1st Qu.:10.00 Class :character
## Median :35.00 Median :13.00 Mode :character
## Mean :34.86 Mean :13.18
## 3rd Qu.:39.00 3rd Qu.:17.00
## Max. :44.00 Max. :19.00
hormonas <- read.csv("~/Desktop/MASTER_BIOINFO/Datos/hormonas.csv")
#View(hormonas)
fivenum(hormonas$FSH)
## [1] 5.00 6.70 7.95 9.70 11.90
fivenum(hormonas$LH)
## [1] 3.00 4.60 7.05 8.10 9.60
#Ejercicio 3
library("MASS")
data("anorexia")
head(anorexia)
## Treat Prewt Postwt
## 1 Cont 80.7 80.2
## 2 Cont 89.4 80.1
## 3 Cont 91.8 86.4
## 4 Cont 74.0 86.3
## 5 Cont 78.1 76.1
## 6 Cont 88.3 78.1
table(is.na(anorexia))
##
## FALSE
## 216
table(is.null(anorexia))
##
## FALSE
## 1
anorexia_F<- factor(anorexia$Treat,levels=c("CBT","Cont","FT"),labels=c("Cogn Beh Tr","Contr","Fam Tr"))
anorexia_F
## [1] Contr Contr Contr Contr Contr Contr
## [7] Contr Contr Contr Contr Contr Contr
## [13] Contr Contr Contr Contr Contr Contr
## [19] Contr Contr Contr Contr Contr Contr
## [25] Contr Contr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr
## [31] Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr
## [37] Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr
## [43] Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr
## [49] Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr Cogn Beh Tr
## [55] Cogn Beh Tr Fam Tr Fam Tr Fam Tr Fam Tr Fam Tr
## [61] Fam Tr Fam Tr Fam Tr Fam Tr Fam Tr Fam Tr
## [67] Fam Tr Fam Tr Fam Tr Fam Tr Fam Tr Fam Tr
## Levels: Cogn Beh Tr Contr Fam Tr
#Ejercicio 4
library(MASS)
data("biopsy")
head("biopsy")
## [1] "biopsy"
write.csv(biopsy, file="~/Desktop/MASTER_BIOINFO/Datos/biopsy.csv")
data("Melanoma")
write.csv(Melanoma, file="~/Desktop/MASTER_BIOINFO/Datos/melanoma.csv")
write.table(Melanoma, file="~/Desktop/MASTER_BIOINFO/Datos/melanoma.table")
install.packages("openxlsx", repos = "https://cran.rstudio.com")
##
## The downloaded binary packages are in
## /var/folders/xp/c0xqrv7n48b2lthl79p3jfrc0000gn/T//RtmpxsXPfs/downloaded_packages
library(openxlsx)
write.xlsx(Melanoma, file="~/Desktop/MASTER_BIOINFO/Datos/melanoma.xlsx")
summary(Melanoma$age)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.00 42.00 54.00 52.46 65.00 95.00
resumen <- summary(Melanoma$age)
write (resumen, file="~/Desktop/MASTER_BIOINFO/Datos/resumen.doc")
#Ejercicio 5
library(MASS)
data("birthwt")
#View(birthwt)
head(birthwt)
## low age lwt race smoke ptl ht ui ftv bwt
## 85 0 19 182 2 0 0 0 1 0 2523
## 86 0 33 155 3 0 0 0 0 3 2551
## 87 0 20 105 1 1 0 0 0 1 2557
## 88 0 21 108 1 1 0 0 1 2 2594
## 89 0 18 107 1 1 0 0 1 0 2600
## 91 0 21 124 3 0 0 0 0 0 2622
max(birthwt$age)
## [1] 45
min(birthwt$age)
## [1] 14
rank(birthwt$age)
## [1] 43.5 182.0 60.5 75.5 30.5 75.5 88.0 19.5 159.0 139.5 43.5 43.5
## [13] 88.0 166.0 30.5 30.5 5.0 128.0 60.5 151.0 177.5 172.0 187.5 151.0
## [25] 128.0 151.0 19.5 159.0 139.5 19.5 19.5 114.0 185.5 128.0 128.0 159.0
## [37] 43.5 145.0 172.0 182.0 75.5 43.5 101.0 75.5 30.5 30.5 177.5 43.5
## [49] 114.0 88.0 88.0 101.0 88.0 166.0 43.5 10.0 75.5 166.0 60.5 19.5
## [61] 19.5 101.0 114.0 151.0 139.5 60.5 114.0 151.0 60.5 88.0 88.0 172.0
## [73] 101.0 10.0 10.0 30.5 128.0 177.5 60.5 101.0 88.0 177.5 166.0 60.5
## [85] 101.0 19.5 43.5 101.0 187.5 88.0 114.0 75.5 43.5 128.0 10.0 159.0
## [97] 159.0 43.5 43.5 166.0 114.0 43.5 114.0 101.0 60.5 128.0 166.0 88.0
## [109] 30.5 10.0 177.5 30.5 159.0 182.0 60.5 151.0 2.0 151.0 128.0 10.0
## [121] 60.5 139.5 75.5 88.0 128.0 172.0 185.5 43.5 114.0 189.0 151.0 159.0
## [133] 184.0 128.0 128.0 145.0 101.0 114.0 114.0 75.5 177.5 43.5 128.0 10.0
## [145] 128.0 60.5 75.5 114.0 75.5 60.5 128.0 43.5 43.5 139.5 114.0 19.5
## [157] 60.5 88.0 145.0 60.5 19.5 128.0 60.5 30.5 30.5 60.5 75.5 139.5
## [169] 172.0 5.0 101.0 60.5 114.0 5.0 101.0 166.0 88.0 19.5 101.0 19.5
## [181] 139.5 60.5 139.5 2.0 151.0 2.0 101.0 19.5 75.5
rank_edad <- max(birthwt$age) - min(birthwt$age)
rank_edad
## [1] 31
birthwt$smoke[birthwt$bwt==min(birthwt$bwt)]
## [1] 1
birthwt$bwt[birthwt$age==max(birthwt$age)]
## [1] 4990
birthwt$bwt[birthwt$ftv<=2]
## [1] 2523 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750 2769 2769
## [16] 2778 2807 2821 2835 2836 2863 2877 2877 2906 2920 2920 2920 2920 2948 2948
## [31] 2977 2977 2977 2977 2922 3005 3033 3042 3062 3062 3062 3062 3062 3090 3090
## [46] 3090 3100 3104 3132 3147 3175 3175 3203 3203 3203 3225 3225 3232 3232 3234
## [61] 3260 3274 3274 3317 3317 3317 3321 3331 3374 3374 3402 3416 3444 3459 3460
## [76] 3473 3544 3487 3544 3572 3572 3586 3600 3614 3614 3629 3629 3637 3643 3651
## [91] 3651 3651 3651 3699 3728 3756 3770 3770 3770 3790 3799 3827 3856 3860 3884
## [106] 3884 3912 3940 3941 3941 3969 3983 3997 3997 4054 4054 4111 4153 4167 4174
## [121] 4238 4593 4990 709 1021 1135 1330 1474 1588 1588 1701 1729 1790 1818 1885
## [136] 1893 1899 1928 1928 1928 1936 1970 2055 2055 2082 2084 2084 2100 2125 2187
## [151] 2187 2211 2225 2240 2240 2282 2296 2296 2325 2353 2353 2367 2381 2381 2381
## [166] 2410 2410 2410 2424 2438 2442 2466 2466 2466 2495 2495 2495
#Ejercicio 6
library(MASS)
data(anorexia)
matr_anorexia <- matrix(c(anorexia$Prewt, anorexia$Postwt), ncol=2)
head(matr_anorexia)
## [,1] [,2]
## [1,] 80.7 80.2
## [2,] 89.4 80.1
## [3,] 91.8 86.4
## [4,] 74.0 86.3
## [5,] 78.1 76.1
## [6,] 88.3 78.1
#Ejercicio 7
Identificador <- c("I1","I2","I3","I4","I5","I6","I7","I8","I9","I10","I11","I12","I13","I14","I15","I16","I17","I18","I19","I20","I21","I22","I23","I24","I25")
Edad <- c(23,24,21,22,23,25,26,24,21,22,23,25,26,24,22,21,25,26,24,21,25,27,26,22,29)
Sexo <-c(1,2,1,1,1,2,2,2,1,2,1,2,2,2,1,1,1,2,2,2,1,2,1,1,2) #1 para mujeres y 2 para hombres
Peso <- c(76.5,81.2,79.3,59.5,67.3,78.6,67.9,100.2,97.8,56.4,65.4,67.5,87.4,99.7,87.6,93.4,65.4,73.7,85.1,61.2,54.8,103.4,65.8,71.7,85.0)
Alt <- c(165,154,178,165,164,175,182,165,178,165,158,183,184,164,189,167,182,179,165,158,183,184,189,166,175) #altura en cm
Fuma <- c("SÍ","NO","SÍ","SÍ","NO","NO","NO","SÍ","SÍ","SÍ","NO","NO","SÍ","SÍ","SÍ","SÍ","NO","NO","SÍ","SÍ","SÍ","NO","SÍ","NO","SÍ")
Trat_Pulmon <-data.frame(Identificador,Edad,Sexo,Peso,Alt,Fuma)
Trat_Pulmon
## Identificador Edad Sexo Peso Alt Fuma
## 1 I1 23 1 76.5 165 SÍ
## 2 I2 24 2 81.2 154 NO
## 3 I3 21 1 79.3 178 SÍ
## 4 I4 22 1 59.5 165 SÍ
## 5 I5 23 1 67.3 164 NO
## 6 I6 25 2 78.6 175 NO
## 7 I7 26 2 67.9 182 NO
## 8 I8 24 2 100.2 165 SÍ
## 9 I9 21 1 97.8 178 SÍ
## 10 I10 22 2 56.4 165 SÍ
## 11 I11 23 1 65.4 158 NO
## 12 I12 25 2 67.5 183 NO
## 13 I13 26 2 87.4 184 SÍ
## 14 I14 24 2 99.7 164 SÍ
## 15 I15 22 1 87.6 189 SÍ
## 16 I16 21 1 93.4 167 SÍ
## 17 I17 25 1 65.4 182 NO
## 18 I18 26 2 73.7 179 NO
## 19 I19 24 2 85.1 165 SÍ
## 20 I20 21 2 61.2 158 SÍ
## 21 I21 25 1 54.8 183 SÍ
## 22 I22 27 2 103.4 184 NO
## 23 I23 26 1 65.8 189 SÍ
## 24 I24 22 1 71.7 166 NO
## 25 I25 29 2 85.0 175 SÍ
select1 <- subset(Trat_Pulmon, Edad>22)
select1
## Identificador Edad Sexo Peso Alt Fuma
## 1 I1 23 1 76.5 165 SÍ
## 2 I2 24 2 81.2 154 NO
## 5 I5 23 1 67.3 164 NO
## 6 I6 25 2 78.6 175 NO
## 7 I7 26 2 67.9 182 NO
## 8 I8 24 2 100.2 165 SÍ
## 11 I11 23 1 65.4 158 NO
## 12 I12 25 2 67.5 183 NO
## 13 I13 26 2 87.4 184 SÍ
## 14 I14 24 2 99.7 164 SÍ
## 17 I17 25 1 65.4 182 NO
## 18 I18 26 2 73.7 179 NO
## 19 I19 24 2 85.1 165 SÍ
## 21 I21 25 1 54.8 183 SÍ
## 22 I22 27 2 103.4 184 NO
## 23 I23 26 1 65.8 189 SÍ
## 25 I25 29 2 85.0 175 SÍ
select2 <- Trat_Pulmon[3,4]
select2
## [1] 79.3
select3 <- subset(Trat_Pulmon, Edad<27, select = -c(Alt))
select3
## Identificador Edad Sexo Peso Fuma
## 1 I1 23 1 76.5 SÍ
## 2 I2 24 2 81.2 NO
## 3 I3 21 1 79.3 SÍ
## 4 I4 22 1 59.5 SÍ
## 5 I5 23 1 67.3 NO
## 6 I6 25 2 78.6 NO
## 7 I7 26 2 67.9 NO
## 8 I8 24 2 100.2 SÍ
## 9 I9 21 1 97.8 SÍ
## 10 I10 22 2 56.4 SÍ
## 11 I11 23 1 65.4 NO
## 12 I12 25 2 67.5 NO
## 13 I13 26 2 87.4 SÍ
## 14 I14 24 2 99.7 SÍ
## 15 I15 22 1 87.6 SÍ
## 16 I16 21 1 93.4 SÍ
## 17 I17 25 1 65.4 NO
## 18 I18 26 2 73.7 NO
## 19 I19 24 2 85.1 SÍ
## 20 I20 21 2 61.2 SÍ
## 21 I21 25 1 54.8 SÍ
## 23 I23 26 1 65.8 SÍ
## 24 I24 22 1 71.7 NO
#Ejercicio 8
library(datasets)
data.frame("ChickWeight")
## X.ChickWeight.
## 1 ChickWeight
head(ChickWeight)
## weight Time Chick Diet
## 1 42 0 1 1
## 2 51 2 1 1
## 3 59 4 1 1
## 4 64 6 1 1
## 5 76 8 1 1
## 6 93 10 1 1
plot(ChickWeight$weight)
boxplot(ChickWeight$Time)
#Ejercicio 9
library(MASS)
data("anorexia")
post_pre<- c(anorexia$Postwt-anorexia$Prewt)
post_pre
## [1] -0.5 -9.3 -5.4 12.3 -2.0 -10.2 -12.2 11.6 -7.1 6.2 -0.2 -9.2
## [13] 8.3 3.3 11.3 0.0 -1.0 -10.6 -4.6 -6.7 2.8 0.3 1.8 3.7
## [25] 15.9 -10.2 1.7 0.7 -0.1 -0.7 -3.5 14.9 3.5 17.1 -7.6 1.6
## [37] 11.7 6.1 1.1 -4.0 20.9 -9.1 2.1 -1.4 1.4 -0.3 -3.7 -0.8
## [49] 2.4 12.6 1.9 3.9 0.1 15.4 -0.7 11.4 11.0 5.5 9.4 13.6
## [61] -2.9 -0.1 7.4 21.5 -5.3 -3.8 13.4 13.1 9.0 3.9 5.7 10.7
anorexia_treat_C_df <- data.frame(anorexia,post_pre)
head(anorexia_treat_C_df)
## Treat Prewt Postwt post_pre
## 1 Cont 80.7 80.2 -0.5
## 2 Cont 89.4 80.1 -9.3
## 3 Cont 91.8 86.4 -5.4
## 4 Cont 74.0 86.3 12.3
## 5 Cont 78.1 76.1 -2.0
## 6 Cont 88.3 78.1 -10.2
subset(anorexia_treat_C_df, anorexia_treat_C_df$Treat=="Cont" & post_pre>0)
## Treat Prewt Postwt post_pre
## 4 Cont 74.0 86.3 12.3
## 8 Cont 75.1 86.7 11.6
## 10 Cont 78.4 84.6 6.2
## 13 Cont 81.3 89.6 8.3
## 14 Cont 78.1 81.4 3.3
## 15 Cont 70.5 81.8 11.3
## 21 Cont 85.5 88.3 2.8
## 22 Cont 84.4 84.7 0.3
## 23 Cont 79.6 81.4 1.8
## 24 Cont 77.5 81.2 3.7
## 25 Cont 72.3 88.2 15.9
#Ejercicio 10