This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

Name: Oscar Alexander Tobar

Course: CAP-4936-2253-4282

plot(cars)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

getwd()
[1] "C:/Users/OAT meal/Documents"
baseball = read.csv("baseball.csv")
str(baseball)
'data.frame':   1232 obs. of  15 variables:
 $ Team        : chr  "ARI" "ATL" "BAL" "BOS" ...
 $ League      : chr  "NL" "NL" "AL" "AL" ...
 $ Year        : int  2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 ...
 $ RS          : int  734 700 712 734 613 748 669 667 758 726 ...
 $ RA          : int  688 600 705 806 759 676 588 845 890 670 ...
 $ W           : int  81 94 93 69 61 85 97 68 64 88 ...
 $ OBP         : num  0.328 0.32 0.311 0.315 0.302 0.318 0.315 0.324 0.33 0.335 ...
 $ SLG         : num  0.418 0.389 0.417 0.415 0.378 0.422 0.411 0.381 0.436 0.422 ...
 $ BA          : num  0.259 0.247 0.247 0.26 0.24 0.255 0.251 0.251 0.274 0.268 ...
 $ Playoffs    : int  0 1 1 0 0 0 1 0 0 1 ...
 $ RankSeason  : int  NA 4 5 NA NA NA 2 NA NA 6 ...
 $ RankPlayoffs: int  NA 5 4 NA NA NA 4 NA NA 2 ...
 $ G           : int  162 162 162 162 162 162 162 162 162 162 ...
 $ OOBP        : num  0.317 0.306 0.315 0.331 0.335 0.319 0.305 0.336 0.357 0.314 ...
 $ OSLG        : num  0.415 0.378 0.403 0.428 0.424 0.405 0.39 0.43 0.47 0.402 ...
# Subset to only include moneyball years
moneyball = subset(baseball, Year < 2002)
str(moneyball)
'data.frame':   902 obs. of  15 variables:
 $ Team        : chr  "ANA" "ARI" "ATL" "BAL" ...
 $ League      : chr  "AL" "NL" "NL" "AL" ...
 $ Year        : int  2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
 $ RS          : int  691 818 729 687 772 777 798 735 897 923 ...
 $ RA          : int  730 677 643 829 745 701 795 850 821 906 ...
 $ W           : int  75 92 88 63 82 88 83 66 91 73 ...
 $ OBP         : num  0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
 $ SLG         : num  0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
 $ BA          : num  0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
 $ Playoffs    : int  0 1 1 0 0 0 0 0 1 0 ...
 $ RankSeason  : int  NA 5 7 NA NA NA NA NA 6 NA ...
 $ RankPlayoffs: int  NA 1 3 NA NA NA NA NA 4 NA ...
 $ G           : int  162 162 162 162 161 162 162 162 162 162 ...
 $ OOBP        : num  0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
 $ OSLG        : num  0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
# Compute Run Difference
moneyball$RD = moneyball$RS - moneyball$RA
str(moneyball)
'data.frame':   902 obs. of  16 variables:
 $ Team        : chr  "ANA" "ARI" "ATL" "BAL" ...
 $ League      : chr  "AL" "NL" "NL" "AL" ...
 $ Year        : int  2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
 $ RS          : int  691 818 729 687 772 777 798 735 897 923 ...
 $ RA          : int  730 677 643 829 745 701 795 850 821 906 ...
 $ W           : int  75 92 88 63 82 88 83 66 91 73 ...
 $ OBP         : num  0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
 $ SLG         : num  0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
 $ BA          : num  0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
 $ Playoffs    : int  0 1 1 0 0 0 0 0 1 0 ...
 $ RankSeason  : int  NA 5 7 NA NA NA NA NA 6 NA ...
 $ RankPlayoffs: int  NA 1 3 NA NA NA NA NA 4 NA ...
 $ G           : int  162 162 162 162 161 162 162 162 162 162 ...
 $ OOBP        : num  0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
 $ OSLG        : num  0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
 $ RD          : int  -39 141 86 -142 27 76 3 -115 76 17 ...
# Scatterplot to check for linear relationship
plot(moneyball$RD, moneyball$W)

# Regression model to predict wins
WinsReg = lm(W ~ RD, data=moneyball)
summary(WinsReg)

Call:
lm(formula = W ~ RD, data = moneyball)

Residuals:
     Min       1Q   Median       3Q      Max 
-14.2662  -2.6509   0.1234   2.9364  11.6570 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 80.881375   0.131157  616.67   <2e-16 ***
RD           0.105766   0.001297   81.55   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.939 on 900 degrees of freedom
Multiple R-squared:  0.8808,    Adjusted R-squared:  0.8807 
F-statistic:  6651 on 1 and 900 DF,  p-value: < 2.2e-16

In-Class-Activity 7 Question: If a baseball team scores 763 runs and allows 614 runs, how many games do we expect the team to win? Using the linear regression model constructed during the lecture, enter the number of games we expect the team to win:

NumberofWins=80.88+0.106*(763-614)
NumberofWins
[1] 96.674

A team with a runs difference of 149 is expected to win around 97 games.

# VIDEO 3



str(moneyball)
'data.frame':   902 obs. of  16 variables:
 $ Team        : chr  "ANA" "ARI" "ATL" "BAL" ...
 $ League      : chr  "AL" "NL" "NL" "AL" ...
 $ Year        : int  2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
 $ RS          : int  691 818 729 687 772 777 798 735 897 923 ...
 $ RA          : int  730 677 643 829 745 701 795 850 821 906 ...
 $ W           : int  75 92 88 63 82 88 83 66 91 73 ...
 $ OBP         : num  0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
 $ SLG         : num  0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
 $ BA          : num  0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
 $ Playoffs    : int  0 1 1 0 0 0 0 0 1 0 ...
 $ RankSeason  : int  NA 5 7 NA NA NA NA NA 6 NA ...
 $ RankPlayoffs: int  NA 1 3 NA NA NA NA NA 4 NA ...
 $ G           : int  162 162 162 162 161 162 162 162 162 162 ...
 $ OOBP        : num  0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
 $ OSLG        : num  0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
 $ RD          : int  -39 141 86 -142 27 76 3 -115 76 17 ...
# Regression model to predict runs scored
RunsReg = lm(RS ~ OBP + SLG + BA, data=moneyball)
summary(RunsReg)

Call:
lm(formula = RS ~ OBP + SLG + BA, data = moneyball)

Residuals:
    Min      1Q  Median      3Q     Max 
-70.941 -17.247  -0.621  16.754  90.998 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -788.46      19.70 -40.029  < 2e-16 ***
OBP          2917.42     110.47  26.410  < 2e-16 ***
SLG          1637.93      45.99  35.612  < 2e-16 ***
BA           -368.97     130.58  -2.826  0.00482 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 24.69 on 898 degrees of freedom
Multiple R-squared:  0.9302,    Adjusted R-squared:   0.93 
F-statistic:  3989 on 3 and 898 DF,  p-value: < 2.2e-16
# Regression model to predict runs scored again but removing the batting average
RunsReg = lm(RS ~ OBP + SLG, data=moneyball)
summary(RunsReg)

Call:
lm(formula = RS ~ OBP + SLG, data = moneyball)

Residuals:
    Min      1Q  Median      3Q     Max 
-70.838 -17.174  -1.108  16.770  90.036 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -804.63      18.92  -42.53   <2e-16 ***
OBP          2737.77      90.68   30.19   <2e-16 ***
SLG          1584.91      42.16   37.60   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 24.79 on 899 degrees of freedom
Multiple R-squared:  0.9296,    Adjusted R-squared:  0.9294 
F-statistic:  5934 on 2 and 899 DF,  p-value: < 2.2e-16

In Class Activity 8: Exercise 1:

ExceptedRuns=-804.63+2737.77*(0.361)+1584.91*(0.409)
ExceptedRuns
[1] 831.9332

We expect a team to score around 832 runs.

str(moneyball)
# Regression model to predict runs allowed
RunsAllowedReg = lm(RA ~ OOBP + OSLG, data=moneyball)
summary(RunsAllowedReg)

Call:
lm(formula = RA ~ OOBP + OSLG, data = moneyball)

Residuals:
    Min      1Q  Median      3Q     Max 
-82.397 -15.178  -0.129  17.679  60.955 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -837.38      60.26 -13.897  < 2e-16 ***
OOBP         2913.60     291.97   9.979 4.46e-16 ***
OSLG         1514.29     175.43   8.632 2.55e-13 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 25.67 on 87 degrees of freedom
  (812 observations deleted due to missingness)
Multiple R-squared:  0.9073,    Adjusted R-squared:  0.9052 
F-statistic: 425.8 on 2 and 87 DF,  p-value: < 2.2e-16

Exercise 2 for In Class Activity 8

ExpectRunsAllowed=-837.38+2913.60*(0.267)+1514.29*(0.392)
ExpectRunsAllowed
[1] 534.1529
#install.packages("car")
library(car)
vif(RunsReg)
     OBP      SLG       BA 
4.271126 3.426472 4.433501 
LS0tDQp0aXRsZTogIkluIENsYXNzIEFjdGl2aXR5IDcgYW5kIDggQ0FQLTQ5MzYtMjI1My00MjgyIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gDQoNClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDdHJsK1NoaWZ0K0VudGVyKi4gDQoNCioqTmFtZTogT3NjYXIgQWxleGFuZGVyIFRvYmFyKioNCg0KKipDb3Vyc2U6IENBUC00OTM2LTIyNTMtNDI4MioqDQoNCmBgYHtyfQ0KcGxvdChjYXJzKQ0KYGBgDQoNCkFkZCBhIG5ldyBjaHVuayBieSBjbGlja2luZyB0aGUgKkluc2VydCBDaHVuayogYnV0dG9uIG9uIHRoZSB0b29sYmFyIG9yIGJ5IHByZXNzaW5nICpDdHJsK0FsdCtJKi4NCg0KV2hlbiB5b3Ugc2F2ZSB0aGUgbm90ZWJvb2ssIGFuIEhUTUwgZmlsZSBjb250YWluaW5nIHRoZSBjb2RlIGFuZCBvdXRwdXQgd2lsbCBiZSBzYXZlZCBhbG9uZ3NpZGUgaXQgKGNsaWNrIHRoZSAqUHJldmlldyogYnV0dG9uIG9yIHByZXNzICpDdHJsK1NoaWZ0K0sqIHRvIHByZXZpZXcgdGhlIEhUTUwgZmlsZSkuDQoNClRoZSBwcmV2aWV3IHNob3dzIHlvdSBhIHJlbmRlcmVkIEhUTUwgY29weSBvZiB0aGUgY29udGVudHMgb2YgdGhlIGVkaXRvci4gQ29uc2VxdWVudGx5LCB1bmxpa2UgKktuaXQqLCAqUHJldmlldyogZG9lcyBub3QgcnVuIGFueSBSIGNvZGUgY2h1bmtzLiBJbnN0ZWFkLCB0aGUgb3V0cHV0IG9mIHRoZSBjaHVuayB3aGVuIGl0IHdhcyBsYXN0IHJ1biBpbiB0aGUgZWRpdG9yIGlzIGRpc3BsYXllZC4NCmBgYHtyfQ0KZ2V0d2QoKQ0KYGBgDQoNCmBgYHtyfQ0KYmFzZWJhbGwgPSByZWFkLmNzdigiYmFzZWJhbGwuY3N2IikNCnN0cihiYXNlYmFsbCkNCmBgYA0KYGBge3J9DQojIFN1YnNldCB0byBvbmx5IGluY2x1ZGUgbW9uZXliYWxsIHllYXJzDQptb25leWJhbGwgPSBzdWJzZXQoYmFzZWJhbGwsIFllYXIgPCAyMDAyKQ0Kc3RyKG1vbmV5YmFsbCkNCmBgYA0KYGBge3J9DQojIENvbXB1dGUgUnVuIERpZmZlcmVuY2UNCm1vbmV5YmFsbCRSRCA9IG1vbmV5YmFsbCRSUyAtIG1vbmV5YmFsbCRSQQ0Kc3RyKG1vbmV5YmFsbCkNCmBgYA0KYGBge3J9DQojIFNjYXR0ZXJwbG90IHRvIGNoZWNrIGZvciBsaW5lYXIgcmVsYXRpb25zaGlwDQpwbG90KG1vbmV5YmFsbCRSRCwgbW9uZXliYWxsJFcpDQpgYGANCmBgYHtyfQ0KIyBSZWdyZXNzaW9uIG1vZGVsIHRvIHByZWRpY3Qgd2lucw0KV2luc1JlZyA9IGxtKFcgfiBSRCwgZGF0YT1tb25leWJhbGwpDQpzdW1tYXJ5KFdpbnNSZWcpDQpgYGANCioqSW4tQ2xhc3MtQWN0aXZpdHkgNyoqDQoqKlF1ZXN0aW9uOiBJZiBhIGJhc2ViYWxsIHRlYW0gc2NvcmVzIDc2MyBydW5zIGFuZCBhbGxvd3MgNjE0IHJ1bnMsIGhvdyBtYW55IGdhbWVzIGRvIHdlIGV4cGVjdCB0aGUgdGVhbSB0byB3aW4/KioNCioqVXNpbmcgdGhlIGxpbmVhciByZWdyZXNzaW9uIG1vZGVsIGNvbnN0cnVjdGVkIGR1cmluZyB0aGUgbGVjdHVyZSwgZW50ZXIgdGhlIG51bWJlciBvZiBnYW1lcyB3ZSBleHBlY3QgdGhlIHRlYW0gdG8gd2luOioqDQpgYGB7cn0NCk51bWJlcm9mV2lucz04MC44OCswLjEwNiooNzYzLTYxNCkNCk51bWJlcm9mV2lucw0KYGBgDQpBIHRlYW0gd2l0aCBhIHJ1bnMgZGlmZmVyZW5jZSBvZiAxNDkgaXMgZXhwZWN0ZWQgdG8gd2luIGFyb3VuZCA5NyBnYW1lcy4NCg0KDQoNCmBgYHtyfQ0KIyBWSURFTyAzDQoNCg0KDQpzdHIobW9uZXliYWxsKQ0KYGBgDQoNCmBgYHtyfQ0KIyBSZWdyZXNzaW9uIG1vZGVsIHRvIHByZWRpY3QgcnVucyBzY29yZWQNClJ1bnNSZWcgPSBsbShSUyB+IE9CUCArIFNMRyArIEJBLCBkYXRhPW1vbmV5YmFsbCkNCnN1bW1hcnkoUnVuc1JlZykNCmBgYA0KDQpgYGB7cn0NCiMgUmVncmVzc2lvbiBtb2RlbCB0byBwcmVkaWN0IHJ1bnMgc2NvcmVkIGFnYWluIGJ1dCByZW1vdmluZyB0aGUgYmF0dGluZyBhdmVyYWdlDQpSdW5zUmVnID0gbG0oUlMgfiBPQlAgKyBTTEcsIGRhdGE9bW9uZXliYWxsKQ0Kc3VtbWFyeShSdW5zUmVnKQ0KYGBgDQoqKkluIENsYXNzIEFjdGl2aXR5IDg6KioNCioqRXhlcmNpc2UgMToqKg0KYGBge3J9DQpFeGNlcHRlZFJ1bnM9LTgwNC42MysyNzM3Ljc3KigwLjM2MSkrMTU4NC45MSooMC40MDkpDQpFeGNlcHRlZFJ1bnMNCmBgYA0KV2UgZXhwZWN0IGEgdGVhbSB0byBzY29yZSBhcm91bmQgODMyIHJ1bnMuIA0KDQoNCg0KYGBge3J9DQpzdHIobW9uZXliYWxsKQ0KYGBgDQoNCmBgYHtyfQ0KIyBSZWdyZXNzaW9uIG1vZGVsIHRvIHByZWRpY3QgcnVucyBhbGxvd2VkDQpSdW5zQWxsb3dlZFJlZyA9IGxtKFJBIH4gT09CUCArIE9TTEcsIGRhdGE9bW9uZXliYWxsKQ0Kc3VtbWFyeShSdW5zQWxsb3dlZFJlZykNCmBgYA0KKipFeGVyY2lzZSAyIGZvciBJbiBDbGFzcyBBY3Rpdml0eSA4KioNCmBgYHtyfQ0KRXhwZWN0UnVuc0FsbG93ZWQ9LTgzNy4zOCsyOTEzLjYwKigwLjI2NykrMTUxNC4yOSooMC4zOTIpDQpFeHBlY3RSdW5zQWxsb3dlZA0KYGBgDQoNCg0KDQpgYGB7cn0NCiNpbnN0YWxsLnBhY2thZ2VzKCJjYXIiKQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShjYXIpDQpgYGANCg0KDQpgYGB7cn0NCnZpZihSdW5zUmVnKQ0KYGBgDQoNCg0KDQo=