1 Introduction

In recent years, both private consumer spending and the European Central Bank’s (ECB) monetary policy have undergone significant changes. Private consumption initially declined in 2020 due to the COVID-19 pandemic but subsequently increased steadily. However, between 2022 and 2023, consumer spending remained relatively stable. At the same time, the household savings rate decreased continuously, falling from 15.3% in 2020 to 10.4% in 2023 (cf.  Destatis, 2024). In response to financial stress during the pandemic and the subsequent inflationary period, the ECB implemented various monetary pol icy measures. During this period, monetary policy underwent notable shifts. In July 2022, the ECB raised interest rates for the main refinancing operations (MROs), the marginal lending facility, and the deposit facility for the first time since 2011. Within a year, these interest rates reached levels comparable to those ob served during the euro crisis in 2008 or shortly after the euro’s introduction in 2001 (cf. ECB, 2024). Additionally, the volume of open market operations (OMOs) increased significantly in 2020, primarily due to the expansion of the asset purchase programme (APP) and the introduction of the pandemic emer gency purchase programme (PEPP). The ECB also adjusted its set of monetary policy instruments. In April 2020, the pandemic emergency longer-term refinancing operations (PELTROs) were introduced to stabilize liquidity conditions in the euro area and support money market dynamics at the onset of the COVID-19 crisis (cf. ECB, 2024). Alongside PELTROs, the ECB launched the PEPP as a response to the pan demic. Furthermore, net purchases under the APP, which had been in place since 2014, were discontinued in July 2022 (cf. ECB, 2024). Given these developments, this thesis examines the impact of the ECB’s mon etary policy from 2020 to 2023 on household consumption. The analysis fo cuses on four key transmission channels: the real interest rate channel, the wealth channel, the household liquidity channel, and the credit channel. Un derstanding how these channels influenced consumer behavior provides 7 valuable insights into the effectiveness of monetary policy in times of economic uncertainty.


Figure 1: Monthly change of the ECBs OMOs 01.04.2015 – 01.11.2024. Source: ECB2, 2024
Notes: The APP started 2014 but the first purchases were in March 2015, the chat presents the change of monthly net purchases of Euro-system holdings under the APP of the ECB

2 Literature review

The monetary policies of the ECB are directly interrelated with price changes. In the case of the ECB, the mandate is price stability, and central banks such as the Federal Reserve (FED), the Reserve Bank of India (RBI) and the Peo ple’s Bank of China (PBC) also have price stability as one of their main ob jectives (cf. FED, 2020; PBOC, 2018, RBI, 2021).
The Phillips curve was used by Alban William Housego Phillips in 1958 to describe the negative non-linear relationship between the unemployment rate and monetary wage increases. The modified Phillips according to Samelosn and Solow was used to describe the relationship between the inflation rate and the unemployment rate. (cf. Wohltmann, 2024) In recent decades, the Philips curve has been further developed, including with the Neo-Keynesian approach, where the model is extended to include information asymmetries and labor market dynamics. Another extension is the agent-based model (AB model), which assumes additional budget differences among households. 8 Based on the AB model, Lilian Rolim, Laura Carvalho and Dany Lang show in the paper “Monetary policy rules and the inequality-augmented Phillips curve” (2024) that the flattening of the Phillips curve could be related to the flattening of purchasing power and the increase in income inequality. On the other hand, they show that monetray policy that prioritizes lower inflation rates leads to increased unemployment and income inequality. (Rolim et.al., 2024) Accordingly, income inequality is an important indicator of the impact of monetary fluctuations on the economy.
The AS-AD model is an important link in deriving the interaction between the economy and the monetary policy of the central banks. With this model, which also implies the IS-LM model, it is possible to theoretically derive the effects of expansionary and restrictive monetary policy. However, the ECB’s monetary policy does not have a effect on the economy, only through certain transmission channels. An example is the direct influence on the expectations of households or household consumption. Bernd Hayo describes this in the study “Does the ECB’s monetary policy affect personal finances and eco nomic inequality? A household perspective from Germany” (2023) using a data set from 2018 and comes to the conclusion that the perception of the ECB’s monetary policy has no direct significant influence on household in come or household consumption. It is established to distinguish between dif ferent monetary policy transmission channels. In “Monetary Development and Transmission in the Eurosystem“ Anton (2015) differences between 16 transmission channels of the ECB’s monetary policies. Anton divides the MTCs (monetary transmission channels) into different ‘views’, the asset view, traditional view, prospect view and the credit view. Mishkin (2019) divides the MP transmission into eight MTCs. 9

Figure 2: Monetary policy transmission channels according to Mishkin (2019). Source: Mishkin, 2019, p.681.
For this study the MTCs real interest rate channel, financial wealth channel, the household liquidity channel and the traditional credit channel are used. This MTCs are considered by Mishkin (2019) and Anton (2015) as stand alone transmission channel. Mishkin (2019) refers to the traditional credit channel of Anton (2015) as the bank lending channel. Mishkin (1996) refers to real interest rate channel as the MTC widely used in the traditional Keynesian literature. The IS-LM model includes the mechanics of this transmission channel as a reaction chain to expansive MP (monetary policy). This monetary transmission channel is described by Mishkin (1996) as follows:
M ➔ ir ➔ I ➔ Y .1
In this channel of the real interest rate, Mishkin (1996) mentions, among other things, sticky prices as a causal factor, as well as consumption expenditure 1M : expansionary MP, ir : decrease in real interest rates, I : increase in investment spending, Y : increase in aggregate demand and output. 10 and investment. However, consumption expenditure is only added to the real interest rate channel by Anton (2015). Anton (2015) rates this channel as one of the most important MTCs in the long term and also points out that the pass through rate is important for the efficiency of this channel. Gomes and Seoane (2024) come to a similar conclusion in their study “Made in Europe: Mone tary-Fiscal policy mix with financial frictions” on the differences and their effects of monetary policy during the euro crisis. However, the transmission channel is also questioned, as Rubert and Sustel (2019) have presented the MTC observationally, but not structurally, in the paper “On the mechanics of New-Keynesian models”, since the real interest rate represents the feasibility to keep consumption smooth and therefore contractionary monetary policy is only consistent with real interest rate changes, but is not causal. They argue that, according to their model, the expectation of monetary policy shocks is more relevant for the impact of MP on household consumption, referring to the Lucas Critique. In contrast, Kawamato et al. (2023) were able to show in their paper “Estimating the macroeconomic effects of Japan’s expansionary monetary policy under Quantitative and Qualitative Monetary Easing during 2013-2020” using a counterfactual analysis that the real interest rate channel was significant for the change in real GDP during the transfer of open market operations of the Bank of Japan. The financial wealth channel describes that an expansionary monetary policy can lead to an increase in the stock prices, this can lead to an increase in con sumption and this to an increase in the GDP. Anton (2015) differs consump tion in the consumption of durable goods and residential investments. This monetary transmission channel was strongly influenced by Modiglianis life cycle model as Mishkin (1996) describes. Albacete and Lindner (2017) were able to find a limited long-term correlation between for the wealth channel in Austria for the period 2010 to 2014. They also conclude that the effect of the wealth channel is heterogeneous among households. The marginal propensity to consume from wealth is responsible for the limited significance of the wealth channel due to the fact that the consumption function is concave, and wealthier households have a lower propensity to consume in the context of unequal wealth distribution. In the study “Monetary policy, asset prices and 11 consumption in China” (2012) by Koivu, the reaction of household consump tion to monetary policy was examined for the years 1998 to 2008 in China. Koivu (2012) concludes that the influence of the wealth channel on consump tion is relatively small here, as the changes in wealth from the household per spective are relatively small. Overall, the wealth channel appears to be limited here and there are indications that it could have a weak impact on residential prices in China in the long term. The heterogeneity of the households is also seen as a relevant factor for monetary policy by other studies. For example, in the study “Does wealth inequality affect the transmission of monetary pol icy?” (2023) showed that in the US and UK in the time period from 1969 to 2007 and in the euro area from 1999 to 2020 the effectiveness of monetary policy on real variables such as GDP or unemployment increased with rising income and wealth inequality. In their study “The impact of monetary policy shocks on net worth and consumption across races in the United States” from 2024, Albert and Gómez-Fernández also found a different effect of expan sionary monetary policy and income groups for the years 1990 to 2020. In the case of an expansionary monetary policy, the volatility of household con sumption increases with household wealth. Furthermore, Alp and Seven (2019) were also able to prove the significance of the wealth channel for Tur key from 1998Q1 to 2016Q2. The interest rate driven shocks are particularly significant for the wealth channel. In addition, also relevant to the liquidity channel, asset prices are influenced by an interest rate shock. The liquidity channel, or more precisely according to Anton (2015) the house hold liquidity channel, works via household assets, which then have a nega tive impact on the financial distress of households, leading to a better expec tation of a more consumer-friendly propensity to consume. This leads to an increase in household consumption. In their paper “Quantitative easing with heterogeneous agents”, Cui and Sterk (2021) analyzed the US economy from 2008 to 2016. They found that during the recession period, quantitative eas ing (QE) MPs had an impact on household consumption through the liquidity channel. Herrenbrueck (2019) also associates the liquidity channel with cen tral bank open-market operations (OMOs). From his model with heterogene ous households, he concludes that OMOs can indirectly cause crowding-out 12 effects in more liquid assets. Furthermore, if there is a strong incentive to buy assets, money rotation can be reduced, which can lead to disinflation. The traditional credit channel contains a positive relation between expansion ary monetary policy and the volume of loans, due to an increase in the bank’s reserves and banks deposits. This leads to an increase in investments and in consumption. Sapriza and Temesvary (2024) analyzed the influence of the credit channel for the US economy from 1986 to 2019. they found an in creased significance of the credit channel for the transmission of monetary policy during periods of lower growth. Berqiraj et al. (2025) come to a similar conclusion for the US economy from 1979 to 2015. According to them, the credit channel is particularly powerful contractionary MP shocks. Evgenidis and Salachas (2019) come to a similar conclusion for the euro area for the time period 2003 to 2017. During periods of financial stress the demand for loans increases and, together with expansionary unconventional MPs the credit channel becomes more effective.
The following MTCs are assumed, as per Anton (2015), and are to be used for further analysis:
Real interest rate channel:

M → r → [I + C durable, housing ] → Y ,
Financial wealth channel:
M → Pstock, Houses, Land → wealth → ( Cdurable goods + Iresidential ) → Y ,
Household liquidity channel:
M → household’s financial assets → financial distress → C → Y ,
Credit channel:
M → reserves → bank deposits → volume of bank loans → I → C → Y .2 2
An increase in M describes expansionary monetary policy. C describes the consumption, I investments, P the prices and Y the GDP. 13 In the past, other channels have also been examined specifically for their ef fect on household consumption, such as the cash flow channel by Hughson et al. (2016). However, the four mentioned so far appear to be the most im portant. In addition to the extant literature on the corresponding transmission chan nels, which mostly relates to the period up to 2020, there are also some stud ies, albeit fewer, on the period up to 2023. These latter studies address the more recent developments accordingly. In „Who bears the costs of inflation? Euro area households and the 2021–2023 shock” (2024) Pallotti et al. uncov ered sizable average losses and a significant level of heterogeneity across countries and, within countries, across age groups, but not across income groups. These were the effects in Germany, France and Italy, only in Spain there is a heterogeneity across income groups. The highest welfare loss were in Germany and Italy, France and Spain had a welfare loss of around 3%. Speaking of Spain Uxó et al. (2024) analyzed in “Prices, markups and wages: inflation and its distributive consequences in Spain, 2021-2023” the impact of recent inflation on the real wages and the income distribution recent infla tion. They also analyzed the influence of anti-inflationary economic policys, considering fiscal policy of the Spanish government and monetary policy of ECB. Uxó, Febrero and Álvarez considered the increasing of the interest rates as an inappropriate policy, the argue that the Spanish inflation was not caused by excess demand. They analyzed the effects of the fiscal policies and the monetary policies had an opposite growth stimulus. Glocker and Wegmüller share Uxó et al.’s criticism of the ECB’s monetary policy for 2021 and 2022 with their findings from the study. „Energy price surges and inflation: Fiscal policy to the rescue?” of the november 2024. They conclude that a taylored fiscal policy is superior to a demand-side policy that faces a supply-side shock. With the aim of price stability, they see fiscal policy measures as more efficient than MPs. The following research question arises from the literature and developments in recent years: 14 What was the influence of the ECB’s monetary policy on household con sumption in the Eurozone in the years 2020–2023? This research question is formulated more generally; there are several sub questions in this research question. The first question is how relevant the real interest rate channel is. It can be assumed that it is relevant overall, as real interest rates are relatively oriented towards the MRO. However, this interest rate channel has usually been the most significant in the long-run. Further more, the question arises as to how relevant the wealth channel is, as this is very closely linked to the wealth distribution of households. With the liquidity channel, the question arises as to how relevant this is, as it has less evidence in comparison. If the Lucas Critique implication of Rubert and Sustel (2019) is taken into account, according to which the expectation of an MP shock is relevant for MP transmission, this transmission channel household financial distress can be significant. It is also interesting to see how credit channel in teracts, as the literature of the last 10 years suggests that it is particularly sig nificant for monetary tightening and financial stress. Furthermore, it is ques tionable whether transmission channels have worked in the same way in every EU country, as each EU country can pursue its own fiscal policy. If we add to this the results of Uxó et al. (2024) and the results of Duarte and Pereira (2022). In their paper “The effect of monetary policy on household consump tion expenditures in Portugal: A decomposition of the transmission channel”, Duarte and Pereira (2022) were able to show that the Portuguese economy, like the Spanish economy, reacts more strongly to monetary shocks than France or Germany due to a differentiated household consumption structure.

3 Methology and data

The data used in this study is sourced from Eurostat and the ECB database for the period from 01.01.2020 to 31.12.2024. The primary focus is on changes in the ECB’s monetary policies. An overview of all variables, includ ing their sources and frequencies, is provided in the appendix A.1: along with a detailed description of some variables, under appendix A.2. 15 For the following methods, I utilize data from the ECB, Eurostat, and the IMF database. The period under examination extends from the beginning of 2020 to the end of 2024, with most data sampled in monthly intervals. The analysis focuses on the euro area, as the ECB’s monetary policies are designed for the entire region, making it the relevant reference framework. However, the com position of the eurozone changes during this period, as Croatia became a member of the eurozone and the Schengen area in January 2023. Most of the used data is monthly, but also some data time lines are only available in the quarterly data, like the Gini or the equity data. Because the transmission chan nels I analyze here are based on linear connections, it is still possible to extract a positive or a negative relationship. But the time dependent analysis is there fore to some degree biased. The data for countries Germany, Spain and France is based on the same data sources as the aggregated euro area data. This is necessary to create comparability between the different results.
The methodological approach is structured as follows. First, I analyze the im pact of monetary policy on household consumption through the MRO and OMO channels. Subsequently, household consumption is disaggregated to ex amine distributional effects and consumer goods elasticities. I then investi gated country-level effects to determine whether the results vary across indi vidual eurozone nations. Additionally, fiscal policies of member states are considered to validate the findings of Uxo et al. (2024) and Pallotti et al.  (2024) regarding the fiscal policy effects in 2021 and 2022. I differ into four different types of monetary policy transmission to household consumption. First, I use OLS regressions to track the transmission channels and to track the entire transmission channel via interaction terms. My meth odology in case of the OLS regressions is based on the mediation analysis of a study by Du et al. (2025) which they used to analyze the effects of monetary policy on energy consumption. In their study, they used a two-stage approach. First they analyzed the effect of MPs on the MTC - variables and the effect of the MTC-variables on their variable of interest, in their case energy pov erty. A similar methodology was also used by Tang and Yang (2024) to ana lyze the effect of monetary policy uncertainty on financial risk. I also use a two-stage approach for the first two transmission channels. For the liquidity 16 channel and the credit channel, I use a three-stage approach to take into ac count the theoretical representation of the transmission channels. Second, I use vector autoregressive (VAR) models to analyze the transmission channels. These are often used in different variations in papers to analyze monetary transmission channels. This is due to the simple implementation of lags, the implementation of reciprocity of variables, as all variables are con sidered endogenous, and the possibility to analyze shocks using impulse re sponse functions (IRFs). I used the recently published papers by Vale (2024), De Simone (2024) and Mundra and Bicchal (2023) as a reference. The regres sion equation for the VAR model is as follows: Xt = A (L) Xt + ɛt. (1)
X represents the endogenous variables. An important prerequisite for a VAR model is stationarity. I check this stationarity using the augmented dickey fuller (ADF) test. If the time series of the data frame are not stationary, I tests whether they can differentiate them to establish stationarity, or whether they are also cointegrated. This test is performed using the Johansen test. If the time series are cointegrated, then a VECM model is used. This is similar to the approach of Sun et al. (2010), who analyzed the credit, interest rate and asset price channels for China from 1996 to 2006.
The VECM model can be described as follows: ∆𝑥𝑡 = П𝑥𝑡−1 +∑ Г𝑙 𝑝−1 𝑙=1 𝛥𝑥𝑡−𝑙 + 𝐶𝑑𝑡 + ɛ𝑡. (2) Δx describes the difference variables and Г describes the coefficient matrix. The rank of П describes r, so the number of cointegration relationships of variables. The VECM can now be estimated. The short-term and long-term dynamics of the variables can be determined. For further analysis, I created IRFs for the relevant interactions of the MTCs. To better compare the results of the four MTCs, I use the Granger test.
17

4 Monetary Transmission channels

In order to examine the effects of monetary policy in more detail, I will now focus on the transmission channel of monetary policy, which is subdivided by Anton (2015), using the real interest rate, financial wealth, the household liquidity and the credit channel.

4.1 Real interest rate channel

Before we start with the implementation of further different channels we an alyse the direct effects of the ECB monetary policy on Household consump tion. The connection between monetary policy and consumption I am looking at, is the real interest rate channel which is based on the mechanics of the IS LM-model and AS-AD-model. Also, Anton (2015) refers to this channel as his first transmission channel. Anton (2015) considers this transmission chan nel as one of the strongest transmission channels, because of the long run impact on the real GDP. Therefore, the basic assumption of the relation is that expansive monetary policy has a negative influence on the real interest rates, the real interest rates have a positive impact on investments and consumption of durable goods.
Therefore, I analyze first the direct effect of the main refinancing operation (MRO) policy and the regular and non-regular open market operations (OMO)3 on the real interest rates. The real interest rates can be measured by the nominal interest rates and the inflation: Real interest rate = nominal interest rate – rate of inflation. For the calculation of the real interest rates (r), I use the interest rate for house holds for borrowing money for a house purchase and the interest rate for the interest rate for loans with agreed maturities for households. I am not taking the ECB data for the interest rates for consumption into account because this includes also interest rates for loans for the consumption of non-durable goods. I am also not taking interest rates for cooperations into account 3In the period from 2020 to 2023 non-regular open market operations, APP, PELTROs and PEPP had high volumes, see Figure 1: Monthly change of the ECBs OMOs 01.04.2015 – 01.11.2024. 18 because here is the focus on the households. To determine the inflation, I use the harmonized index of consumer prices (HICP) as an indicator. Also, be cause it is close to the actual price dynamics of the households and other stud ies, like Pallotti et al (2024), who estimate also the price changes in euro area with the HICP. Pallotti et al (2024) use for their estimation of household con sumption the data of the household budget survey (HBS). Unfortunately, I cannot use this data, because the dataset has a five-year frequency (cf. Euro stat, 2025), but here it is the monthly frequency we need. The data I use is quarterly data on the aggregate of final consumption from Eurostat. Here I estimate the monthly consumption via the quarter-to-quarter trend. I also dif ferentiate between final consumption of all goods and final consumption of durable goods from 2022 Q1 to 2024Q3. For the entire time period, I differ entiate between aggregated consumption and the consumption of gas and electricity.

In Figure 3 and Figure 4 the red graph describes the real interest rate for the households for loans for buying houses and the orange graph describes the real interest rate for loans with fixed maturities. The orange and red graph describe the real interest rate transmission channel and are therefore visual ized in both figures. On the left, next monetary policies during the period of 2020 to 2024 and on the right next to different consumption quantities. Inter actions can be guessed at in the two figures, for example that in Figure 3 the real interest rates at the end of 2022 react positively to the increase in the MRO. However, interpretations from the visualizations remain only approxi mations, especially not visible, for example aggregate consumption, it is in 19 the nature of things that this is not as volatile as the other consumption sub categories and since in Figure 4 only shows marginal consumption data, it is difficult to gain meaningful insights here. The data visualized in Figure 3 can be described by the following regression equation: rt = α + β1 × MROt + β2 × OMOt + ɛt. (3) I estimate the regression two times, to consider the two different variables for the real interest rate. Once for the real interest rate for house loans for house holds and once for the real interest rate.
The second step is to examine the effects of changes in real interest rates on consumption. In the case of the real interest rate, a distinction is again made between the real interest rate for home loans (r14) and the real interest rate for loans with an agreed maturity (r2). The regression looks like this: consumptiont = α + β1 × r1t + β2 × r2t + β3 × (MRO × r1t) + β4 × (MRO × r2t) + β5 × (OMO × r1t) + β6 × (OMO × r2t) + β7 × kt + ɛt. (4) In addition to the influences of r1 and r2 directly, I refer to the basic assump tion of the transmission channel that the MPs become effective through the transmission channels. To include this, I implement interaction terms of r1 and r2 with MRO and OMO in (4). Thus, the influence of r1 and r2 can be captured with changing MPs. The variable consumption is estimated several times, once with the consumption aggregate, the consumption of durable goods and the consumption of gas and electricity respectively. The variable k stands for the control variables, in (4) this is unemployment. The results for the first regression model (3) are that both real interest varia bles are significant to 0.01 level to the MRO-variable and to the 0.05 level significant to the OMO-variable.5 The results for the second regression model (2) differ considering what endogenous consumption variable I used. For 4In the following, the variables are always written in italics, this is relevant when differenti ating between the variables MRO and OMO and simple abbreviations MRO and OMO. 5The complete results of the regressions for (3) can be seen in the appendix under B.1 and B.2. 20 second regression models that follow the structure of (4) for the durable goods consumption the real interest rate with fixed maturities is significant. In terms of regressions with the consumption of electricity and gas the MRO and the interactions terms of the MRO with the real interest rates were significant. The coefficient differences between the real interest rates in both cases. The real interest rate for house loans is in both cases positive, which indicates a positive influence of an increase in the real interest rates of house loans to positive change in terms of the effectiveness of an MRO-change. The real interest rate of the agreed maturity has in both cases a negative coefficient, which means that effectiveness of the MRO decreases with an increase of the real interest rate of the loans for households with agreed maturities. Although these interaction variables are significant in the other two regressions, there is also a difference in the coefficients. The interaction terms with the OMO variable are not significant in any of the regressions; if you look at the coef ficients of these terms, you will notice that the signs of the coefficients are reversed compared to the MRO interaction terms. In the regression with final consumption as the endogenous variable, no variable other than unemploy ment is significant. However, since the MPs do not act directly via transmis sion channels and consumption has a temporal inertia, it makes sense to in clude temporal lags.6 Furthermore, it makes sense to consider other variables and then possible endogeneity problems. I use an autoregressive (AR) model for this purpose. To get more information about the dependencies, trends, number of lags, sea sonality and further indicators for different models I analyze at first the auto correlation functions (ACF). The time series for final consumption and MRO shows a slow decline, which could indicate a trend in the data. It is also obvious that there is seasonality in gas and electricity consumption. This is indicated by the ACF, can be guessed from the graph and would also be consistent in terms of content. Since I plan to use a VAR model similar to Vale (2024), the data must be examined for stationarity. This is particularly important because there is a trend in the final consumption variable and the MRO. I use the augmented dickey fuller test to check the stationarity. The p-values for all relevant variables from the 22 augmented Dickey-Fuller test are shown below. If the p-value p < 0.05, the process is stationary; if the p-value p ≥ 0.05, the time series is non-stationary.

The time series of the variables MRO, OMO, r1, r2, final consumption and durable goods are stationary. There are some options to estimate an auto regressive model for a non-stationary time series.7 It is possible to differenti ate the time series or to estimate another model like a vector error corrected model (VECM). To find out whether it is sufficient to differentiate the time series, a cointegration test must be carried out, for this I use the Johansen test. Since there is more than one cointegration relationship at a critical value of 0.01, 0.05 and 0.1, a VECM model is used instead of differentiation.8
I estimate the VECM with two control variables, in addition to unemployment I also imply the Gini coefficient. I imply the Gini coefficients, since according to Matusche and Wacks (2023) the degree of income inequality has an impact on the effectiveness of monetary policy transmission. The VECM model can be used to approximate the short-term and long-term dynamics of the time series. For long-term dynamics I evaluate the beta statistics of the VECM model.9 Thus, the variable final consumption has a long-term positive effect on unemployment and the consumption of electricity and a long-term nega tive effect on Gini, on r2, on MRO and on the consumption of gas. If we now filter the long-term dynamics of the variables that are relevant for the real interest channel, interesting correlations emerge. If the MRO changes by one unit c.b., then OMO, r1 and r2 behave exogenously in the long run with re spect to a cointegration relationship. The r2 reacts negatively to OMO in the 7The detailed results of the ADF tests can be found in the appendix under B.8. 8Further results of the Johanson tests can be found in the appendix under B.9. The Johanson test indicates a VECM model with r = 7. 9The beta statistic describes how the variables are related to each other in the long term, the complete matrix of VECM model beta statistics is available under appendix B.10. 23 long term. Final consumption and electricity consumption react positively to r1 and r2 in the long term, while gas consumption reacts negatively. Short term dynamics can be analyzed in a similar way. The MRO has a short-term negative impact on all variables, the negative impact on real interest rates is relatively similar. The OMO also has a negative influence on real interest rates in the short term, albeit a minor one. The real interest rates have a different influence on final consumption. The influence of r1 is positive and of r2 neg ative. Both variables have a negative influence on the consumption of elec tricity and only r2 on the consumption of gas. So far I have not gone into the variable durable goods any further, as this would have halved the total period of the analysis. Now add this variable and check what interactions the variable durable goods has with the other variables. Similar to final consumption, du rable goods react positively to r1 and negatively to r2.
To further analyze the dependencies of the variables, I look at the impulse response functions. The first step is to check the transfer from MPs to the real interest rate. Here, r1 and r2 should only differ marginally, as these variables are intended to capture comparable dynamics in this context. The figures 7 and 8 clearly show that the real interest rate reacts positively to a shock in the MRO with an interval of three periods, i.e. three months. In the event of a shock in the OMO, a negative reaction in the real interest rate can initially be seen, but this becomes less pronounced and after 4 months this reaction in the real interest rate is positive in each case. Now I analyze the second part of the transmission channel for shock re sponses using impulse response functions. For this part, the same data sample is used again, except for the variable durable goods, as this covers the shorter time span from 2022 to 2024.10

Figure 14 illustrates the impulsive response function of MRO to final con sumption. The marginal response of final consumption to a change in MRO is 10 The most changes in the MRO are in the period from 2020 to 2024 at the end of 2022, so the assumption here is that the most relevant information regarding shock dynamics can be obtained from the data from the middle onwards. In addition, this analysis includes durable goods despite the lower availability of data, as Anton (2015) refers to durable goods in the real interest rate channel. 25 clearly visible, with a response most likely to be seen 4 to 6 months after a change in MRO. If we now take the reaction of final consumption to the real interest rate for housing, Figure 11 here we see a strong positive reaction in final consumption two to six months later. In figure 12 shows the negative reaction of final consumption to an increase in the real interest rate for loans with agreed maturity, revealing a certain ambivalence between consumption and interest rates. Different effects could be causal here, the different use of these consumer loans is probably causal. For example, substitution effects are conceivable here, with households consuming instead of saving when real in terest rates for house loans rise and an increase in term loans reduces con sumption, as fewer households are prepared to take out a loan for their con sumption. This substation effect of housing credit consumption and non-hous ing consumption was recently shown by Horioka and Niimi (2020) for the Japanese households for the time period 1970 to 2017. The negative effect of an increase in real interest rates for credits with agreed maturity and house hold consumption refers to budgeting of the households. The IRFs for the consumption of electricity and gas are available under appendix A.3. Finally, as part of the analysis of the real interest rate transmission channels, I perform a breakpoint analysis and on this basis I perform IRFs for the smaller data samples in order to take into account possible differences in the correlations during different time periods. The breakpoint analysis suggests at least one breakpoint for the MRO variable in October 2022. The more breakpoints selected, the more detailed the increase in MRO is tracked. For example, July 2022, the first increase in the MRO, and March 2023, when the MRO increased from 3% to 3.5%, are mentioned at two breakpoints. For most of the variables, especially for MRO, OMO, r1 and r2, the Residual Sum of Squares (RRS) and Bayesian Information Criterion (BIC) show the best model with two breakpoints, so I will use the two breakpoints for the estima tion of IRFs. The breakpoints of the impulse variable are taken as the starting point for the IRFs.
26

I have tried to illustrate the second part of the transmission channel with du rable goods and final consumption. Overall, it is noticeable that most of the breakpoints of the transmission channel are around the MRO increase. The transmission channel is also easily recognizable because you can see periodic time differences between the effects of the MPs and r1 and r2 and the effect of r1 and r2 on consumption. It can be observed that r1 and r2 react in a manner consistent with the responses exhibited by MRO and OMO shocks. Furthermore, an analysis of the data indicates that the response of durable goods consumption to a shock in r1 or r2 appears to exceed the response of final consumption. This observation is consistent with the assumed channel connection and the hypothesis of the substitution effect.

4.2 Financial wealth channel

The second transmission channel I analyze after the real interest rate channel is the financial wealth channel. The wealth channel, as described by Mishkin (2022), or financial wealth channel, as described by Anton (2015), refers to the increase in the prices of stocks and equity that can then lead to an increase in wealth and then may this lead to an increase in consumption of durable goods and residential investments. Accordingly, it is important for this trans mission channel to changes in stocks and equity and the only of the here an alyzed transmission channels how accounts in the transmission of the MPs to the household’s wealth. Vale (2024) used to capture the dynamics in 27 household wealth the nominal housing prices. Therefore, it is important the changes households equity into account so it is possible to account for the transmission channels functionality via the households wealth.
First, we start with the OLS regressions. I analyze the transmission channel with the help of the portfolio changes of households and the equity and in vestment fund investments of households. The focus is here on equity and investment variable and the portfolio variable can be seen as an indicator for the household’s wealth. The portfolio variable is in the balance sheet channel in the focus, but the balance sheet channel is here not analyzed the focus of balance sheet channel on companies. I use real GDP as a control variable to account for changes due to cyclical changes. The regression equations are as follows: portfoliot = α + β1 × MROt + β2 × OMOt + β3 × realGDPt + ɛt, (5) Equityt = α + β1 × MROt + β2 × OMOt + β3 × realGDPt + ɛt. (6) Consumptiont = α + β1 × portfoliot + β2 × Equityt + β3 × (Equityt × MROt) + β4 × (Equityt × OMOt) + β5 × (portfoliot × MROt) + β6 × (portfoliot × OMOt) β3 × kt + ɛt. (7) The monetary policy, MRO and OMO, are significant to the 0.01 significance level in the relation to the Equity and investment fund changes of the private households, as well as the portfolio (assets/liabilities) changes of the private households. To measure consumption, I primarily use final consumption and the consumption of durable goods in order to be able to better compare the transmission channels later on and to be able to measure the effect on house holds well through the quantity of consumption and this transmission channel, similar to the real interest rate channel, specifically affects the consumption of durable goods. If the endogenous variable of the regression equation (7) is the aggregated final consumption or the consumption of durable goods, the interaction term of the portfolio variable and the equity variable with the MRO is significant at the 0.05 precent significance level in both cases. This indicates that the transmission channel for the period under review primarily worked via the change in MRO and not directly via OMOs. However, the two 28 endogenous variables differ in terms of the coefficients of the interaction terms. Thus, the effect of the variable MRO on the variable final consumption becomes weaker when the variable equityandinvestment increases and stronger when the variable portfolio increases. The variable durablegoods is more strongly influenced by a positive change in the MRO of the equityandin vestment variable. The effect of the portfolio variable decreases when the MRO variable increases.11 These interaction effects can be seen in red in the following figure 16.

Only the MRO interaction effects are shown here, as only these were signifi cant for the endogenous variables. First of all, it is clear that the transmission channel was probably less active via MRO changes before the interest rate hike in mid-2022. Furthermore, a temporal difference between the change in the MPs and the dynamics of the transmission channel can be inferred. This difference indicates a time delay within the transmission channel. I am now checking this with a VAR model. First I determine the optimum number of lags. According to the Schwarz criterion, two lags must be selected accord ingly. The Akaike Criterion and the Hannan-Quinn Criterion recommend more lags, but I try to avoid overfitting.12 I also look at the autocorrelation 11 The exact results of the regressions can be found in the appendix B.11 to B.14 can be found. 12 Over-adjustment is particularly problematic here, as the equity and portfolio data are only approximated to monthly data using quarterly data. In addition, this data only approximates 29 functions (ACF) and the partial autocorrelation functions (PACF) to see how the lags of the time series behave. Furthermore, statements can be made about the stationarity of the data. Stationarity is also checked using the augmented Dicky-Fuller test, as this is an important prerequisite for the application of a VAR model. In the following ACF plots we can see the autocorrelation of the different variables.

Figure 17: ACFs of wealth channel. The slowly decreasing values indicate stationarity, this indicates that this time series can be well described by an AR process. When checking the time series of the variables for stationarity using the Dickey-Fuller test, all variables with the corresponding p-value are > 0.05 and therefore the assumption of station arity can be rejected. Since we assume non-stationarity but want to estimate the VAR model, I now test for cointegration to obtain a vector error corrected model (VECM), which is applicable to non-stationary time series but requires cointegration. I also use the Johansen test to check cointegration relationships. There are at least two cointegration relationships at a critical value of 5%. A VECM model is therefore used, since r > 0, namely r = 2.13 The VECM can now be estimated. The short-term and long-term dynamics of the variables the transmission channel, as according to Anton (2015) this channel functions via the price of stocks and housing. 13 The results of the Johansen test can be found in the appendix at B.15. 30 can be determined. When analyzing the error correction terms, it is noticeable that MRO and OMO do not have strong reactions and that consumption, in this case final household consumption, corrects by 35% per period. When an alyzing the short-term dynamics, the strong positive influence of OMO and MRO on household equity and investment is striking. The influence of equity and investments on the consumption quantities of households is compara tively moderate.
In order to examine the shock, or the change in MPs at the end of 2022, in more detail, I am now carrying out impulsive-response-functions based on the VECM. The four graphs show the impulse response functions of the wealth transmission channels. The selected time horizon is 12 periods, i.e.  one year. It is interesting to note that in the short term, the final consumption quantity reacts negatively to an equity and investment shock. Although this negative shock normalizes relatively quickly after periods eight to 10, this result does not correspond to the assumed positive correlation. The other three reaction functions correspond to the assumed positive correlations.
31 With the VECM I was able to determine that there is a shock, but I could not determine the structure of the shock more precisely, so I use a structural au toregressive model (SVAR) for this. To better analyze the shock, I use the impulsive response function of the SVAR model. However, since no SVAR model can be estimated on the basis of a VECM model, I estimate an SVECM model instead. The long-term effects of the variables on each other can be seen below.14 Consumption Consumption Equity OMO MRO 24.39 21.28 25.76 Equity 45,303.19 91.97 232.1 755.2 OMO -0.2251 -0.0093 0.0162 400,048.05 MRO -678.97 0.00028 -0.00008 0.0011 Table 2: Coefficients of a SVECM model. 2.254 The matrix shows that a shock in the MRO has a strong impact on consump tion and the wealth and investment of private households. Consumption is positive in the long term due to all variables, especially MRO. This does not speak to the functionality of MP; the same applies to the positive influence of MSP on the equity and investment of private households. The fact that OMO is negatively influenced by MRO in the long term, on the other hand, is in line with the expectations of monetary policy. The analysis using the SVECM and the IRFs therefore relates to the entire period. If we refer back to the figure … we can assume a difference in the effectiveness of the transmission channel at different points in time. The fig ure … only refers to the effects of an MRO change. I therefore assume differ ent MP effects at different points in the time period. I proceed in a similar way to the last transmission channel. First of all, I’m going to identify the break points and then I’m going to identify the IRFs. This is done in two steps, first the IRFs from equityandinvestment and portfolio to OMO and MRO and then the response of the consumption variables to equityandinvestment and port folio. 14 In addition to the estimated long-term matrix, the estimated short-term matrix and the co variance matrix of the residuals in reduced form, the other results of the SVECM model can be found in the appendix at B.16. 32

As already assumed from the previous analysis, the influence of the variable MRO is temporally in the second half of the data set. It appears that the impact of MRO on portfolio is slightly stronger than for equityandinvestment, but relatively similar in structure. The effect of OMO is positive during the first half of the time period and negative thereafter. Of the two figures … and … Figure …. is particularly relevant here due to the higher explanatory value of equityandinvestment for the consumption variables. A shock from eq uityandinvestment has a negative impact on durable goods. The impact on final consumption reverses after half of the time period, similar to the impact of OMO on the transition variables.

4.3 Liquidity channel

For the liquidity channel that is efficient via the financial assets of the house holds are also other channels like the signaling channel or the unanticipated price level channel also function via an asset price – monetary policy dy namic. The signaling channel suggested by Eggerson and Woodford (2003) functions via the investors expectation reactions on a monetary policy dy namic and the unanticipated price level channel is also mentioned by Anton 33 (2015) leading via unanticipated price level to adverse selection leading to asset price dynamics (cf. Mishkin, 2019, p.668). In their study, Albert and Gómez-Fernández (2024) analyzed the effects of the Fed’s monetary policy considering the assets of households via the net worth of private American households. However, net worth as a variable is not listed as a monthly variable for the eurozone by either the ECB or Euro stat. Similarly, not all eurozone countries collect data on private household net worth, so it is also not possible to compile a data set in this way. I therefore approximate the asset changes of households using the ECB’s monthly data on real estate funds combined with the household net saving rate data from Eurostat. Another possibility for measuring the monetary policies impact on the household’s consumption is with the measurement of financial distress. It is important to separate the effect of financial assets on financial distress from other effects on financial distress. Other factors for financial distress accord ing to Coughlin et al. (2021) are unemployment and the number of hours worked. Anton (2015) measured efficiency of the household’s liquidity chan nel with the indebtedness of the households and the risk premium of lending for households. This results in two regression equations for the direct channel relationship, as financial distress cannot be measured directly via a variable. To measure financial distress I use the consumer confidence index (CCI). The CCI measures how households feel, optimistic or pessimistic, about their fi nancial situation. Furthermore, there is a third regression equation to test the efficiency of the channel based on Anton (2015): ASSETSt = α + β1 × MROt + β2 × OMOt + β3 × realGDPt + ɛt, (8) CCIt = α + β1 × ASSETSt + β2 × UNEMPLOYt + β3 × GINIt + β4 × (ASSETSt × OMOt) + β5 × (ASSETSt × MROt) + βt × realGDPt + ɛt. (9) Consumptiont = α + β1 × CCIt + β2 × ASSETSt + β3 × GINIt + β4 × UNEM PLOYt + β5 × (CCIt × ASSETSt) + ɛt. (10) The first regression shows the relationship between monetary policy instru ments and financial assets. Due to the asset price channel, I assume a negative correlation between MRO and financial assets and a positive correlation 34 between OMO and financial assets. Since the data15 on the financial assets of households are not directly available monthly, I use the quarterly dataset and estimate the monthly data on that basis. The total assets of the private sector and real estate data are available monthly but are even more unprecise, be cause of the inclusion of other actors of the economy. As companies and in stitutional investors are also invested in real estate funds alongside house holds, the financial assets of households are at best estimated from quarterly data, even though of the increase in data inertia and the reduced adaptability of the data. As a kind of control mechanism, I nevertheless try to examine monthly data using the annual loan change of euro area households. The as sumption here is that a household has a certain budget, if the liquidity de creases, then the household will sell assets and take out a loan. This would also have a negative impact on financial distress, CCI. The consumption var iable in regression (10) is again divided into final consumption and durable consumption of the household. The focus is here on the final consumption of households because of the household’s liquidity transmission channel influ ences according to Anton (2015) the consumption of households overall.
In the following he results for the regression (8). The regression model is ra ther simple, therefore the results are as expected. Intercept MRO 9.605e+05 Intercept OMO 2.289e+03 Sig. level MRO 0.001 Sig. level OMO 0.001 R2 0.6611 Table 3: Results of the OLS-regression of the MP-reaction of the liquidity channel. The following table shows the results for regression (9), where CCI is an en dogenous variable. The R2 of regression model with all control variables is 0.78 and the intercept and significance of the variables of interest is presented in the following table. 15 The data describe the total assets of real estate funds in the eurozone, the marginal changes are from year to year, the data are available in the ECB database 35 assets Intercept p-value -3.123e-06 0.31337
Assets × MRO 3.171e-07 0.72622
Assets × OMO 2.655e-0 0.12053 Table 4: Results of the OLS-regression of the asset-reaction of the liquidity channel. The assets do not have a significant effect on the CCI directly, at most in combination with the MRO. This makes sense as the CCI is relatively indi rectly affected by asset changes and unemployment has a more direct impact on financial distress. For the sake of completeness, I summarize below the results for the same regressions but performed with the annual change in household loans.
MRO OMO hsloans hsloans × MRO hsloans × OMO Intercept -3.917e 01 -4.435e 04 -2.607e+03 -1.962e+00 -3.860e-03 p-value 4.35e-09 0.114 1.54e-11 0.01180 0.03305 Table 5: Results of the OLS-regression with interaction-terms of the 1st part of the liquidity channel. The R2 for the first regression OMO and MRO is 0.9 and for the second re gression with the interaction terms and the effect on CCI is 0.8. The coeffi cients for the respective first regressions relating to the effects of MRO on assets and hsloans are not as expected. The assets coefficients of the MRO is positive, but expected transmission correlation is expected negative. The OMO coefficient is as expected. Regarding the variable hsloans the coeffi cient of the MRO variable is negative this could be due to an increase in the interest rates for household loans, I could already show this connection in the real interest rate channel. The real interest rates for the household loans are rather similar to the MRO-rates. The coefficient of the OMO variable is as expected. The interaction terms of hsloans are all significant to the 0.01 level. The coefficient of this interaction terms is negative, which describes a nega tive effect in terms of the effectiveness of the MP if the loans of the house holds increase. The interaction-terms were all positive, the most significant is the OMO interaction term.
36 The results of the regression model (10) indicate that the interaction between CCI and assets households is significant for both endogenous consumption variables. Thus, the effect c.b. of CCI on consumption increases when house hold assets increase and when households are more pessimistic than c.b. ef fect of household assets on consumption increases. In the following table the results of the regression model (10) with final consumption as the endogenous variable. The regression model has a R2 of 0.94 and an adjusted R2 of 0.93. variable coefficient p-value assets -1.461e-02 0.34541 CCI 1.643e+05 Unemployment 1.68e-06 *** -1.061e+05 GDP 1.95e-08 *** -4.005e+05 0.00291 ** Gini -2.314e+05 0.02627 * Assets × CCI -5.636e-03 1.13e-06 *** Table 6: Results of the OLS-regression with interaction-terms of the 2nd part of the liquidity channel. If this model is estimated without the interaction term, the explanatory power is reduced (R2)16 and the variable becomes highly significant and the variable cci becomes insignificant. Thus, the impact of assets on consumption would be overestimated. This indicates that the variable assets impacts the consump tion through the variable CCI. For durable goods the results are similar, the signs of coefficients are the same.
As with the two previous transmission channels, I now continue the analysis with autoregressive models to account for the temporal lags of the effects. I run the augmented dickey fuller test with the different variants of the trans mission channel, once with final consumption, then once with durable goods as consumption variables and one variant where I replace the variable assets with the variable hsloans. I also include realGDP and unemployment as rele vant control variables. None of the tested variables is stationary in one data set, the p-value > 0.05 and therefore each of the variables in the three data sets must be rejected from the assumption of stationarity.17
16 The R2 for the model without interaction term is 0.9. 17 The detailed results of the augmented dickey fuller tests of the variables can be found in the appendix
37 Now I am testing the variables for cointegration using the Johansen test. There are at least five long-term cointegration relationships between the variables. Therefore, a VECM is estimated first and not a VAR. The VECM model re veals some significant correlations. The assets, which previously had no sig nificant influence on CCI, now had a significant positive influence two lags earlier. Furthermore, the multiple determinants of assets become clear. Not only do past MRO values have a negative and past OMO values a positive significant influence on the assets, but past values of final consumption and CCI also have a significant positive influence. Contrary to the results of the OLS regression (8), the results of the VECM with final consumption as a consumption variable show a negative coefficient for MRO. The coefficient of MRO becomes more negative the further back in time, i.e. the higher the lag, the more negative the coefficient of MRO (up to the fifth lag). In addition to the variable itself in the past, CCI with lag(2) also has a significant positive influence on durable goods. If the variable hsloans is used for the variable assets, the dynamics do not change fundamentally. OMO has no influence on the variable hsloans, but MRO has a significant negative influence at different lags.
Now I analyze the reactions of the variables in more detail and use IRFs for this. The time series of the assets variable has been differentiated beforehand for better presentation in the IRF.

## 
## Call:
## lm(formula = dataeurozone$hsassets ~ dataeurozone$MRO + dataeurozone$OMO + 
##     dataeurozone$GDP, data = dataeurozone)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1505512  -601564   -51995   636986  1553711 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.999e+07  7.494e+06   5.336 2.42e-06 ***
## dataeurozone$MRO  9.605e+05  1.023e+05   9.392 1.55e-12 ***
## dataeurozone$OMO  2.289e+03  5.127e+02   4.466 4.70e-05 ***
## dataeurozone$GDP -1.046e+07  5.795e+06  -1.806   0.0771 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 826300 on 49 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.6611, Adjusted R-squared:  0.6404 
## F-statistic: 31.87 on 3 and 49 DF,  p-value: 1.425e-11
## 
## Call:
## lm(formula = dataeurozone$CCI ~ dataeurozone$hsassets + dataeurozone$unemployment + 
##     dataeurozone$GDP + dataeurozone$Gini + (dataeurozone$hsassets * 
##     dataeurozone$MRO) + (dataeurozone$hsassets * dataeurozone$OMO), 
##     data = dataeurozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8399 -2.3182  0.1287  2.5750  5.8893 
## 
## Coefficients:
##                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)                            -1.993e+03  6.830e+02  -2.917  0.00554
## dataeurozone$hsassets                  -3.123e-06  3.063e-06  -1.020  0.31337
## dataeurozone$unemployment               2.759e-01  1.966e+00   0.140  0.88902
## dataeurozone$GDP                       -8.107e+01  3.103e+01  -2.613  0.01225
## dataeurozone$Gini                       3.011e+01  9.405e+00   3.202  0.00254
## dataeurozone$MRO                       -9.514e+00  2.606e+01  -0.365  0.71685
## dataeurozone$OMO                       -7.412e-02  4.788e-02  -1.548  0.12877
## dataeurozone$hsassets:dataeurozone$MRO  3.171e-07  8.999e-07   0.352  0.72622
## dataeurozone$hsassets:dataeurozone$OMO  2.655e-09  1.677e-09   1.583  0.12053
##                                          
## (Intercept)                            **
## dataeurozone$hsassets                    
## dataeurozone$unemployment                
## dataeurozone$GDP                       * 
## dataeurozone$Gini                      **
## dataeurozone$MRO                         
## dataeurozone$OMO                         
## dataeurozone$hsassets:dataeurozone$MRO   
## dataeurozone$hsassets:dataeurozone$OMO   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.361 on 44 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.7818, Adjusted R-squared:  0.7421 
## F-statistic:  19.7 on 8 and 44 DF,  p-value: 3.262e-12
## 
## Call:
## lm(formula = dataeurozone$finalconsumption ~ dataeurozone$hsassets + 
##     dataeurozone$CCI + dataeurozone$unemployment + dataeurozone$GDP + 
##     dataeurozone$Gini + (dataeurozone$hsassets * dataeurozone$CCI), 
##     data = dataeurozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -173612  -22129   10297   29353   68448 
## 
## Coefficients:
##                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             2.015e+07  7.153e+06   2.817  0.00693
## dataeurozone$hsassets                  -1.461e-02  1.533e-02  -0.953  0.34541
## dataeurozone$CCI                        1.643e+05  3.028e+04   5.426 1.68e-06
## dataeurozone$unemployment              -1.061e+05  1.590e+04  -6.672 1.95e-08
## dataeurozone$GDP                       -4.005e+05  1.279e+05  -3.131  0.00291
## dataeurozone$Gini                      -2.314e+05  1.011e+05  -2.290  0.02627
## dataeurozone$hsassets:dataeurozone$CCI -5.636e-03  1.018e-03  -5.539 1.13e-06
##                                           
## (Intercept)                            ** 
## dataeurozone$hsassets                     
## dataeurozone$CCI                       ***
## dataeurozone$unemployment              ***
## dataeurozone$GDP                       ** 
## dataeurozone$Gini                      *  
## dataeurozone$hsassets:dataeurozone$CCI ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 47320 on 50 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.9437, Adjusted R-squared:  0.9369 
## F-statistic: 139.6 on 6 and 50 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = dataeurozone$durablehs ~ dataeurozone$hsassets + 
##     dataeurozone$CCI + dataeurozone$unemployment + dataeurozone$GDP + 
##     dataeurozone$Gini + (dataeurozone$hsassets * dataeurozone$CCI), 
##     data = dataeurozone)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.80958 -0.64433 -0.06754  0.68149  1.76781 
## 
## Coefficients:
##                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             8.560e+01  2.881e+02   0.297  0.76891
## dataeurozone$hsassets                  -2.239e-06  9.551e-07  -2.345  0.02766
## dataeurozone$CCI                        8.170e+00  2.255e+00   3.623  0.00136
## dataeurozone$unemployment              -1.757e+00  1.307e+00  -1.344  0.19144
## dataeurozone$GDP                        3.625e+00  6.655e+00   0.545  0.59106
## dataeurozone$Gini                      -1.595e-01  3.906e+00  -0.041  0.96777
## dataeurozone$hsassets:dataeurozone$CCI -2.711e-07  7.628e-08  -3.555  0.00161
##                                          
## (Intercept)                              
## dataeurozone$hsassets                  * 
## dataeurozone$CCI                       **
## dataeurozone$unemployment                
## dataeurozone$GDP                         
## dataeurozone$Gini                        
## dataeurozone$hsassets:dataeurozone$CCI **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.039 on 24 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.8878, Adjusted R-squared:  0.8597 
## F-statistic: 31.64 on 6 and 24 DF,  p-value: 2.923e-10
## 
## Call:
## lm(formula = dataeurozone$loanshsannualgrowth ~ dataeurozone$MRO + 
##     dataeurozone$OMO + dataeurozone$GDP, data = dataeurozone)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.72141 -0.22386  0.00052  0.13863  1.29383 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -2.411e+01  4.032e+00  -5.980 2.52e-07 ***
## dataeurozone$MRO -3.917e-01  5.503e-02  -7.118 4.35e-09 ***
## dataeurozone$OMO -4.435e-04  2.758e-04  -1.608    0.114    
## dataeurozone$GDP  2.013e+01  3.118e+00   6.456 4.62e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4446 on 49 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.9077, Adjusted R-squared:  0.902 
## F-statistic: 160.6 on 3 and 49 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = dataeurozone$CCI ~ dataeurozone$loanshsannualgrowth + 
##     dataeurozone$unemployment + dataeurozone$GDP + dataeurozone$Gini + 
##     (dataeurozone$loanshsannualgrowth * dataeurozone$MRO) + (dataeurozone$loanshsannualgrowth * 
##     dataeurozone$OMO), data = dataeurozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4457 -1.9699 -0.3717  2.2380  6.0074 
## 
## Coefficients:
##                                                     Estimate Std. Error t value
## (Intercept)                                       -2.607e+03  2.896e+02  -9.002
## dataeurozone$loanshsannualgrowth                   1.182e+01  3.672e+00   3.217
## dataeurozone$unemployment                          2.898e-01  1.722e+00   0.168
## dataeurozone$GDP                                  -8.368e+01  3.253e+01  -2.572
## dataeurozone$Gini                                  3.687e+01  4.087e+00   9.021
## dataeurozone$MRO                                   6.573e+00  2.521e+00   2.607
## dataeurozone$OMO                                   1.574e-02  6.882e-03   2.287
## dataeurozone$loanshsannualgrowth:dataeurozone$MRO -1.962e+00  7.466e-01  -2.627
## dataeurozone$loanshsannualgrowth:dataeurozone$OMO -3.860e-03  1.754e-03  -2.201
##                                                   Pr(>|t|)    
## (Intercept)                                       1.54e-11 ***
## dataeurozone$loanshsannualgrowth                   0.00243 ** 
## dataeurozone$unemployment                          0.86713    
## dataeurozone$GDP                                   0.01357 *  
## dataeurozone$Gini                                 1.45e-11 ***
## dataeurozone$MRO                                   0.01242 *  
## dataeurozone$OMO                                   0.02709 *  
## dataeurozone$loanshsannualgrowth:dataeurozone$MRO  0.01180 *  
## dataeurozone$loanshsannualgrowth:dataeurozone$OMO  0.03305 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.193 on 44 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.8029, Adjusted R-squared:  0.7671 
## F-statistic: 22.41 on 8 and 44 DF,  p-value: 3.727e-13
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf1$MRO
## Dickey-Fuller = -2.7817, Lag order = 3, p-value = 0.2598
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf1$OMO
## Dickey-Fuller = -2.4946, Lag order = 3, p-value = 0.3754
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf1$hsassets
## Dickey-Fuller = -1.8033, Lag order = 3, p-value = 0.6536
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf1$CCI
## Dickey-Fuller = -2.2069, Lag order = 3, p-value = 0.4912
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf1$finalconsumption
## Dickey-Fuller = -2.8751, Lag order = 3, p-value = 0.2222
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf2$MRO
## Dickey-Fuller = -0.050588, Lag order = 2, p-value = 0.99
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf2$OMO
## Dickey-Fuller = -1.5772, Lag order = 2, p-value = 0.7339
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf2$hsassets
## Dickey-Fuller = -3.3117, Lag order = 2, p-value = 0.08966
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf2$CCI
## Dickey-Fuller = -3.0328, Lag order = 2, p-value = 0.1782
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf2$durablehs
## Dickey-Fuller = -2.7, Lag order = 2, p-value = 0.3052
## alternative hypothesis: stationary

Variable assets react positively to a shock in the MRO as well as the OMO after two to four months. The response to the variable OMO is positive from B.17. 38 period one, while the response of the variable is initially negative in the first period and then positive from the second period onwards. The fact that vari able assets initially reacted negatively to the MRO shock in the first period is consistent with the results of the VECM. In the IRF of the figure we see that the short-term effect of a shock is negative, but there could be long-term ad justment mechanisms via third variables. These adjustment mechanisms then lead to a positive effect. If we look at the long-term beta coefficients of the VECM, the coefficient of MRO and assets is slightly positive. For OMO, on the other hand, it is slightly negative, which is also shown in Figure 27.18
The transmission works here via the assets, which then influence consump tion via the financial distress. I assume a positive correlation between the var iables; this has already been shown in the context of the VECM coefficients. In the figure 28 shows a positive reaction to a shock in the asset variable. The reaction of final consumption to CCI is similar. The effect of a positive shock to the propensity to consume is more short-term than the positive reaction to a shock to household assets.

## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf3$MRO
## Dickey-Fuller = -2.7817, Lag order = 3, p-value = 0.2598
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf3$OMO
## Dickey-Fuller = -2.4946, Lag order = 3, p-value = 0.3754
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf3$loanshsannualgrowth
## Dickey-Fuller = -2.6422, Lag order = 3, p-value = 0.316
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf3$CCI
## Dickey-Fuller = -2.2069, Lag order = 3, p-value = 0.4912
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_subsetadf3$finalconsumption
## Dickey-Fuller = -2.8751, Lag order = 3, p-value = 0.2222
## alternative hypothesis: stationary

The two consumption variables, final consumption and durable goods, differ in their effect on the response to the. Durable goods react more volatile to a shock in CCI as the time period increases. This may indicate different things, from an overreaction of durable goods to CCI or persistence of the shock, but for statistical problem of the time series. In figure 29 also shows the IRF of CCI on the change in household loans. 18 The long-term beta coefficient of MRO on assets is 3.242597e-06 and of OMO on assets 1.283621e-06. 39 Figure 30: IRF of CCI to hsloans. Figure 31: IRF of durable goods con sumption to CCI. The shock reaction of CCI is comparable to that of the assets variable. The IRF of the Figure 30 looks slightly different at first, but hsloan variable annual changes are measured and the assets variable absolute values, if this is taken into account, then the reaction of CCI is relatively similar.
In order to look at the reactions to shocks of the variable within the transmis sion channel as a whole, the breakpoints of the time series are now included, similar to the previous two channels. The MRO and OMO breakpoints are simultaneous to the breakpoints of the MRO and OMO last transmission channel. In the best model, OMO has four breakpoints in time periods 7, 14, 34, and 41 and MRO at time periods 32 and 40.

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      6      6      6      7 
## 
## $criteria
##                   1            2            3            4            5    6
## AIC(n) 3.667078e+01 3.516962e+01 3.453126e+01 3.189679e+01 2.078840e+01 -Inf
## HQ(n)  3.751661e+01 3.675555e+01 3.685729e+01 3.496292e+01 2.459463e+01 -Inf
## SC(n)  3.896443e+01 3.947022e+01 4.083882e+01 4.021129e+01 3.110985e+01 -Inf
## FPE(n) 8.694516e+15 2.327488e+15 2.093314e+15 5.376284e+14 2.021413e+11  NaN
##           7    8    9   10
## AIC(n) -Inf -Inf -Inf -Inf
## HQ(n)  -Inf -Inf -Inf -Inf
## SC(n)  -Inf -Inf -Inf -Inf
## FPE(n)    0    0    0    0
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      7      7      7      8 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) 4.577159e+01 4.426627e+01 4.409700e+01 4.268494e+01 4.153193e+01
## HQ(n)  4.640596e+01 4.544439e+01 4.581886e+01 4.495056e+01 4.434129e+01
## SC(n)  4.749183e+01 4.746101e+01 4.876622e+01 4.882866e+01 4.915015e+01
## FPE(n) 7.690667e+19 1.885470e+19 2.096011e+19 9.360338e+18 1.047705e+19
##                   6    7    8    9   10
## AIC(n) 3.684674e+01 -Inf -Inf -Inf -Inf
## HQ(n)  4.019985e+01 -Inf -Inf -Inf -Inf
## SC(n)  4.593944e+01 -Inf -Inf -Inf -Inf
## FPE(n) 1.851926e+18  NaN    0    0    0
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 1.00000003 1.00000000 1.00000000 0.81769898 0.68063415 0.02324985
## 
## Values of teststatistic and critical values of test:
## 
##             test 10pct  5pct   1pct
## r <= 5 |    1.08  6.50  8.18  11.65
## r <= 4 |   53.59 15.66 17.95  23.52
## r <= 3 |  131.88 28.71 31.52  37.22
## r <= 2 | 1015.12 45.23 48.28  55.43
## r <= 1 | 2031.13 66.49 70.60  78.87
## r = 0  |     NaN 85.18 90.39 104.20
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                            MRO.l7        OMO.l7 unemployment.l7   hsassets.l7
## MRO.l7               1.000000e+00  1.000000e+00    1.000000e+00  1.000000e+00
## OMO.l7              -1.357998e-03  2.084970e-03    1.010085e-04  1.466144e-03
## unemployment.l7     -3.848118e+00  2.971941e+00   -2.751053e+01 -1.491199e+01
## hsassets.l7          3.242597e-06 -1.283622e-06    3.094286e-07  4.944256e-06
## CCI.l7              -3.234463e-01  9.149096e-02   -2.853877e-01 -7.118838e-01
## finalconsumption.l7 -5.034628e-05  1.219657e-05   -1.391530e-04 -1.007113e-04
##                            CCI.l7 finalconsumption.l7
## MRO.l7               1.000000e+00        1.000000e+00
## OMO.l7               4.772208e-04        1.735448e-03
## unemployment.l7     -2.576636e+00       -1.812226e+00
## hsassets.l7          1.240569e-06        2.146936e-07
## CCI.l7              -1.853375e-01       -7.829034e-02
## finalconsumption.l7 -2.756593e-05       -1.328322e-05
## 
## Weights W:
## (This is the loading matrix)
## 
##                           MRO.l7        OMO.l7 unemployment.l7   hsassets.l7
## MRO.d              -3.181668e-01 -2.977190e-01   -6.283346e-03 -3.293779e-02
## OMO.d               2.710819e+01  9.623764e+01    2.287982e+01  1.041839e+02
## unemployment.d      3.064224e-01 -3.991183e-02    5.296865e-02 -1.193265e-01
## hsassets.d         -5.569704e+05  1.331239e+05    4.497503e+03 -7.979305e+04
## CCI.d              -1.286295e+01  3.961003e+00   -5.498885e-01  2.321421e-01
## finalconsumption.d  1.370043e+04  5.481226e+03   -8.757661e+02  4.792186e+02
##                           CCI.l7 finalconsumption.l7
## MRO.d               9.229821e-01       -1.478462e-01
## OMO.d              -5.457273e+01        9.157596e+01
## unemployment.d      6.656479e-01        5.464623e-02
## hsassets.d         -5.850289e+05        1.658796e+04
## CCI.d               2.806338e+01       -1.350990e+00
## finalconsumption.d -5.253171e+04       -8.806050e+02
## 
## Call:
## lm(formula = substitute(form1), data = data.mat)
## 
## Coefficients:
##                       MRO.d       OMO.d       unemployment.d  hsassets.d
## ect1                   2.679e-01   1.958e+02   8.658e-01      -1.084e+06
## ect2                   2.029e-04   2.929e-01  -3.513e-04       6.382e+02
## ect3                  -1.375e+00  -1.861e+03  -2.691e+00       5.112e+06
## ect4                   3.307e-07   4.189e-04   1.297e-06      -3.096e+00
## ect5                  -7.015e-02  -7.055e+01  -1.563e-01       3.563e+05
## constant               1.364e+01   2.111e+04   2.846e+01      -2.945e+07
## MRO.dl1               -5.399e-01  -9.222e+02   3.137e-01      -1.703e+03
## OMO.dl1                5.719e-04  -1.261e+00  -4.956e-04       2.122e+02
## unemployment.dl1      -3.570e-01  -1.797e+02  -1.163e+00       4.776e+05
## hsassets.dl1          -1.608e-07   2.310e-04   4.026e-07      -6.516e-01
## CCI.dl1                3.650e-02   2.649e-01  -2.511e-02       2.862e+04
## finalconsumption.dl1  -1.089e-05  -1.368e-02  -1.333e-05       2.649e+01
## MRO.dl2                7.058e-02  -1.318e+03   3.131e-01      -6.196e+05
## OMO.dl2                1.043e-03  -8.363e-01  -8.151e-04      -5.561e+02
## unemployment.dl2      -8.528e-01  -4.543e+01  -1.259e+00       1.407e+06
## hsassets.dl2           6.310e-07  -2.291e-04  -1.227e-07      -1.023e+00
## CCI.dl2                1.409e-02   3.044e+01  -5.089e-02       6.987e+04
## finalconsumption.dl2   1.859e-06  -1.322e-02  -1.591e-05       1.618e+01
## MRO.dl3                4.676e-01  -9.297e+02   6.193e-01      -1.499e+06
## OMO.dl3                3.947e-05   1.580e-01  -4.270e-05       2.325e+02
## unemployment.dl3      -4.573e-01  -5.477e+02  -1.330e+00       2.487e+06
## hsassets.dl3          -7.999e-07   6.543e-04   1.104e-06      -1.885e+00
## CCI.dl3                1.985e-02   5.914e+01  -6.348e-02       1.192e+05
## finalconsumption.dl3  -5.014e-06  -2.835e-03  -7.948e-06       1.698e+01
## MRO.dl4                2.539e-01  -3.096e+02   1.188e+00      -1.911e+06
## OMO.dl4                5.834e-04  -5.679e-01  -3.297e-04       6.887e+02
## unemployment.dl4      -1.221e+00  -6.058e+02  -1.884e+00       3.938e+06
## hsassets.dl4           7.519e-07  -3.335e-04   1.124e-06      -1.875e+00
## CCI.dl4               -3.959e-02   6.259e+01  -8.606e-02       1.980e+05
## finalconsumption.dl4  -5.124e-06  -1.472e-02  -2.044e-05       3.483e+01
## MRO.dl5                4.424e-01  -2.565e+01   1.522e+00      -2.067e+06
## OMO.dl5                4.735e-04  -5.068e-01  -3.104e-05       1.098e+03
## unemployment.dl5      -7.962e-01  -1.601e+03  -2.547e+00       4.501e+06
## hsassets.dl5           3.239e-07  -5.107e-04   2.720e-07      -2.239e+00
## CCI.dl5               -4.319e-02   1.338e+01  -1.105e-01       2.759e+05
## finalconsumption.dl5  -4.324e-06  -9.442e-03  -1.836e-05       3.578e+01
## MRO.dl6                4.582e-01   2.664e+02   1.240e+00      -1.540e+06
## OMO.dl6                9.934e-04  -4.060e-01  -8.234e-04       1.136e+03
## unemployment.dl6      -1.851e+00  -1.402e+03  -2.897e+00       5.112e+06
## hsassets.dl6           1.688e-07   2.156e-04   2.599e-07      -3.231e+00
## CCI.dl6               -6.854e-02  -3.148e+01  -1.575e-01       3.324e+05
## finalconsumption.dl6  -1.635e-06  -7.889e-03  -2.125e-05       4.220e+01
##                       CCI.d       finalconsumption.d
## ect1                   1.884e+01  -3.375e+04        
## ect2                   3.940e-02  -3.163e+01        
## ect3                   6.269e-01   1.159e+05        
## ect4                  -1.100e-05  -2.568e-02        
## ect5                  -6.867e-01   5.715e+03        
## constant               2.747e+02  -1.443e+06        
## MRO.dl1                2.950e+00   2.451e+04        
## OMO.dl1               -5.121e-03   3.849e+01        
## unemployment.dl1      -1.140e+00   1.430e+04        
## hsassets.dl1          -1.366e-06  -1.754e-02        
## CCI.dl1               -1.071e+00   2.062e+02        
## finalconsumption.dl1   1.062e-04   8.166e-01        
## MRO.dl2                5.268e+00   4.791e+04        
## OMO.dl2               -3.012e-03   2.526e+01        
## unemployment.dl2      -1.510e+01   2.162e+04        
## hsassets.dl2           2.338e-05   1.165e-02        
## CCI.dl2               -1.352e+00   3.310e+02        
## finalconsumption.dl2  -5.632e-07   8.086e-01        
## MRO.dl3               -4.484e+00   2.520e+04        
## OMO.dl3               -6.643e-03  -2.606e+01        
## unemployment.dl3      -1.073e+01   3.808e+04        
## hsassets.dl3          -9.949e-06  -2.651e-02        
## CCI.dl3               -1.614e+00  -3.932e+02        
## finalconsumption.dl3  -1.571e-04  -3.959e-01        
## MRO.dl4               -9.583e+00  -3.414e+03        
## OMO.dl4                1.343e-02  -2.046e+00        
## unemployment.dl4      -6.864e+00   5.065e+04        
## hsassets.dl4           1.404e-06  -2.618e-02        
## CCI.dl4               -9.773e-01   2.983e+01        
## finalconsumption.dl4  -8.648e-05   8.864e-01        
## MRO.dl5               -1.602e+01  -1.971e+04        
## OMO.dl5                1.396e-02  -9.934e+00        
## unemployment.dl5       1.961e+00   7.937e+04        
## hsassets.dl5           6.614e-06   4.471e-03        
## CCI.dl5               -8.820e-01   1.501e+03        
## finalconsumption.dl5  -1.921e-04   6.396e-01        
## MRO.dl6                8.112e-01  -3.082e+04        
## OMO.dl6                4.174e-02   1.985e+00        
## unemployment.dl6      -1.503e+00   1.111e+05        
## hsassets.dl6          -1.305e-05  -1.414e-02        
## CCI.dl6               -6.192e-02   3.915e+03        
## finalconsumption.dl6  -1.015e-04   2.298e-01
##                              ect1          ect2          ect3      ect4
## MRO.l7               1.000000e+00 -4.547474e-13  0.000000e+00   0.00000
## OMO.l7               2.439455e-19  1.000000e+00 -1.084202e-19   0.00000
## unemployment.l7      2.220446e-16  0.000000e+00  1.000000e+00   0.00000
## hsassets.l7         -7.940934e-22 -1.301043e-18  3.176374e-22   1.00000
## CCI.l7               4.163336e-17  5.684342e-14 -1.387779e-17   0.00000
## finalconsumption.l7 -1.268916e-05 -1.703057e-03  5.649001e-06 -17.71491
##                              ect5
## MRO.l7               0.000000e+00
## OMO.l7               1.040834e-17
## unemployment.l7      0.000000e+00
## hsassets.l7         -4.065758e-20
## CCI.l7               1.000000e+00
## finalconsumption.l7 -1.212272e-04
##                              MRO.d         OMO.d unemployment.d    hsassets.d
## ect1                  2.678752e-01  1.958369e+02   8.658007e-01 -1.084171e+06
## ect2                  2.028745e-04  2.928562e-01  -3.512743e-04  6.382021e+02
## ect3                 -1.374623e+00 -1.860715e+03  -2.690698e+00  5.112476e+06
## ect4                  3.306972e-07  4.188587e-04   1.297027e-06 -3.095806e+00
## ect5                 -7.015090e-02 -7.054526e+01  -1.563023e-01  3.562773e+05
## constant              1.364330e+01  2.111185e+04   2.846027e+01 -2.944622e+07
## MRO.dl1              -5.399185e-01 -9.221898e+02   3.137118e-01 -1.703077e+03
## OMO.dl1               5.719372e-04 -1.261255e+00  -4.955692e-04  2.121748e+02
## unemployment.dl1     -3.570071e-01 -1.796598e+02  -1.162735e+00  4.775559e+05
## hsassets.dl1         -1.607750e-07  2.309536e-04   4.025630e-07 -6.516050e-01
## CCI.dl1               3.649999e-02  2.648641e-01  -2.511498e-02  2.862470e+04
## finalconsumption.dl1 -1.089056e-05 -1.368017e-02  -1.332611e-05  2.649107e+01
## MRO.dl2               7.058122e-02 -1.317886e+03   3.130824e-01 -6.195839e+05
## OMO.dl2               1.042840e-03 -8.362560e-01  -8.151242e-04 -5.560657e+02
## unemployment.dl2     -8.527730e-01 -4.543291e+01  -1.259001e+00  1.406756e+06
## hsassets.dl2          6.310350e-07 -2.291473e-04  -1.227200e-07 -1.023195e+00
## CCI.dl2               1.409149e-02  3.044138e+01  -5.088823e-02  6.987247e+04
## finalconsumption.dl2  1.858994e-06 -1.321905e-02  -1.590541e-05  1.618300e+01
## MRO.dl3               4.676247e-01 -9.296728e+02   6.193367e-01 -1.499425e+06
## OMO.dl3               3.947216e-05  1.579519e-01  -4.269770e-05  2.325015e+02
## unemployment.dl3     -4.573182e-01 -5.477454e+02  -1.330146e+00  2.486660e+06
## hsassets.dl3         -7.999046e-07  6.542786e-04   1.104072e-06 -1.885310e+00
## CCI.dl3               1.984612e-02  5.914140e+01  -6.347677e-02  1.191876e+05
## finalconsumption.dl3 -5.014056e-06 -2.835178e-03  -7.947667e-06  1.697556e+01
## MRO.dl4               2.539380e-01 -3.095589e+02   1.188131e+00 -1.910969e+06
## OMO.dl4               5.833609e-04 -5.679039e-01  -3.296732e-04  6.887198e+02
## unemployment.dl4     -1.221193e+00 -6.058441e+02  -1.884040e+00  3.938027e+06
## hsassets.dl4          7.518501e-07 -3.334774e-04   1.124208e-06 -1.874550e+00
## CCI.dl4              -3.958710e-02  6.258616e+01  -8.606236e-02  1.980112e+05
## finalconsumption.dl4 -5.124217e-06 -1.471639e-02  -2.044239e-05  3.483021e+01
## MRO.dl5               4.424238e-01 -2.565010e+01   1.521978e+00 -2.066630e+06
## OMO.dl5               4.734551e-04 -5.068495e-01  -3.103860e-05  1.097556e+03
## unemployment.dl5     -7.961516e-01 -1.601352e+03  -2.547421e+00  4.501185e+06
## hsassets.dl5          3.238818e-07 -5.107363e-04   2.719676e-07 -2.238803e+00
## CCI.dl5              -4.319196e-02  1.338262e+01  -1.104526e-01  2.759127e+05
## finalconsumption.dl5 -4.324185e-06 -9.442054e-03  -1.835656e-05  3.577827e+01
## MRO.dl6               4.581814e-01  2.664444e+02   1.240179e+00 -1.540207e+06
## OMO.dl6               9.934325e-04 -4.059904e-01  -8.233949e-04  1.136498e+03
## unemployment.dl6     -1.850928e+00 -1.401856e+03  -2.896569e+00  5.111752e+06
## hsassets.dl6          1.688109e-07  2.155935e-04   2.598578e-07 -3.230685e+00
## CCI.dl6              -6.853737e-02 -3.147981e+01  -1.575447e-01  3.323720e+05
## finalconsumption.dl6 -1.635330e-06 -7.888760e-03  -2.125471e-05  4.219882e+01
##                              CCI.d finalconsumption.d
## ect1                  1.884369e+01      -3.374660e+04
## ect2                  3.940366e-02      -3.163203e+01
## ect3                  6.269022e-01       1.158708e+05
## ect4                 -1.100162e-05      -2.568164e-02
## ect5                 -6.866568e-01       5.715013e+03
## constant              2.746985e+02      -1.442859e+06
## MRO.dl1               2.950320e+00       2.450954e+04
## OMO.dl1              -5.120858e-03       3.848972e+01
## unemployment.dl1     -1.140176e+00       1.430311e+04
## hsassets.dl1         -1.365596e-06      -1.753856e-02
## CCI.dl1              -1.070667e+00       2.061721e+02
## finalconsumption.dl1  1.062019e-04       8.165663e-01
## MRO.dl2               5.267681e+00       4.790901e+04
## OMO.dl2              -3.012493e-03       2.526283e+01
## unemployment.dl2     -1.510090e+01       2.161955e+04
## hsassets.dl2          2.338056e-05       1.165364e-02
## CCI.dl2              -1.352002e+00       3.309761e+02
## finalconsumption.dl2 -5.631785e-07       8.085842e-01
## MRO.dl3              -4.484139e+00       2.519757e+04
## OMO.dl3              -6.642792e-03      -2.606217e+01
## unemployment.dl3     -1.073329e+01       3.808482e+04
## hsassets.dl3         -9.948986e-06      -2.651382e-02
## CCI.dl3              -1.613900e+00      -3.931783e+02
## finalconsumption.dl3 -1.570992e-04      -3.958733e-01
## MRO.dl4              -9.583466e+00      -3.414270e+03
## OMO.dl4               1.342776e-02      -2.045779e+00
## unemployment.dl4     -6.863628e+00       5.064894e+04
## hsassets.dl4          1.404095e-06      -2.617652e-02
## CCI.dl4              -9.772713e-01       2.982564e+01
## finalconsumption.dl4 -8.648416e-05       8.863941e-01
## MRO.dl5              -1.602293e+01      -1.971082e+04
## OMO.dl5               1.396003e-02      -9.934126e+00
## unemployment.dl5      1.960974e+00       7.936604e+04
## hsassets.dl5          6.614073e-06       4.470988e-03
## CCI.dl5              -8.819742e-01       1.500781e+03
## finalconsumption.dl5 -1.921095e-04       6.395694e-01
## MRO.dl6               8.111801e-01      -3.082186e+04
## OMO.dl6               4.174185e-02       1.984815e+00
## unemployment.dl6     -1.502800e+00       1.111454e+05
## hsassets.dl6         -1.305457e-05      -1.414281e-02
## CCI.dl6              -6.191824e-02       3.915394e+03
## finalconsumption.dl6 -1.014790e-04       2.297971e-01
## Response MRO.d :
## 
## Call:
## lm(formula = MRO.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + constant + 
##     MRO.dl1 + OMO.dl1 + unemployment.dl1 + hsassets.dl1 + CCI.dl1 + 
##     finalconsumption.dl1 + MRO.dl2 + OMO.dl2 + unemployment.dl2 + 
##     hsassets.dl2 + CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + 
##     OMO.dl3 + unemployment.dl3 + hsassets.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + unemployment.dl4 + hsassets.dl4 + CCI.dl4 + 
##     finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + unemployment.dl5 + 
##     hsassets.dl5 + CCI.dl5 + finalconsumption.dl5 + MRO.dl6 + 
##     OMO.dl6 + unemployment.dl6 + hsassets.dl6 + CCI.dl6 + finalconsumption.dl6 - 
##     1, data = data.mat)
## 
## Residuals:
##         1         2         3         4         5         6         7         8 
##  0.005216  0.003479 -0.025451  0.028801  0.008360 -0.045557  0.030739  0.014990 
##         9        10        11        12        13        14        15        16 
## -0.039175  0.033242  0.008382 -0.003152 -0.045926 -0.014510  0.112510 -0.051808 
##        17        18        19        20        21        22        23        24 
## -0.029911  0.019247  0.014182 -0.023970  0.013850 -0.017488 -0.020981  0.004321 
##        25        26        27        28        29        30        31        32 
##  0.032676  0.007599 -0.059545  0.020001  0.037837 -0.001426 -0.006901 -0.017225 
##        33        34        35        36        37        38        39        40 
##  0.018498 -0.016739  0.039650 -0.060561  0.015680  0.034273 -0.013283 -0.002476 
##        41        42        43        44        45        46 
## -0.032566  0.032354 -0.003820 -0.035601 -0.011286  0.043471 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## ect1                  2.679e-01  7.669e-01   0.349   0.7445  
## ect2                  2.029e-04  7.365e-04   0.275   0.7966  
## ect3                 -1.375e+00  2.561e+00  -0.537   0.6200  
## ect4                  3.307e-07  1.734e-06   0.191   0.8580  
## ect5                 -7.015e-02  1.929e-01  -0.364   0.7345  
## constant              1.364e+01  1.802e+01   0.757   0.4911  
## MRO.dl1              -5.399e-01  5.459e-01  -0.989   0.3786  
## OMO.dl1               5.719e-04  6.411e-04   0.892   0.4227  
## unemployment.dl1     -3.570e-01  4.035e-01  -0.885   0.4263  
## hsassets.dl1         -1.608e-07  7.537e-07  -0.213   0.8415  
## CCI.dl1               3.650e-02  1.879e-02   1.943   0.1239  
## finalconsumption.dl1 -1.089e-05  1.172e-05  -0.929   0.4053  
## MRO.dl2               7.058e-02  9.564e-01   0.074   0.9447  
## OMO.dl2               1.043e-03  4.625e-04   2.255   0.0872 .
## unemployment.dl2     -8.528e-01  6.606e-01  -1.291   0.2663  
## hsassets.dl2          6.310e-07  6.067e-07   1.040   0.3570  
## CCI.dl2               1.409e-02  5.197e-02   0.271   0.7997  
## finalconsumption.dl2  1.859e-06  1.135e-05   0.164   0.8778  
## MRO.dl3               4.676e-01  1.299e+00   0.360   0.7370  
## OMO.dl3               3.947e-05  4.853e-04   0.081   0.9391  
## unemployment.dl3     -4.573e-01  1.204e+00  -0.380   0.7233  
## hsassets.dl3         -7.999e-07  9.729e-07  -0.822   0.4571  
## CCI.dl3               1.985e-02  8.515e-02   0.233   0.8271  
## finalconsumption.dl3 -5.014e-06  6.911e-06  -0.726   0.5083  
## MRO.dl4               2.539e-01  1.300e+00   0.195   0.8546  
## OMO.dl4               5.834e-04  7.452e-04   0.783   0.4775  
## unemployment.dl4     -1.221e+00  1.844e+00  -0.662   0.5441  
## hsassets.dl4          7.519e-07  1.214e-06   0.619   0.5693  
## CCI.dl4              -3.959e-02  1.347e-01  -0.294   0.7835  
## finalconsumption.dl4 -5.124e-06  1.870e-05  -0.274   0.7976  
## MRO.dl5               4.424e-01  1.266e+00   0.349   0.7444  
## OMO.dl5               4.735e-04  6.895e-04   0.687   0.5300  
## unemployment.dl5     -7.962e-01  2.358e+00  -0.338   0.7527  
## hsassets.dl5          3.239e-07  1.195e-06   0.271   0.7997  
## CCI.dl5              -4.319e-02  1.566e-01  -0.276   0.7963  
## finalconsumption.dl5 -4.324e-06  1.921e-05  -0.225   0.8329  
## MRO.dl6               4.582e-01  1.033e+00   0.443   0.6804  
## OMO.dl6               9.934e-04  9.409e-04   1.056   0.3506  
## unemployment.dl6     -1.851e+00  2.617e+00  -0.707   0.5184  
## hsassets.dl6          1.688e-07  1.697e-06   0.099   0.9256  
## CCI.dl6              -6.854e-02  1.832e-01  -0.374   0.7273  
## finalconsumption.dl6 -1.635e-06  2.296e-05  -0.071   0.9466  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1095 on 4 degrees of freedom
## Multiple R-squared:  0.9798, Adjusted R-squared:  0.7679 
## F-statistic: 4.624 on 42 and 4 DF,  p-value: 0.07208
## 
## 
## Response OMO.d :
## 
## Call:
## lm(formula = OMO.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + constant + 
##     MRO.dl1 + OMO.dl1 + unemployment.dl1 + hsassets.dl1 + CCI.dl1 + 
##     finalconsumption.dl1 + MRO.dl2 + OMO.dl2 + unemployment.dl2 + 
##     hsassets.dl2 + CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + 
##     OMO.dl3 + unemployment.dl3 + hsassets.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + unemployment.dl4 + hsassets.dl4 + CCI.dl4 + 
##     finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + unemployment.dl5 + 
##     hsassets.dl5 + CCI.dl5 + finalconsumption.dl5 + MRO.dl6 + 
##     OMO.dl6 + unemployment.dl6 + hsassets.dl6 + CCI.dl6 + finalconsumption.dl6 - 
##     1, data = data.mat)
## 
## Residuals:
##        1        2        3        4        5        6        7        8 
##  -4.5726   3.6679  10.9335 -30.7349  21.1006  16.9593 -36.9324  19.7214 
##        9       10       11       12       13       14       15       16 
##   0.2706 -19.0190  12.3349   2.2788  38.6300 -35.4453 -56.0307  75.5182 
##       17       18       19       20       21       22       23       24 
## -26.3348  -6.8171   4.5849   5.5529   2.2307   6.9737  18.9098 -25.9818 
##       25       26       27       28       29       30       31       32 
## -12.1399   7.7103  30.6677  -8.1764 -22.0606  -7.9235   6.1918   8.7717 
##       33       34       35       36       37       38       39       40 
##  -8.3499   7.3251 -21.6149  37.5878 -13.0040  -3.9682   1.4570  -3.4957 
##       41       42       43       44       45       46 
##  17.7751 -16.7017   5.5181  24.9333  -5.5639 -22.7377 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## ect1                  1.958e+02  5.364e+02   0.365   0.7335  
## ect2                  2.929e-01  5.152e-01   0.568   0.6001  
## ect3                 -1.861e+03  1.792e+03  -1.039   0.3577  
## ect4                  4.189e-04  1.213e-03   0.345   0.7472  
## ect5                 -7.055e+01  1.349e+02  -0.523   0.6287  
## constant              2.111e+04  1.260e+04   1.675   0.1692  
## MRO.dl1              -9.222e+02  3.818e+02  -2.415   0.0731 .
## OMO.dl1              -1.261e+00  4.484e-01  -2.813   0.0482 *
## unemployment.dl1     -1.797e+02  2.822e+02  -0.637   0.5590  
## hsassets.dl1          2.310e-04  5.272e-04   0.438   0.6839  
## CCI.dl1               2.649e-01  1.314e+01   0.020   0.9849  
## finalconsumption.dl1 -1.368e-02  8.196e-03  -1.669   0.1704  
## MRO.dl2              -1.318e+03  6.689e+02  -1.970   0.1202  
## OMO.dl2              -8.363e-01  3.235e-01  -2.585   0.0610 .
## unemployment.dl2     -4.543e+01  4.620e+02  -0.098   0.9264  
## hsassets.dl2         -2.291e-04  4.244e-04  -0.540   0.6179  
## CCI.dl2               3.044e+01  3.635e+01   0.837   0.4495  
## finalconsumption.dl2 -1.322e-02  7.936e-03  -1.666   0.1711  
## MRO.dl3              -9.297e+02  9.084e+02  -1.023   0.3640  
## OMO.dl3               1.580e-01  3.395e-01   0.465   0.6659  
## unemployment.dl3     -5.477e+02  8.418e+02  -0.651   0.5507  
## hsassets.dl3          6.543e-04  6.805e-04   0.962   0.3907  
## CCI.dl3               5.914e+01  5.955e+01   0.993   0.3769  
## finalconsumption.dl3 -2.835e-03  4.834e-03  -0.587   0.5890  
## MRO.dl4              -3.096e+02  9.090e+02  -0.341   0.7506  
## OMO.dl4              -5.679e-01  5.213e-01  -1.089   0.3372  
## unemployment.dl4     -6.058e+02  1.290e+03  -0.470   0.6631  
## hsassets.dl4         -3.335e-04  8.493e-04  -0.393   0.7146  
## CCI.dl4               6.259e+01  9.422e+01   0.664   0.5429  
## finalconsumption.dl4 -1.472e-02  1.308e-02  -1.125   0.3234  
## MRO.dl5              -2.565e+01  8.857e+02  -0.029   0.9783  
## OMO.dl5              -5.068e-01  4.823e-01  -1.051   0.3526  
## unemployment.dl5     -1.601e+03  1.650e+03  -0.971   0.3866  
## hsassets.dl5         -5.107e-04  8.356e-04  -0.611   0.5741  
## CCI.dl5               1.338e+01  1.095e+02   0.122   0.9086  
## finalconsumption.dl5 -9.442e-03  1.344e-02  -0.703   0.5210  
## MRO.dl6               2.664e+02  7.228e+02   0.369   0.7311  
## OMO.dl6              -4.060e-01  6.581e-01  -0.617   0.5707  
## unemployment.dl6     -1.402e+03  1.830e+03  -0.766   0.4865  
## hsassets.dl6          2.156e-04  1.187e-03   0.182   0.8647  
## CCI.dl6              -3.148e+01  1.281e+02  -0.246   0.8180  
## finalconsumption.dl6 -7.889e-03  1.606e-02  -0.491   0.6489  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 76.57 on 4 degrees of freedom
## Multiple R-squared:  0.9713, Adjusted R-squared:  0.6702 
## F-statistic: 3.225 on 42 and 4 DF,  p-value: 0.1304
## 
## 
## Response unemployment.d :
## 
## Call:
## lm(formula = unemployment.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + 
##     constant + MRO.dl1 + OMO.dl1 + unemployment.dl1 + hsassets.dl1 + 
##     CCI.dl1 + finalconsumption.dl1 + MRO.dl2 + OMO.dl2 + unemployment.dl2 + 
##     hsassets.dl2 + CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + 
##     OMO.dl3 + unemployment.dl3 + hsassets.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + unemployment.dl4 + hsassets.dl4 + CCI.dl4 + 
##     finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + unemployment.dl5 + 
##     hsassets.dl5 + CCI.dl5 + finalconsumption.dl5 + MRO.dl6 + 
##     OMO.dl6 + unemployment.dl6 + hsassets.dl6 + CCI.dl6 + finalconsumption.dl6 - 
##     1, data = data.mat)
## 
## Residuals:
##         1         2         3         4         5         6         7         8 
##  0.004657 -0.023149  0.018683  0.010569 -0.031112  0.019933  0.006941 -0.027167 
##         9        10        11        12        13        14        15        16 
##  0.031436 -0.020501  0.043258 -0.058672  0.024616  0.009165  0.009358 -0.040936 
##        17        18        19        20        21        22        23        24 
##  0.017256 -0.015313  0.049408 -0.023016  0.020407 -0.032273 -0.006363  0.002606 
##        25        26        27        28        29        30        31        32 
##  0.022664 -0.015385 -0.004054  0.010015  0.002109 -0.002402 -0.005270  0.013642 
##        33        34        35        36        37        38        39        40 
## -0.022557  0.010678 -0.014278  0.008597  0.007557 -0.007819 -0.003360  0.029433 
##        41        42        43        44        45        46 
## -0.031667  0.045570 -0.046048  0.009205  0.007962 -0.004382 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## ect1                  8.658e-01  5.616e-01   1.542   0.1980  
## ect2                 -3.513e-04  5.394e-04  -0.651   0.5504  
## ect3                 -2.691e+00  1.876e+00  -1.434   0.2248  
## ect4                  1.297e-06  1.270e-06   1.022   0.3647  
## ect5                 -1.563e-01  1.413e-01  -1.106   0.3306  
## constant              2.846e+01  1.319e+01   2.157   0.0972 .
## MRO.dl1               3.137e-01  3.998e-01   0.785   0.4765  
## OMO.dl1              -4.956e-04  4.695e-04  -1.056   0.3507  
## unemployment.dl1     -1.163e+00  2.955e-01  -3.935   0.0170 *
## hsassets.dl1          4.026e-07  5.520e-07   0.729   0.5062  
## CCI.dl1              -2.511e-02  1.376e-02  -1.826   0.1420  
## finalconsumption.dl1 -1.333e-05  8.582e-06  -1.553   0.1954  
## MRO.dl2               3.131e-01  7.004e-01   0.447   0.6780  
## OMO.dl2              -8.151e-04  3.387e-04  -2.406   0.0738 .
## unemployment.dl2     -1.259e+00  4.838e-01  -2.602   0.0599 .
## hsassets.dl2         -1.227e-07  4.443e-07  -0.276   0.7961  
## CCI.dl2              -5.089e-02  3.806e-02  -1.337   0.2522  
## finalconsumption.dl2 -1.591e-05  8.310e-06  -1.914   0.1281  
## MRO.dl3               6.193e-01  9.512e-01   0.651   0.5505  
## OMO.dl3              -4.270e-05  3.554e-04  -0.120   0.9102  
## unemployment.dl3     -1.330e+00  8.814e-01  -1.509   0.2058  
## hsassets.dl3          1.104e-06  7.125e-07   1.550   0.1962  
## CCI.dl3              -6.348e-02  6.236e-02  -1.018   0.3663  
## finalconsumption.dl3 -7.948e-06  5.061e-06  -1.570   0.1914  
## MRO.dl4               1.188e+00  9.518e-01   1.248   0.2800  
## OMO.dl4              -3.297e-04  5.458e-04  -0.604   0.5784  
## unemployment.dl4     -1.884e+00  1.351e+00  -1.395   0.2355  
## hsassets.dl4          1.124e-06  8.893e-07   1.264   0.2748  
## CCI.dl4              -8.606e-02  9.866e-02  -0.872   0.4323  
## finalconsumption.dl4 -2.044e-05  1.369e-05  -1.493   0.2097  
## MRO.dl5               1.522e+00  9.274e-01   1.641   0.1761  
## OMO.dl5              -3.104e-05  5.050e-04  -0.061   0.9539  
## unemployment.dl5     -2.547e+00  1.727e+00  -1.475   0.2143  
## hsassets.dl5          2.720e-07  8.749e-07   0.311   0.7714  
## CCI.dl5              -1.105e-01  1.147e-01  -0.963   0.3900  
## finalconsumption.dl5 -1.836e-05  1.407e-05  -1.305   0.2620  
## MRO.dl6               1.240e+00  7.569e-01   1.639   0.1766  
## OMO.dl6              -8.234e-04  6.891e-04  -1.195   0.2981  
## unemployment.dl6     -2.897e+00  1.917e+00  -1.511   0.2052  
## hsassets.dl6          2.599e-07  1.243e-06   0.209   0.8446  
## CCI.dl6              -1.575e-01  1.342e-01  -1.174   0.3054  
## finalconsumption.dl6 -2.125e-05  1.681e-05  -1.264   0.2748  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.08017 on 4 degrees of freedom
## Multiple R-squared:  0.9856, Adjusted R-squared:  0.8348 
## F-statistic: 6.536 on 42 and 4 DF,  p-value: 0.0394
## 
## 
## Response hsassets.d :
## 
## Call:
## lm(formula = hsassets.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + 
##     constant + MRO.dl1 + OMO.dl1 + unemployment.dl1 + hsassets.dl1 + 
##     CCI.dl1 + finalconsumption.dl1 + MRO.dl2 + OMO.dl2 + unemployment.dl2 + 
##     hsassets.dl2 + CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + 
##     OMO.dl3 + unemployment.dl3 + hsassets.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + unemployment.dl4 + hsassets.dl4 + CCI.dl4 + 
##     finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + unemployment.dl5 + 
##     hsassets.dl5 + CCI.dl5 + finalconsumption.dl5 + MRO.dl6 + 
##     OMO.dl6 + unemployment.dl6 + hsassets.dl6 + CCI.dl6 + finalconsumption.dl6 - 
##     1, data = data.mat)
## 
## Residuals:
##        1        2        3        4        5        6        7        8 
##    835.3  -6429.4   7701.1   9636.8 -26878.8  16059.7  14199.0 -30141.7 
##        9       10       11       12       13       14       15       16 
##  27920.1  -5402.0 -17031.5  -1075.8  -4555.2  44678.4 -24886.3 -37313.0 
##       17       18       19       20       21       22       23       24 
##  46865.4  -7249.8 -13506.0  11086.0 -11534.7   4973.8  -3629.5  22136.5 
##       25       26       27       28       29       30       31       32 
## -10854.4 -13097.8  12207.1  -5994.3  -5276.3   8624.1  -1225.7   3903.5 
##       33       34       35       36       37       38       39       40 
##  -5374.1   4904.8  -7289.5   6464.5   1673.5 -20450.8   7885.2   5673.0 
##       41       42       43       44       45       46 
##   5158.2  -5788.6  -3503.4   1132.7  13480.8  -8711.1 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)   
## ect1                 -1.084e+06  3.872e+05  -2.800  0.04880 * 
## ect2                  6.382e+02  3.718e+02   1.716  0.16124   
## ect3                  5.112e+06  1.293e+06   3.954  0.01677 * 
## ect4                 -3.096e+00  8.752e-01  -3.537  0.02407 * 
## ect5                  3.563e+05  9.738e+04   3.659  0.02161 * 
## constant             -2.945e+07  9.096e+06  -3.237  0.03175 * 
## MRO.dl1              -1.703e+03  2.756e+05  -0.006  0.99537   
## OMO.dl1               2.122e+02  3.236e+02   0.656  0.54788   
## unemployment.dl1      4.776e+05  2.037e+05   2.344  0.07901 . 
## hsassets.dl1         -6.516e-01  3.805e-01  -1.713  0.16196   
## CCI.dl1               2.862e+04  9.484e+03   3.018  0.03923 * 
## finalconsumption.dl1  2.649e+01  5.916e+00   4.478  0.01101 * 
## MRO.dl2              -6.196e+05  4.828e+05  -1.283  0.26871   
## OMO.dl2              -5.561e+02  2.335e+02  -2.382  0.07586 . 
## unemployment.dl2      1.407e+06  3.335e+05   4.218  0.01350 * 
## hsassets.dl2         -1.023e+00  3.063e-01  -3.341  0.02882 * 
## CCI.dl2               6.987e+04  2.624e+04   2.663  0.05620 . 
## finalconsumption.dl2  1.618e+01  5.728e+00   2.825  0.04757 * 
## MRO.dl3              -1.499e+06  6.557e+05  -2.287  0.08416 . 
## OMO.dl3               2.325e+02  2.450e+02   0.949  0.39640   
## unemployment.dl3      2.487e+06  6.076e+05   4.093  0.01494 * 
## hsassets.dl3         -1.885e+00  4.911e-01  -3.839  0.01848 * 
## CCI.dl3               1.192e+05  4.299e+04   2.773  0.05019 . 
## finalconsumption.dl3  1.698e+01  3.489e+00   4.866  0.00824 **
## MRO.dl4              -1.911e+06  6.561e+05  -2.913  0.04357 * 
## OMO.dl4               6.887e+02  3.762e+02   1.831  0.14114   
## unemployment.dl4      3.938e+06  9.311e+05   4.230  0.01337 * 
## hsassets.dl4         -1.875e+00  6.130e-01  -3.058  0.03773 * 
## CCI.dl4               1.980e+05  6.801e+04   2.912  0.04361 * 
## finalconsumption.dl4  3.483e+01  9.438e+00   3.690  0.02101 * 
## MRO.dl5              -2.067e+06  6.393e+05  -3.233  0.03189 * 
## OMO.dl5               1.098e+03  3.481e+02   3.153  0.03442 * 
## unemployment.dl5      4.501e+06  1.191e+06   3.780  0.01943 * 
## hsassets.dl5         -2.239e+00  6.031e-01  -3.712  0.02062 * 
## CCI.dl5               2.759e+05  7.905e+04   3.490  0.02512 * 
## finalconsumption.dl5  3.578e+01  9.698e+00   3.689  0.02104 * 
## MRO.dl6              -1.540e+06  5.217e+05  -2.952  0.04188 * 
## OMO.dl6               1.136e+03  4.750e+02   2.392  0.07497 . 
## unemployment.dl6      5.112e+06  1.321e+06   3.869  0.01801 * 
## hsassets.dl6         -3.231e+00  8.569e-01  -3.770  0.01960 * 
## CCI.dl6               3.324e+05  9.249e+04   3.594  0.02289 * 
## finalconsumption.dl6  4.220e+01  1.159e+01   3.641  0.02194 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 55260 on 4 degrees of freedom
## Multiple R-squared:  0.9945, Adjusted R-squared:  0.9364 
## F-statistic: 17.12 on 42 and 4 DF,  p-value: 0.006566
## 
## 
## Response CCI.d :
## 
## Call:
## lm(formula = CCI.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + constant + 
##     MRO.dl1 + OMO.dl1 + unemployment.dl1 + hsassets.dl1 + CCI.dl1 + 
##     finalconsumption.dl1 + MRO.dl2 + OMO.dl2 + unemployment.dl2 + 
##     hsassets.dl2 + CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + 
##     OMO.dl3 + unemployment.dl3 + hsassets.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + unemployment.dl4 + hsassets.dl4 + CCI.dl4 + 
##     finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + unemployment.dl5 + 
##     hsassets.dl5 + CCI.dl5 + finalconsumption.dl5 + MRO.dl6 + 
##     OMO.dl6 + unemployment.dl6 + hsassets.dl6 + CCI.dl6 + finalconsumption.dl6 - 
##     1, data = data.mat)
## 
## Residuals:
##        1        2        3        4        5        6        7        8 
##  0.07936 -0.04548 -0.24809  0.18988  0.36243 -0.61892  0.07915  0.53629 
##        9       10       11       12       13       14       15       16 
## -0.69667  0.26210  0.85181 -0.55975 -0.14260 -1.00779  1.76534 -0.12450 
##       17       18       19       20       21       22       23       24 
## -1.13573  0.20668  0.89422 -0.69564  0.57713 -0.58683 -0.19753 -0.39971 
##       25       26       27       28       29       30       31       32 
##  0.77650  0.21058 -0.90548  0.42537  0.51851 -0.21958 -0.09409 -0.13086 
##       33       34       35       36       37       38       39       40 
##  0.09140 -0.17487  0.42596 -0.67571  0.19588  0.70999 -0.33424  0.13069 
##       41       42       43       44       45       46 
## -0.73930  0.88086 -0.39683 -0.30185 -0.32601  0.58794 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## ect1                  1.884e+01  1.380e+01   1.365   0.2440  
## ect2                  3.940e-02  1.326e-02   2.972   0.0411 *
## ect3                  6.269e-01  4.611e+01   0.014   0.9898  
## ect4                 -1.100e-05  3.120e-05  -0.353   0.7422  
## ect5                 -6.867e-01  3.472e+00  -0.198   0.8529  
## constant              2.747e+02  3.243e+02   0.847   0.4447  
## MRO.dl1               2.950e+00  9.826e+00   0.300   0.7789  
## OMO.dl1              -5.121e-03  1.154e-02  -0.444   0.6801  
## unemployment.dl1     -1.140e+00  7.263e+00  -0.157   0.8829  
## hsassets.dl1         -1.366e-06  1.357e-05  -0.101   0.9247  
## CCI.dl1              -1.071e+00  3.381e-01  -3.166   0.0340 *
## finalconsumption.dl1  1.062e-04  2.109e-04   0.503   0.6411  
## MRO.dl2               5.268e+00  1.721e+01   0.306   0.7749  
## OMO.dl2              -3.012e-03  8.325e-03  -0.362   0.7358  
## unemployment.dl2     -1.510e+01  1.189e+01  -1.270   0.2729  
## hsassets.dl2          2.338e-05  1.092e-05   2.141   0.0990 .
## CCI.dl2              -1.352e+00  9.355e-01  -1.445   0.2219  
## finalconsumption.dl2 -5.632e-07  2.042e-04  -0.003   0.9979  
## MRO.dl3              -4.484e+00  2.338e+01  -0.192   0.8572  
## OMO.dl3              -6.643e-03  8.736e-03  -0.760   0.4894  
## unemployment.dl3     -1.073e+01  2.166e+01  -0.495   0.6463  
## hsassets.dl3         -9.949e-06  1.751e-05  -0.568   0.6003  
## CCI.dl3              -1.614e+00  1.533e+00  -1.053   0.3517  
## finalconsumption.dl3 -1.571e-04  1.244e-04  -1.263   0.2752  
## MRO.dl4              -9.583e+00  2.339e+01  -0.410   0.7030  
## OMO.dl4               1.343e-02  1.341e-02   1.001   0.3735  
## unemployment.dl4     -6.864e+00  3.320e+01  -0.207   0.8463  
## hsassets.dl4          1.404e-06  2.186e-05   0.064   0.9519  
## CCI.dl4              -9.773e-01  2.425e+00  -0.403   0.7075  
## finalconsumption.dl4 -8.648e-05  3.365e-04  -0.257   0.8099  
## MRO.dl5              -1.602e+01  2.279e+01  -0.703   0.5208  
## OMO.dl5               1.396e-02  1.241e-02   1.125   0.3236  
## unemployment.dl5      1.961e+00  4.245e+01   0.046   0.9654  
## hsassets.dl5          6.614e-06  2.150e-05   0.308   0.7738  
## CCI.dl5              -8.820e-01  2.819e+00  -0.313   0.7700  
## finalconsumption.dl5 -1.921e-04  3.458e-04  -0.556   0.6081  
## MRO.dl6               8.112e-01  1.860e+01   0.044   0.9673  
## OMO.dl6               4.174e-02  1.694e-02   2.465   0.0694 .
## unemployment.dl6     -1.503e+00  4.711e+01  -0.032   0.9761  
## hsassets.dl6         -1.305e-05  3.055e-05  -0.427   0.6912  
## CCI.dl6              -6.192e-02  3.298e+00  -0.019   0.9859  
## finalconsumption.dl6 -1.015e-04  4.132e-04  -0.246   0.8181  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.97 on 4 degrees of freedom
## Multiple R-squared:  0.9567, Adjusted R-squared:  0.502 
## F-statistic: 2.104 on 42 and 4 DF,  p-value: 0.2464
## 
## 
## Response finalconsumption.d :
## 
## Call:
## lm(formula = finalconsumption.d ~ ect1 + ect2 + ect3 + ect4 + 
##     ect5 + constant + MRO.dl1 + OMO.dl1 + unemployment.dl1 + 
##     hsassets.dl1 + CCI.dl1 + finalconsumption.dl1 + MRO.dl2 + 
##     OMO.dl2 + unemployment.dl2 + hsassets.dl2 + CCI.dl2 + finalconsumption.dl2 + 
##     MRO.dl3 + OMO.dl3 + unemployment.dl3 + hsassets.dl3 + CCI.dl3 + 
##     finalconsumption.dl3 + MRO.dl4 + OMO.dl4 + unemployment.dl4 + 
##     hsassets.dl4 + CCI.dl4 + finalconsumption.dl4 + MRO.dl5 + 
##     OMO.dl5 + unemployment.dl5 + hsassets.dl5 + CCI.dl5 + finalconsumption.dl5 + 
##     MRO.dl6 + OMO.dl6 + unemployment.dl6 + hsassets.dl6 + CCI.dl6 + 
##     finalconsumption.dl6 - 1, data = data.mat)
## 
## Residuals:
##        1        2        3        4        5        6        7        8 
##  -132.94   502.87  -248.46    34.28  -190.67   136.50   373.40  -494.37 
##        9       10       11       12       13       14       15       16 
##   281.39   407.28 -2335.28  2012.99  -999.50  1810.74 -1695.45  -234.77 
##       17       18       19       20       21       22       23       24 
##  1656.51   162.19 -2394.70  1371.52 -1283.77  1396.84    88.10   945.23 
##       25       26       27       28       29       30       31       32 
## -1363.20   -91.11   820.32  -668.44  -387.89   493.49   138.91  -264.88 
##       33       34       35       36       37       38       39       40 
##   506.05  -114.49    88.93   107.38  -213.13  -749.18   512.63  -760.73 
##       41       42       43       44       45       46 
##  1410.20 -1927.30  1456.75  -208.32   375.90  -331.84 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## ect1                 -3.375e+04  2.374e+04  -1.421   0.2283  
## ect2                 -3.163e+01  2.280e+01  -1.387   0.2377  
## ect3                  1.159e+05  7.930e+04   1.461   0.2178  
## ect4                 -2.568e-02  5.367e-02  -0.478   0.6573  
## ect5                  5.715e+03  5.972e+03   0.957   0.3928  
## constant             -1.443e+06  5.578e+05  -2.587   0.0609 .
## MRO.dl1               2.451e+04  1.690e+04   1.450   0.2206  
## OMO.dl1               3.849e+01  1.985e+01   1.939   0.1245  
## unemployment.dl1      1.430e+04  1.249e+04   1.145   0.3161  
## hsassets.dl1         -1.754e-02  2.333e-02  -0.752   0.4941  
## CCI.dl1               2.062e+02  5.816e+02   0.354   0.7409  
## finalconsumption.dl1  8.166e-01  3.628e-01   2.251   0.0876 .
## MRO.dl2               4.791e+04  2.961e+04   1.618   0.1810  
## OMO.dl2               2.526e+01  1.432e+01   1.764   0.1525  
## unemployment.dl2      2.162e+04  2.045e+04   1.057   0.3501  
## hsassets.dl2          1.165e-02  1.878e-02   0.620   0.5686  
## CCI.dl2               3.310e+02  1.609e+03   0.206   0.8471  
## finalconsumption.dl2  8.086e-01  3.513e-01   2.302   0.0828 .
## MRO.dl3               2.520e+04  4.021e+04   0.627   0.5649  
## OMO.dl3              -2.606e+01  1.503e+01  -1.734   0.1579  
## unemployment.dl3      3.808e+04  3.726e+04   1.022   0.3645  
## hsassets.dl3         -2.651e-02  3.012e-02  -0.880   0.4284  
## CCI.dl3              -3.932e+02  2.636e+03  -0.149   0.8887  
## finalconsumption.dl3 -3.959e-01  2.139e-01  -1.850   0.1379  
## MRO.dl4              -3.414e+03  4.024e+04  -0.085   0.9365  
## OMO.dl4              -2.046e+00  2.307e+01  -0.089   0.9336  
## unemployment.dl4      5.065e+04  5.710e+04   0.887   0.4252  
## hsassets.dl4         -2.618e-02  3.759e-02  -0.696   0.5246  
## CCI.dl4               2.983e+01  4.171e+03   0.007   0.9946  
## finalconsumption.dl4  8.864e-01  5.788e-01   1.531   0.2004  
## MRO.dl5              -1.971e+04  3.920e+04  -0.503   0.6415  
## OMO.dl5              -9.934e+00  2.135e+01  -0.465   0.6659  
## unemployment.dl5      7.937e+04  7.302e+04   1.087   0.3382  
## hsassets.dl5          4.471e-03  3.699e-02   0.121   0.9096  
## CCI.dl5               1.501e+03  4.848e+03   0.310   0.7723  
## finalconsumption.dl5  6.396e-01  5.948e-01   1.075   0.3428  
## MRO.dl6              -3.082e+04  3.200e+04  -0.963   0.3899  
## OMO.dl6               1.985e+00  2.913e+01   0.068   0.9489  
## unemployment.dl6      1.111e+05  8.102e+04   1.372   0.2420  
## hsassets.dl6         -1.414e-02  5.255e-02  -0.269   0.8011  
## CCI.dl6               3.915e+03  5.672e+03   0.690   0.5280  
## finalconsumption.dl6  2.298e-01  7.107e-01   0.323   0.7626  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3389 on 4 degrees of freedom
## Multiple R-squared:  0.9971, Adjusted R-squared:  0.9667 
## F-statistic: 32.81 on 42 and 4 DF,  p-value: 0.001862
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      2      2      2      2 
## 
## $criteria
##                   1    2    3    4    5    6    7    8    9   10
## AIC(n) 1.725233e+01 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## HQ(n)  1.745695e+01 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## SC(n)  1.931086e+01 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## FPE(n) 4.245549e+07    0    0    0    0    0    0    0    0    0
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 1.000000000 0.984585598 0.853794918 0.601643749 0.369522689 0.002160951
## 
## Values of teststatistic and critical values of test:
## 
##            test 10pct  5pct   1pct
## r <= 5 |   0.05  6.50  8.18  11.65
## r <= 4 |  11.12 15.66 17.95  23.52
## r <= 3 |  33.21 28.71 31.52  37.22
## r <= 2 |  79.36 45.23 48.28  55.43
## r <= 1 | 179.50 66.49 70.60  78.87
## r = 0  | 784.70 85.18 90.39 104.20
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                        MRO.l3        OMO.l3 unemployment.l3   hsassets.l3
## MRO.l3           1.000000e+00  1.000000e+00    1.000000e+00  1.000000e+00
## OMO.l3           5.813504e-03  1.382640e-01    1.498658e-03 -2.026272e-02
## unemployment.l3 -3.214286e+00  3.120267e+02    1.066859e+00 -4.510428e+00
## hsassets.l3      1.521976e-06 -2.519329e-05    1.935560e-08 -1.161885e-05
## CCI.l3          -1.519472e-01 -2.028437e+01   -3.201207e-03 -3.850752e+00
## durablehs.l3     1.009241e+00  6.946468e+01   -1.619949e-01  3.332629e+00
##                        CCI.l3  durablehs.l3
## MRO.l3           1.000000e+00  1.0000000000
## OMO.l3           9.521055e-02  0.0069303569
## unemployment.l3 -5.301641e+01  0.6647163244
## hsassets.l3      4.015034e-05 -0.0000011502
## CCI.l3          -6.893355e+00  0.4508507752
## durablehs.l3     1.159872e+01  0.4702218487
## 
## Weights W:
## (This is the loading matrix)
## 
##                       MRO.l3        OMO.l3 unemployment.l3   hsassets.l3
## MRO.d          -1.747550e-01  -0.002168977    3.566086e-01  3.574325e-03
## OMO.d          -5.227125e+01   1.569858227   -5.647864e+02 -1.808129e-01
## unemployment.d  4.716436e-02  -0.001763833   -3.941686e-01  2.124384e-02
## hsassets.d     -2.030031e+04 306.311605642    3.368229e+05  1.482918e+04
## CCI.d           6.755020e-01   0.003374714    4.381478e+00 -5.166128e-02
## durablehs.d    -3.035797e-01  -0.005955248    6.932723e-01  2.036183e-03
##                       CCI.l3  durablehs.l3
## MRO.d           4.350792e-03 -1.332444e-03
## OMO.d          -1.481671e+00  1.513096e+00
## unemployment.d  1.554368e-03  9.438740e-04
## hsassets.d     -1.507389e+03 -4.417717e+02
## CCI.d           1.346434e-02  1.897667e-02
## durablehs.d    -1.786835e-03  1.371174e-03
## Response MRO.d :
## 
## Call:
## lm(formula = MRO.d ~ ect1 + ect2 + ect3 + ect4 + constant + MRO.dl1 + 
##     OMO.dl1 + unemployment.dl1 + hsassets.dl1 + CCI.dl1 + durablehs.dl1 + 
##     MRO.dl2 + OMO.dl2 + unemployment.dl2 + hsassets.dl2 + CCI.dl2 + 
##     durablehs.dl2 - 1, data = data.mat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.19686 -0.04342  0.01226  0.03562  0.21941 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)   
## ect1              1.833e-01  2.257e-01   0.812  0.44358   
## ect2             -8.538e-04  4.679e-04  -1.825  0.11078   
## ect3              2.493e-01  4.235e-01   0.589  0.57466   
## ect4             -2.460e-07  1.177e-07  -2.090  0.07499 . 
## constant          8.053e+00  4.582e+00   1.757  0.12225   
## MRO.dl1          -1.813e-01  3.065e-01  -0.592  0.57268   
## OMO.dl1           5.275e-04  4.881e-04   1.081  0.31568   
## unemployment.dl1  3.229e-01  3.063e-01   1.054  0.32675   
## hsassets.dl1     -4.572e-07  5.495e-07  -0.832  0.43281   
## CCI.dl1           1.171e-01  3.206e-02   3.653  0.00815 **
## durablehs.dl1    -4.605e-01  1.978e-01  -2.328  0.05274 . 
## MRO.dl2          -1.045e-01  3.186e-01  -0.328  0.75260   
## OMO.dl2           1.606e-04  4.991e-04   0.322  0.75697   
## unemployment.dl2 -2.860e-01  2.836e-01  -1.008  0.34687   
## hsassets.dl2     -2.486e-07  3.746e-07  -0.664  0.52815   
## CCI.dl2           8.031e-03  3.869e-02   0.208  0.84147   
## durablehs.dl2    -3.371e-01  1.537e-01  -2.193  0.06442 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1486 on 7 degrees of freedom
## Multiple R-squared:  0.9349, Adjusted R-squared:  0.7769 
## F-statistic: 5.915 on 17 and 7 DF,  p-value: 0.01169
## 
## 
## Response OMO.d :
## 
## Call:
## lm(formula = OMO.d ~ ect1 + ect2 + ect3 + ect4 + constant + MRO.dl1 + 
##     OMO.dl1 + unemployment.dl1 + hsassets.dl1 + CCI.dl1 + durablehs.dl1 + 
##     MRO.dl2 + OMO.dl2 + unemployment.dl2 + hsassets.dl2 + CCI.dl2 + 
##     durablehs.dl2 - 1, data = data.mat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -83.657 -23.106  -9.704  15.521 152.190 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)   
## ect1             -6.157e+02  1.313e+02  -4.690  0.00223 **
## ect2             -9.296e-01  2.721e-01  -3.416  0.01119 * 
## ect3              5.612e+01  2.463e+02   0.228  0.82628   
## ect4             -1.279e-04  6.845e-05  -1.869  0.10381   
## constant          5.794e+03  2.665e+03   2.174  0.06619 . 
## MRO.dl1          -6.026e+02  1.782e+02  -3.381  0.01175 * 
## OMO.dl1          -1.286e+00  2.839e-01  -4.531  0.00270 **
## unemployment.dl1  3.825e+01  1.781e+02   0.215  0.83609   
## hsassets.dl1     -9.879e-05  3.196e-04  -0.309  0.76621   
## CCI.dl1          -8.160e+01  1.865e+01  -4.376  0.00325 **
## durablehs.dl1     1.805e+02  1.150e+02   1.569  0.16065   
## MRO.dl2          -5.502e+02  1.853e+02  -2.969  0.02083 * 
## OMO.dl2          -1.130e+00  2.903e-01  -3.893  0.00595 **
## unemployment.dl2 -2.858e+01  1.649e+02  -0.173  0.86733   
## hsassets.dl2      1.940e-04  2.179e-04   0.891  0.40268   
## CCI.dl2          -1.854e+01  2.250e+01  -0.824  0.43706   
## durablehs.dl2     3.439e+02  8.941e+01   3.846  0.00633 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 86.42 on 7 degrees of freedom
## Multiple R-squared:  0.9231, Adjusted R-squared:  0.7363 
## F-statistic: 4.941 on 17 and 7 DF,  p-value: 0.01954
## 
## 
## Response unemployment.d :
## 
## Call:
## lm(formula = unemployment.d ~ ect1 + ect2 + ect3 + ect4 + constant + 
##     MRO.dl1 + OMO.dl1 + unemployment.dl1 + hsassets.dl1 + CCI.dl1 + 
##     durablehs.dl1 + MRO.dl2 + OMO.dl2 + unemployment.dl2 + hsassets.dl2 + 
##     CCI.dl2 + durablehs.dl2 - 1, data = data.mat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.165030 -0.049426  0.006364  0.037386  0.154051 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)   
## ect1             -3.275e-01  2.098e-01  -1.561  0.16254   
## ect2             -9.909e-04  4.350e-04  -2.278  0.05681 . 
## ect3             -1.218e+00  3.937e-01  -3.094  0.01746 * 
## ect4             -1.382e-07  1.094e-07  -1.263  0.24688   
## constant          1.316e+01  4.260e+00   3.089  0.01758 * 
## MRO.dl1           2.081e-01  2.849e-01   0.730  0.48893   
## OMO.dl1          -1.171e-04  4.538e-04  -0.258  0.80380   
## unemployment.dl1 -4.570e-01  2.847e-01  -1.605  0.15249   
## hsassets.dl1     -6.424e-09  5.108e-07  -0.013  0.99032   
## CCI.dl1           4.956e-03  2.981e-02   0.166  0.87266   
## durablehs.dl1     5.280e-02  1.839e-01   0.287  0.78228   
## MRO.dl2           3.048e-01  2.962e-01   1.029  0.33776   
## OMO.dl2          -4.292e-04  4.640e-04  -0.925  0.38570   
## unemployment.dl2 -9.755e-01  2.636e-01  -3.700  0.00766 **
## hsassets.dl2      6.699e-08  3.482e-07   0.192  0.85293   
## CCI.dl2           2.749e-02  3.597e-02   0.764  0.46968   
## durablehs.dl2    -8.434e-02  1.429e-01  -0.590  0.57365   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1381 on 7 degrees of freedom
## Multiple R-squared:  0.8265, Adjusted R-squared:  0.4052 
## F-statistic: 1.962 on 17 and 7 DF,  p-value: 0.1852
## 
## 
## Response hsassets.d :
## 
## Call:
## lm(formula = hsassets.d ~ ect1 + ect2 + ect3 + ect4 + constant + 
##     MRO.dl1 + OMO.dl1 + unemployment.dl1 + hsassets.dl1 + CCI.dl1 + 
##     durablehs.dl1 + MRO.dl2 + OMO.dl2 + unemployment.dl2 + hsassets.dl2 + 
##     CCI.dl2 + durablehs.dl2 - 1, data = data.mat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -123920  -29331    4887   36431  133536 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)  
## ect1              3.317e+05  1.561e+05   2.125   0.0712 .
## ect2              1.286e+02  3.236e+02   0.398   0.7028  
## ect3              4.533e+05  2.929e+05   1.548   0.1656  
## ect4             -2.044e-01  8.139e-02  -2.511   0.0403 *
## constant          1.132e+06  3.169e+06   0.357   0.7314  
## MRO.dl1          -2.325e+05  2.119e+05  -1.097   0.3089  
## OMO.dl1          -4.978e+01  3.376e+02  -0.147   0.8869  
## unemployment.dl1 -8.037e+04  2.118e+05  -0.379   0.7156  
## hsassets.dl1     -1.725e-01  3.800e-01  -0.454   0.6636  
## CCI.dl1          -6.879e+04  2.217e+04  -3.102   0.0173 *
## durablehs.dl1    -1.506e+04  1.368e+05  -0.110   0.9154  
## MRO.dl2           4.870e+04  2.204e+05   0.221   0.8314  
## OMO.dl2           1.951e+01  3.452e+02   0.057   0.9565  
## unemployment.dl2  3.922e+05  1.961e+05   2.000   0.0856 .
## hsassets.dl2      1.050e-02  2.591e-01   0.041   0.9688  
## CCI.dl2          -4.675e+04  2.676e+04  -1.747   0.1241  
## durablehs.dl2    -4.128e+04  1.063e+05  -0.388   0.7093  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 102800 on 7 degrees of freedom
## Multiple R-squared:  0.936,  Adjusted R-squared:  0.7806 
## F-statistic: 6.024 on 17 and 7 DF,  p-value: 0.01109
## 
## 
## Response CCI.d :
## 
## Call:
## lm(formula = CCI.d ~ ect1 + ect2 + ect3 + ect4 + constant + MRO.dl1 + 
##     OMO.dl1 + unemployment.dl1 + hsassets.dl1 + CCI.dl1 + durablehs.dl1 + 
##     MRO.dl2 + OMO.dl2 + unemployment.dl2 + hsassets.dl2 + CCI.dl2 + 
##     durablehs.dl2 - 1, data = data.mat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.71810 -0.35493 -0.04002  0.33853  1.14080 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)   
## ect1              5.009e+00  1.304e+00   3.840  0.00638 **
## ect2              1.201e-02  2.704e-03   4.441  0.00301 **
## ect3              3.789e+00  2.448e+00   1.548  0.16551   
## ect4              1.628e-06  6.801e-07   2.394  0.04789 * 
## constant         -1.043e+02  2.648e+01  -3.939  0.00561 **
## MRO.dl1           5.336e+00  1.771e+00   3.013  0.01957 * 
## OMO.dl1           6.444e-03  2.821e-03   2.285  0.05626 . 
## unemployment.dl1  3.302e-01  1.770e+00   0.187  0.85728   
## hsassets.dl1      3.786e-06  3.175e-06   1.192  0.27195   
## CCI.dl1          -2.396e-01  1.853e-01  -1.293  0.23709   
## durablehs.dl1     9.181e-01  1.143e+00   0.803  0.44821   
## MRO.dl2           5.859e+00  1.841e+00   3.182  0.01545 * 
## OMO.dl2           6.064e-03  2.884e-03   2.103  0.07359 . 
## unemployment.dl2  1.415e+00  1.639e+00   0.864  0.41638   
## hsassets.dl2      3.791e-06  2.165e-06   1.751  0.12336   
## CCI.dl2          -2.803e-01  2.236e-01  -1.254  0.25018   
## durablehs.dl2    -2.294e+00  8.884e-01  -2.583  0.03633 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8587 on 7 degrees of freedom
## Multiple R-squared:  0.941,  Adjusted R-squared:  0.7977 
## F-statistic: 6.566 on 17 and 7 DF,  p-value: 0.008606
## 
## 
## Response durablehs.d :
## 
## Call:
## lm(formula = durablehs.d ~ ect1 + ect2 + ect3 + ect4 + constant + 
##     MRO.dl1 + OMO.dl1 + unemployment.dl1 + hsassets.dl1 + CCI.dl1 + 
##     durablehs.dl1 + MRO.dl2 + OMO.dl2 + unemployment.dl2 + hsassets.dl2 + 
##     CCI.dl2 + durablehs.dl2 - 1, data = data.mat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.110033 -0.045890 -0.004932  0.048166  0.095473 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## ect1              3.858e-01  1.636e-01   2.358  0.05050 .  
## ect2             -1.591e-03  3.392e-04  -4.690  0.00224 ** 
## ect3             -1.520e-01  3.070e-01  -0.495  0.63576    
## ect4             -3.223e-07  8.531e-08  -3.777  0.00692 ** 
## constant          1.535e+01  3.321e+00   4.620  0.00243 ** 
## MRO.dl1          -5.105e-01  2.221e-01  -2.298  0.05515 .  
## OMO.dl1          -4.971e-04  3.538e-04  -1.405  0.20286    
## unemployment.dl1 -6.976e-01  2.220e-01  -3.142  0.01633 *  
## hsassets.dl1      8.249e-07  3.983e-07   2.071  0.07711 .  
## CCI.dl1          -8.554e-03  2.324e-02  -0.368  0.72371    
## durablehs.dl1    -7.420e-01  1.434e-01  -5.176  0.00129 ** 
## MRO.dl2           8.364e-02  2.310e-01   0.362  0.72792    
## OMO.dl2          -9.798e-04  3.618e-04  -2.708  0.03027 *  
## unemployment.dl2 -8.075e-02  2.056e-01  -0.393  0.70613    
## hsassets.dl2      1.894e-07  2.715e-07   0.697  0.50804    
## CCI.dl2           1.443e-01  2.804e-02   5.145  0.00133 ** 
## durablehs.dl2    -7.809e-01  1.114e-01  -7.008  0.00021 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1077 on 7 degrees of freedom
## Multiple R-squared:  0.9919, Adjusted R-squared:  0.9723 
## F-statistic: 50.49 on 17 and 7 DF,  p-value: 1.11e-05
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      6      6      6      7 
## 
## $criteria
##                  1           2          3          4           5    6    7    8
## AIC(n)    8.925111    7.270705   5.530586   3.282407 -7.80541952 -Inf -Inf -Inf
## HQ(n)     9.770941    8.856635   7.856617   6.348538 -3.99918706 -Inf -Inf -Inf
## SC(n)    11.218767   11.571310  11.838140  11.596910  2.51603233 -Inf -Inf -Inf
## FPE(n) 7752.753211 1780.507796 532.109247 201.101109  0.07718225  NaN    0    0
##           9   10
## AIC(n) -Inf -Inf
## HQ(n)  -Inf -Inf
## SC(n)  -Inf -Inf
## FPE(n)    0    0
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 7.654872e+05 1.000000e+00 9.999999e-01 9.660297e-01 7.855361e-01
## [6] 7.025982e-01 2.397441e-01
## 
## Values of teststatistic and critical values of test:
## 
##             test  10pct   5pct   1pct
## r <= 6 |   12.88   6.50   8.18  11.65
## r <= 5 |   69.88  15.66  17.95  23.52
## r <= 4 |  142.24  28.71  31.52  37.22
## r <= 3 |  301.21  45.23  48.28  55.43
## r <= 2 | 1084.06  66.49  70.60  78.87
## r <= 1 |     NaN  85.18  90.39 104.20
## r = 0  |     NaN 118.99 124.25 136.06
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                               MRO.l6        OMO.l6        GDP.l6
## MRO.l6                  1.000000e+00  1.000000e+00  1.000000e+00
## OMO.l6                  2.100636e-03 -2.878012e-03  3.360359e-03
## GDP.l6                 -4.395066e+01 -1.232124e-07  2.079349e-06
## unemployment.l6         7.278035e-01  7.114716e-01 -4.569070e+00
## loanshsannualgrowth.l6  1.913711e+00  1.838722e+00 -1.084856e+00
## CCI.l6                 -6.301577e-02  4.820420e-02 -1.120589e-01
## finalconsumption.l6     2.354658e-06 -2.519107e-06 -2.517958e-05
##                        unemployment.l6 loanshsannualgrowth.l6        CCI.l6
## MRO.l6                    1.000000e+00           1.0000000000  1.000000e+00
## OMO.l6                    7.373140e-03           0.0036439574  5.589557e-03
## GDP.l6                   -8.138147e+00          -1.3570740684 -6.333572e+00
## unemployment.l6          -1.153390e+01          -4.1201501871 -4.434389e+00
## loanshsannualgrowth.l6   -4.456692e+00          -1.4634037903 -1.561496e+00
## CCI.l6                   -1.791637e-01          -0.0808928187 -6.041236e-02
## finalconsumption.l6      -6.604416e-05          -0.0000244023 -2.119001e-05
##                        finalconsumption.l6
## MRO.l6                        1.000000e+00
## OMO.l6                        1.043314e-04
## GDP.l6                       -6.424780e+00
## unemployment.l6               1.446468e+00
## loanshsannualgrowth.l6        1.371781e+00
## CCI.l6                       -7.475148e-03
## finalconsumption.l6           3.285635e-06
## 
## Weights W:
## (This is the loading matrix)
## 
##                              MRO.l6        OMO.l6        GDP.l6 unemployment.l6
## MRO.d                  5.623619e-01 -1.989026e-01  7.532306e-01     -0.23961500
## OMO.d                 -1.390669e+00 -1.187896e+02 -2.016401e+01    233.81158977
## GDP.d                  1.026297e-02  5.158594e-03 -5.050059e-02      0.01032482
## unemployment.d         7.374073e-01 -6.493780e-02  3.461231e-02      0.05405793
## loanshsannualgrowth.d -1.584697e-02 -2.184747e-01 -2.343017e-01      0.05526582
## CCI.d                  1.704855e+01 -2.028079e+00  4.454542e+00      0.87895088
## finalconsumption.d    -9.095201e+03  1.774696e+04  2.500487e+04   -165.88390130
##                       loanshsannualgrowth.l6        CCI.l6 finalconsumption.l6
## MRO.d                            -0.46791294    0.17104695       -3.588450e-01
## OMO.d                           -55.66530498 -211.78850486        3.016548e+02
## GDP.d                            -0.04492638    0.01108342       -2.532564e-02
## unemployment.d                    0.15622740   -0.26223021       -8.891129e-01
## loanshsannualgrowth.d            -0.11267841    0.15926493        5.848811e-02
## CCI.d                            13.83981248   -1.86454124        2.734992e+00
## finalconsumption.d             9837.32074801 8196.99106448        2.052009e+04
## Response MRO.d :
## 
## Call:
## lm(formula = MRO.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + ect6 + 
##     constant + MRO.dl1 + OMO.dl1 + GDP.dl1 + unemployment.dl1 + 
##     loanshsannualgrowth.dl1 + CCI.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + GDP.dl2 + unemployment.dl2 + loanshsannualgrowth.dl2 + 
##     CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + GDP.dl3 + 
##     unemployment.dl3 + loanshsannualgrowth.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + GDP.dl4 + unemployment.dl4 + loanshsannualgrowth.dl4 + 
##     CCI.dl4 + finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + GDP.dl5 + 
##     unemployment.dl5 + loanshsannualgrowth.dl5 + CCI.dl5 + finalconsumption.dl5 - 
##     1, data = data.mat)
## 
## Residuals:
##          1          2          3          4          5          6          7 
## -0.0006958  0.0076016 -0.0086864  0.0004695  0.0055816  0.0049366 -0.0160179 
##          8          9         10         11         12         13         14 
##  0.0141768 -0.0044953  0.0044844 -0.0173373  0.0104212 -0.0407265  0.0138735 
##         15         16         17         18         19         20         21 
##  0.0094217  0.0366599 -0.0080771 -0.0726944  0.0290744 -0.0219480  0.0504751 
##         22         23         24         25         26         27         28 
##  0.0097289 -0.0143565 -0.0099596 -0.0010490  0.0090404  0.0082764 -0.0339880 
##         29         30         31         32         33         34         35 
##  0.0112047  0.0300112 -0.0043443 -0.0062832 -0.0083747  0.0015510 -0.0052183 
##         36         37         38         39         40         41         42 
##  0.0133028 -0.0037334 -0.0194923  0.0126063 -0.0059901  0.0119828 -0.0077245 
##         43         44         45         46         47 
## -0.0053848  0.0104541 -0.0155766 -0.0305076  0.0573269 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## ect1                     5.278e-01  3.372e-01   1.565 0.178305    
## ect2                     1.659e-03  1.174e-03   1.414 0.216590    
## ect3                    -2.091e+01  9.055e+00  -2.309 0.068992 .  
## ect4                     7.211e-01  1.284e+00   0.562 0.598590    
## ect5                     1.278e+00  6.118e-01   2.090 0.090927 .  
## ect6                    -5.568e-02  2.741e-02  -2.031 0.097964 .  
## constant                 5.916e+00  2.251e+01   0.263 0.803199    
## MRO.dl1                 -2.017e+00  2.753e-01  -7.330 0.000741 ***
## OMO.dl1                  6.290e-04  3.083e-04   2.040 0.096886 .  
## GDP.dl1                 -1.782e+01  4.668e+00  -3.818 0.012395 *  
## unemployment.dl1         2.468e-02  3.425e-01   0.072 0.945356    
## loanshsannualgrowth.dl1  7.634e-02  7.211e-01   0.106 0.919807    
## CCI.dl1                 -8.749e-03  1.383e-02  -0.633 0.554678    
## finalconsumption.dl1    -4.527e-06  8.402e-06  -0.539 0.613147    
## MRO.dl2                 -2.217e+00  4.277e-01  -5.183 0.003516 ** 
## OMO.dl2                  1.896e-03  5.153e-04   3.680 0.014287 *  
## GDP.dl2                 -2.062e+01  6.181e+00  -3.336 0.020641 *  
## unemployment.dl2         9.767e-01  6.507e-01   1.501 0.193644    
## loanshsannualgrowth.dl2  4.963e-02  3.262e-01   0.152 0.885008    
## CCI.dl2                  9.857e-03  1.134e-02   0.869 0.424428    
## finalconsumption.dl2    -4.141e-06  2.686e-06  -1.541 0.183846    
## MRO.dl3                 -6.739e-01  2.581e-01  -2.610 0.047644 *  
## OMO.dl3                  3.840e-03  7.319e-04   5.247 0.003335 ** 
## GDP.dl3                 -1.746e+01  5.558e+00  -3.141 0.025644 *  
## unemployment.dl3         8.378e-01  7.413e-01   1.130 0.309714    
## loanshsannualgrowth.dl3  5.225e-01  2.501e-01   2.090 0.090950 .  
## CCI.dl3                  3.294e-03  2.016e-02   0.163 0.876644    
## finalconsumption.dl3     1.156e-06  6.325e-06   0.183 0.862120    
## MRO.dl4                  5.528e-01  3.167e-01   1.745 0.141364    
## OMO.dl4                  3.661e-03  7.117e-04   5.144 0.003634 ** 
## GDP.dl4                 -3.294e+01  8.844e+00  -3.725 0.013643 *  
## unemployment.dl4         1.014e+00  8.352e-01   1.214 0.278861    
## loanshsannualgrowth.dl4  4.453e-01  2.794e-01   1.594 0.171815    
## CCI.dl4                 -5.694e-03  1.256e-02  -0.453 0.669303    
## finalconsumption.dl4     3.851e-06  8.696e-06   0.443 0.676409    
## MRO.dl5                  8.328e-01  2.553e-01   3.263 0.022377 *  
## OMO.dl5                  2.664e-03  7.959e-04   3.347 0.020392 *  
## GDP.dl5                 -4.087e+01  1.397e+01  -2.925 0.032807 *  
## unemployment.dl5         1.773e-01  9.134e-01   0.194 0.853706    
## loanshsannualgrowth.dl5  1.621e+00  6.265e-01   2.588 0.048945 *  
## CCI.dl5                 -2.285e-02  1.568e-02  -1.457 0.204853    
## finalconsumption.dl5     6.298e-06  4.694e-06   1.342 0.237375    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.06643 on 5 degrees of freedom
## Multiple R-squared:  0.9907, Adjusted R-squared:  0.9127 
## F-statistic:  12.7 on 42 and 5 DF,  p-value: 0.004831
## 
## 
## Response OMO.d :
## 
## Call:
## lm(formula = OMO.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + ect6 + 
##     constant + MRO.dl1 + OMO.dl1 + GDP.dl1 + unemployment.dl1 + 
##     loanshsannualgrowth.dl1 + CCI.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + GDP.dl2 + unemployment.dl2 + loanshsannualgrowth.dl2 + 
##     CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + GDP.dl3 + 
##     unemployment.dl3 + loanshsannualgrowth.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + GDP.dl4 + unemployment.dl4 + loanshsannualgrowth.dl4 + 
##     CCI.dl4 + finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + GDP.dl5 + 
##     unemployment.dl5 + loanshsannualgrowth.dl5 + CCI.dl5 + finalconsumption.dl5 - 
##     1, data = data.mat)
## 
## Residuals:
##        1        2        3        4        5        6        7        8 
##   3.0672 -10.3385  13.2260  -0.2493 -19.5512   7.2276  11.9175 -35.7842 
##        9       10       11       12       13       14       15       16 
##  21.2422  -4.3906  16.5952  -1.3381  34.5427 -23.7360   2.6872 -50.3794 
##       17       18       19       20       21       22       23       24 
##  43.6315  68.7425 -23.4961   1.0027 -56.8569 -11.6143   3.7606  23.6928 
##       25       26       27       28       29       30       31       32 
##  -2.9595 -19.9590  15.6485  39.5119 -21.2734 -34.9730   1.9906  23.1773 
##       33       34       35       36       37       38       39       40 
##  -6.8203   7.7085  -6.3829  -6.3629  19.3577 -12.7588   4.5367   3.0119 
##       41       42       43       44       45       46       47 
## -32.0653  35.7828 -27.7023  33.6120  -2.0952  20.9757 -45.5625 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)  
## ect1                    -1.299e+02  3.947e+02  -0.329   0.7554  
## ect2                     7.011e-01  1.374e+00   0.510   0.6315  
## ect3                    -2.363e+03  1.060e+04  -0.223   0.8324  
## ect4                    -1.490e+03  1.503e+03  -0.991   0.3672  
## ect5                    -7.447e+02  7.162e+02  -1.040   0.3461  
## ect6                    -3.075e+01  3.209e+01  -0.958   0.3819  
## constant                 2.995e+04  2.635e+04   1.136   0.3073  
## MRO.dl1                  1.338e+02  3.222e+02   0.415   0.6953  
## OMO.dl1                 -1.049e+00  3.610e-01  -2.905   0.0336 *
## GDP.dl1                  6.268e+03  5.465e+03   1.147   0.3033  
## unemployment.dl1        -5.336e+02  4.009e+02  -1.331   0.2407  
## loanshsannualgrowth.dl1 -4.144e+02  8.442e+02  -0.491   0.6443  
## CCI.dl1                  1.484e+01  1.618e+01   0.917   0.4012  
## finalconsumption.dl1    -5.460e-03  9.836e-03  -0.555   0.6027  
## MRO.dl2                  4.801e+02  5.007e+02   0.959   0.3817  
## OMO.dl2                 -7.596e-01  6.032e-01  -1.259   0.2635  
## GDP.dl2                  9.416e+03  7.236e+03   1.301   0.2499  
## unemployment.dl2        -1.187e+03  7.617e+02  -1.558   0.1799  
## loanshsannualgrowth.dl2 -3.296e+01  3.818e+02  -0.086   0.9346  
## CCI.dl2                 -4.880e+00  1.327e+01  -0.368   0.7282  
## finalconsumption.dl2     2.911e-03  3.145e-03   0.926   0.3970  
## MRO.dl3                 -7.417e+01  3.022e+02  -0.245   0.8159  
## OMO.dl3                 -1.787e+00  8.568e-01  -2.086   0.0914 .
## GDP.dl3                  4.945e+03  6.506e+03   0.760   0.4815  
## unemployment.dl3        -1.205e+03  8.678e+02  -1.388   0.2237  
## loanshsannualgrowth.dl3 -6.607e+02  2.927e+02  -2.257   0.0736 .
## CCI.dl3                  4.159e+00  2.360e+01   0.176   0.8671  
## finalconsumption.dl3    -3.866e-03  7.404e-03  -0.522   0.6239  
## MRO.dl4                 -7.917e+02  3.707e+02  -2.135   0.0858 .
## OMO.dl4                 -1.252e+00  8.331e-01  -1.503   0.1931  
## GDP.dl4                  2.630e+03  1.035e+04   0.254   0.8096  
## unemployment.dl4        -1.443e+03  9.777e+02  -1.476   0.2000  
## loanshsannualgrowth.dl4 -5.533e+02  3.270e+02  -1.692   0.1515  
## CCI.dl4                 -2.449e+01  1.470e+01  -1.665   0.1567  
## finalconsumption.dl4    -1.051e-02  1.018e-02  -1.032   0.3492  
## MRO.dl5                 -5.885e+02  2.988e+02  -1.969   0.1060  
## OMO.dl5                 -6.494e-01  9.317e-01  -0.697   0.5169  
## GDP.dl5                  1.121e+04  1.635e+04   0.685   0.5236  
## unemployment.dl5        -1.266e+03  1.069e+03  -1.184   0.2895  
## loanshsannualgrowth.dl5 -1.146e+03  7.334e+02  -1.563   0.1788  
## CCI.dl5                 -2.006e+01  1.835e+01  -1.093   0.3242  
## finalconsumption.dl5    -8.993e-03  5.495e-03  -1.637   0.1626  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 77.76 on 5 degrees of freedom
## Multiple R-squared:  0.963,  Adjusted R-squared:  0.6524 
## F-statistic:   3.1 on 42 and 5 DF,  p-value: 0.1034
## 
## 
## Response GDP.d :
## 
## Call:
## lm(formula = GDP.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + ect6 + 
##     constant + MRO.dl1 + OMO.dl1 + GDP.dl1 + unemployment.dl1 + 
##     loanshsannualgrowth.dl1 + CCI.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + GDP.dl2 + unemployment.dl2 + loanshsannualgrowth.dl2 + 
##     CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + GDP.dl3 + 
##     unemployment.dl3 + loanshsannualgrowth.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + GDP.dl4 + unemployment.dl4 + loanshsannualgrowth.dl4 + 
##     CCI.dl4 + finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + GDP.dl5 + 
##     unemployment.dl5 + loanshsannualgrowth.dl5 + CCI.dl5 + finalconsumption.dl5 - 
##     1, data = data.mat)
## 
## Residuals:
##          1          2          3          4          5          6          7 
## -8.285e-05  7.196e-04 -1.295e-03  9.004e-04 -7.242e-05 -4.875e-05  2.230e-04 
##          8          9         10         11         12         13         14 
##  1.574e-04  1.477e-04 -2.154e-04 -1.064e-03  7.668e-04 -2.008e-03 -5.097e-05 
##         15         16         17         18         19         20         21 
##  3.852e-04  1.450e-03  2.429e-03 -7.242e-03  2.510e-03 -2.094e-03  3.739e-03 
##         22         23         24         25         26         27         28 
##  1.636e-03 -7.321e-04 -1.586e-03  6.695e-05  5.731e-04  1.161e-03 -2.379e-03 
##         29         30         31         32         33         34         35 
##  2.838e-05  2.106e-03 -3.499e-04 -3.475e-04  6.820e-04 -1.914e-03  4.554e-04 
##         36         37         38         39         40         41         42 
##  7.540e-04  9.807e-04 -1.901e-03 -1.504e-03  2.603e-03  5.719e-04 -1.469e-03 
##         43         44         45         46         47 
## -3.249e-04  6.504e-04  1.139e-03 -4.572e-03  4.416e-03 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)  
## ect1                    -6.230e-02  3.004e-02  -2.074   0.0928 .
## ect2                    -1.964e-04  1.046e-04  -1.878   0.1191  
## ect3                    -3.816e-01  8.068e-01  -0.473   0.6562  
## ect4                     2.561e-01  1.144e-01   2.238   0.0754 .
## ect5                     7.925e-02  5.451e-02   1.454   0.2057  
## ect6                     6.609e-03  2.442e-03   2.706   0.0425 *
## constant                -3.605e+00  2.006e+00  -1.797   0.1322  
## MRO.dl1                  9.640e-03  2.453e-02   0.393   0.7105  
## OMO.dl1                  9.844e-06  2.747e-05   0.358   0.7348  
## GDP.dl1                 -2.920e-01  4.159e-01  -0.702   0.5140  
## unemployment.dl1         8.902e-02  3.052e-02   2.917   0.0331 *
## loanshsannualgrowth.dl1  1.088e-01  6.425e-02   1.693   0.1512  
## CCI.dl1                 -7.739e-04  1.232e-03  -0.628   0.5574  
## finalconsumption.dl1     1.871e-06  7.486e-07   2.500   0.0545 .
## MRO.dl2                  1.165e-02  3.811e-02   0.306   0.7721  
## OMO.dl2                 -8.199e-05  4.591e-05  -1.786   0.1342  
## GDP.dl2                 -6.296e-01  5.507e-01  -1.143   0.3047  
## unemployment.dl2         1.056e-01  5.797e-02   1.821   0.1283  
## loanshsannualgrowth.dl2 -1.255e-02  2.906e-02  -0.432   0.6837  
## CCI.dl2                 -1.393e-03  1.010e-03  -1.379   0.2263  
## finalconsumption.dl2     2.072e-07  2.393e-07   0.866   0.4262  
## MRO.dl3                  1.958e-02  2.300e-02   0.851   0.4335  
## OMO.dl3                  4.706e-05  6.521e-05   0.722   0.5028  
## GDP.dl3                 -1.614e+00  4.952e-01  -3.259   0.0225 *
## unemployment.dl3         1.405e-01  6.605e-02   2.126   0.0868 .
## loanshsannualgrowth.dl3  1.556e-02  2.228e-02   0.698   0.5162  
## CCI.dl3                 -3.125e-03  1.797e-03  -1.739   0.1425  
## finalconsumption.dl3     1.236e-06  5.636e-07   2.193   0.0798 .
## MRO.dl4                  1.236e-02  2.822e-02   0.438   0.6796  
## OMO.dl4                 -1.081e-04  6.341e-05  -1.705   0.1489  
## GDP.dl4                 -4.483e-01  7.880e-01  -0.569   0.5940  
## unemployment.dl4         1.553e-01  7.441e-02   2.087   0.0912 .
## loanshsannualgrowth.dl4  6.029e-02  2.489e-02   2.422   0.0600 .
## CCI.dl4                  8.652e-04  1.119e-03   0.773   0.4744  
## finalconsumption.dl4     1.637e-06  7.749e-07   2.113   0.0883 .
## MRO.dl5                 -6.564e-02  2.274e-02  -2.886   0.0343 *
## OMO.dl5                 -1.075e-04  7.091e-05  -1.516   0.1899  
## GDP.dl5                 -1.602e+00  1.245e+00  -1.287   0.2543  
## unemployment.dl5         2.232e-01  8.138e-02   2.742   0.0407 *
## loanshsannualgrowth.dl5  8.514e-02  5.582e-02   1.525   0.1877  
## CCI.dl5                  8.020e-04  1.397e-03   0.574   0.5908  
## finalconsumption.dl5     5.314e-07  4.182e-07   1.271   0.2598  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.005919 on 5 degrees of freedom
## Multiple R-squared:  0.9824, Adjusted R-squared:  0.8348 
## F-statistic: 6.655 on 42 and 5 DF,  p-value: 0.02114
## 
## 
## Response unemployment.d :
## 
## Call:
## lm(formula = unemployment.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + 
##     ect6 + constant + MRO.dl1 + OMO.dl1 + GDP.dl1 + unemployment.dl1 + 
##     loanshsannualgrowth.dl1 + CCI.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + GDP.dl2 + unemployment.dl2 + loanshsannualgrowth.dl2 + 
##     CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + GDP.dl3 + 
##     unemployment.dl3 + loanshsannualgrowth.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + GDP.dl4 + unemployment.dl4 + loanshsannualgrowth.dl4 + 
##     CCI.dl4 + finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + GDP.dl5 + 
##     unemployment.dl5 + loanshsannualgrowth.dl5 + CCI.dl5 + finalconsumption.dl5 - 
##     1, data = data.mat)
## 
## Residuals:
##          1          2          3          4          5          6          7 
##  0.0062732  0.0097675 -0.0313398  0.0348057  0.0154670 -0.0345319  0.0240909 
##          8          9         10         11         12         13         14 
##  0.0258023 -0.0261837 -0.0388022 -0.0119950 -0.0107685 -0.0003642  0.0133640 
##         15         16         17         18         19         20         21 
## -0.0317092  0.0175248 -0.0447077 -0.0495551  0.0972761 -0.0088640  0.0496258 
##         22         23         24         25         26         27         28 
##  0.0023810 -0.0035000 -0.0450111 -0.0025866  0.0035860 -0.0286335  0.0267613 
##         29         30         31         32         33         34         35 
##  0.0406944 -0.0045963 -0.0338454 -0.0012846  0.0656169 -0.0753368  0.0124959 
##         36         37         38         39         40         41         42 
## -0.0021818  0.0503039 -0.0035263 -0.1085942  0.0739356  0.0442580 -0.1198794 
##         43         44         45         46         47 
##  0.0322643 -0.0299483  0.0902944 -0.0506113  0.0617677 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)  
## ect1                     5.252e-01  6.981e-01   0.752   0.4858  
## ect2                     1.081e-03  2.430e-03   0.445   0.6749  
## ect3                    -2.569e+01  1.875e+01  -1.370   0.2290  
## ect4                     1.334e-01  2.658e+00   0.050   0.9619  
## ect5                     9.454e-01  1.267e+00   0.746   0.4890  
## ect6                    -5.177e-02  5.675e-02  -0.912   0.4035  
## constant                 3.101e+01  4.661e+01   0.665   0.5353  
## MRO.dl1                 -2.503e-01  5.699e-01  -0.439   0.6789  
## OMO.dl1                 -1.550e-04  6.384e-04  -0.243   0.8178  
## GDP.dl1                 -5.204e+00  9.665e+00  -0.538   0.6134  
## unemployment.dl1        -6.038e-01  7.091e-01  -0.852   0.4333  
## loanshsannualgrowth.dl1  1.162e+00  1.493e+00   0.779   0.4714  
## CCI.dl1                 -1.268e-02  2.862e-02  -0.443   0.6763  
## finalconsumption.dl1     9.171e-06  1.740e-05   0.527   0.6206  
## MRO.dl2                 -8.802e-01  8.855e-01  -0.994   0.3659  
## OMO.dl2                 -9.722e-04  1.067e-03  -0.911   0.4039  
## GDP.dl2                 -1.344e+01  1.280e+01  -1.050   0.3417  
## unemployment.dl2        -3.672e-01  1.347e+00  -0.273   0.7961  
## loanshsannualgrowth.dl2  2.941e-01  6.753e-01   0.436   0.6813  
## CCI.dl2                 -2.783e-02  2.348e-02  -1.185   0.2891  
## finalconsumption.dl2    -2.363e-06  5.562e-06  -0.425   0.6885  
## MRO.dl3                 -6.372e-01  5.345e-01  -1.192   0.2867  
## OMO.dl3                  1.359e-03  1.515e-03   0.897   0.4108  
## GDP.dl3                 -8.657e+00  1.151e+01  -0.752   0.4858  
## unemployment.dl3        -1.227e-01  1.535e+00  -0.080   0.9394  
## loanshsannualgrowth.dl3 -5.757e-01  5.177e-01  -1.112   0.3167  
## CCI.dl3                 -5.603e-02  4.175e-02  -1.342   0.2373  
## finalconsumption.dl3    -9.035e-07  1.310e-05  -0.069   0.9477  
## MRO.dl4                  5.008e-01  6.557e-01   0.764   0.4795  
## OMO.dl4                  1.903e-03  1.473e-03   1.291   0.2531  
## GDP.dl4                 -1.847e+01  1.831e+01  -1.009   0.3593  
## unemployment.dl4        -3.648e-01  1.729e+00  -0.211   0.8412  
## loanshsannualgrowth.dl4 -1.010e-01  5.784e-01  -0.175   0.8683  
## CCI.dl4                 -6.176e-02  2.600e-02  -2.375   0.0636 .
## finalconsumption.dl4     4.432e-06  1.801e-05   0.246   0.8153  
## MRO.dl5                  5.509e-01  5.285e-01   1.042   0.3450  
## OMO.dl5                  1.938e-03  1.648e-03   1.176   0.2925  
## GDP.dl5                 -3.709e+01  2.892e+01  -1.283   0.2559  
## unemployment.dl5        -4.175e-01  1.891e+00  -0.221   0.8340  
## loanshsannualgrowth.dl5  6.424e-01  1.297e+00   0.495   0.6414  
## CCI.dl5                 -7.502e-02  3.246e-02  -2.311   0.0688 .
## finalconsumption.dl5    -1.588e-06  9.718e-06  -0.163   0.8766  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1375 on 5 degrees of freedom
## Multiple R-squared:  0.956,  Adjusted R-squared:  0.5865 
## F-statistic: 2.587 on 42 and 5 DF,  p-value: 0.1448
## 
## 
## Response loanshsannualgrowth.d :
## 
## Call:
## lm(formula = loanshsannualgrowth.d ~ ect1 + ect2 + ect3 + ect4 + 
##     ect5 + ect6 + constant + MRO.dl1 + OMO.dl1 + GDP.dl1 + unemployment.dl1 + 
##     loanshsannualgrowth.dl1 + CCI.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + GDP.dl2 + unemployment.dl2 + loanshsannualgrowth.dl2 + 
##     CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + GDP.dl3 + 
##     unemployment.dl3 + loanshsannualgrowth.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + GDP.dl4 + unemployment.dl4 + loanshsannualgrowth.dl4 + 
##     CCI.dl4 + finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + GDP.dl5 + 
##     unemployment.dl5 + loanshsannualgrowth.dl5 + CCI.dl5 + finalconsumption.dl5 - 
##     1, data = data.mat)
## 
## Residuals:
##          1          2          3          4          5          6          7 
## -0.0027823  0.0018151  0.0023853 -0.0054298 -0.0017366  0.0104097 -0.0075512 
##          8          9         10         11         12         13         14 
## -0.0060168  0.0076353  0.0095406 -0.0053531  0.0006276 -0.0060664 -0.0038817 
##         15         16         17         18         19         20         21 
##  0.0197403 -0.0031300  0.0118633 -0.0339138  0.0007797  0.0074866  0.0028411 
##         22         23         24         25         26         27         28 
##  0.0062102 -0.0073681  0.0040221  0.0049834 -0.0006805  0.0039055 -0.0161488 
##         29         30         31         32         33         34         35 
## -0.0028249  0.0135913  0.0043436 -0.0054294 -0.0140611  0.0137635  0.0039955 
##         36         37         38         39         40         41         42 
## -0.0049765 -0.0071784 -0.0035740  0.0234063 -0.0103099 -0.0159641  0.0340281 
##         43         44         45         46         47 
## -0.0155394  0.0031423 -0.0131650 -0.0073398  0.0099051 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)  
## ect1                    -3.582e-01  1.762e-01  -2.033   0.0977 .
## ect2                     7.132e-04  6.132e-04   1.163   0.2973  
## ect3                    -9.849e-01  4.731e+00  -0.208   0.8433  
## ect4                     3.037e-02  6.708e-01   0.045   0.9656  
## ect5                    -4.916e-01  3.197e-01  -1.538   0.1847  
## ect6                     5.776e-03  1.432e-02   0.403   0.7034  
## constant                -1.581e+00  1.176e+01  -0.134   0.8983  
## MRO.dl1                 -4.892e-02  1.438e-01  -0.340   0.7476  
## OMO.dl1                  3.965e-04  1.611e-04   2.461   0.0571 .
## GDP.dl1                  1.931e+00  2.439e+00   0.792   0.4644  
## unemployment.dl1        -7.904e-02  1.790e-01  -0.442   0.6772  
## loanshsannualgrowth.dl1 -5.214e-01  3.768e-01  -1.384   0.2250  
## CCI.dl1                  4.846e-03  7.224e-03   0.671   0.5321  
## finalconsumption.dl1     2.459e-06  4.390e-06   0.560   0.5995  
## MRO.dl2                 -2.922e-01  2.235e-01  -1.307   0.2480  
## OMO.dl2                 -2.725e-04  2.692e-04  -1.012   0.3580  
## GDP.dl2                 -2.044e+00  3.230e+00  -0.633   0.5547  
## unemployment.dl2        -5.659e-02  3.400e-01  -0.166   0.8743  
## loanshsannualgrowth.dl2 -2.952e-01  1.704e-01  -1.732   0.1438  
## CCI.dl2                  9.290e-03  5.925e-03   1.568   0.1777  
## finalconsumption.dl2    -4.436e-06  1.404e-06  -3.161   0.0251 *
## MRO.dl3                 -4.566e-01  1.349e-01  -3.386   0.0196 *
## OMO.dl3                  5.230e-04  3.824e-04   1.368   0.2297  
## GDP.dl3                 -1.271e+00  2.904e+00  -0.438   0.6800  
## unemployment.dl3         1.025e-01  3.873e-01   0.265   0.8019  
## loanshsannualgrowth.dl3 -3.893e-01  1.307e-01  -2.980   0.0308 *
## CCI.dl3                  2.867e-03  1.054e-02   0.272   0.7964  
## finalconsumption.dl3     1.531e-06  3.305e-06   0.463   0.6626  
## MRO.dl4                 -2.355e-01  1.655e-01  -1.423   0.2140  
## OMO.dl4                  4.311e-04  3.719e-04   1.159   0.2987  
## GDP.dl4                  4.024e+00  4.621e+00   0.871   0.4237  
## unemployment.dl4         1.374e-01  4.364e-01   0.315   0.7656  
## loanshsannualgrowth.dl4 -5.807e-01  1.460e-01  -3.978   0.0105 *
## CCI.dl4                  1.543e-02  6.563e-03   2.351   0.0655 .
## finalconsumption.dl4     1.593e-06  4.544e-06   0.351   0.7402  
## MRO.dl5                 -3.715e-01  1.334e-01  -2.785   0.0387 *
## OMO.dl5                  8.015e-04  4.158e-04   1.927   0.1119  
## GDP.dl5                 -5.020e+00  7.299e+00  -0.688   0.5222  
## unemployment.dl5        -8.820e-03  4.773e-01  -0.018   0.9860  
## loanshsannualgrowth.dl5 -5.283e-01  3.274e-01  -1.614   0.1675  
## CCI.dl5                 -1.889e-03  8.192e-03  -0.231   0.8268  
## finalconsumption.dl5    -2.725e-06  2.453e-06  -1.111   0.3171  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03471 on 5 degrees of freedom
## Multiple R-squared:  0.9967, Adjusted R-squared:  0.9685 
## F-statistic: 35.46 on 42 and 5 DF,  p-value: 0.0004095
## 
## 
## Response CCI.d :
## 
## Call:
## lm(formula = CCI.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + ect6 + 
##     constant + MRO.dl1 + OMO.dl1 + GDP.dl1 + unemployment.dl1 + 
##     loanshsannualgrowth.dl1 + CCI.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + GDP.dl2 + unemployment.dl2 + loanshsannualgrowth.dl2 + 
##     CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + GDP.dl3 + 
##     unemployment.dl3 + loanshsannualgrowth.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + GDP.dl4 + unemployment.dl4 + loanshsannualgrowth.dl4 + 
##     CCI.dl4 + finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + GDP.dl5 + 
##     unemployment.dl5 + loanshsannualgrowth.dl5 + CCI.dl5 + finalconsumption.dl5 - 
##     1, data = data.mat)
## 
## Residuals:
##        1        2        3        4        5        6        7        8 
##  0.02089 -0.21171  0.49789 -0.25157 -0.12497  0.37558 -0.20852 -0.63640 
##        9       10       11       12       13       14       15       16 
##  0.38353  0.04043  0.08274 -0.53369  0.92117 -0.32737  0.89337 -1.37974 
##       17       18       19       20       21       22       23       24 
## -0.64623  1.15324  0.51403  1.41790 -1.56577 -0.58509 -0.35640  0.73908 
##       25       26       27       28       29       30       31       32 
##  0.22496 -0.65867 -0.54259  1.13948  0.31976 -0.65214 -0.18291  0.18384 
##       33       34       35       36       37       38       39       40 
## -0.44029  0.89286  0.08390 -0.86900  0.28010  0.22687  0.80018 -0.89526 
##       41       42       43       44       45       46       47 
## -1.25824  1.80795 -1.09068  0.13665 -0.12011  1.18133 -0.78035 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)  
## ect1                     3.273e+01  1.171e+01   2.794   0.0383 *
## ect2                     1.039e-01  4.077e-02   2.550   0.0513 .
## ect3                    -7.810e+02  3.146e+02  -2.483   0.0557 .
## ect4                    -6.799e+01  4.460e+01  -1.524   0.1879  
## ect5                     3.571e+00  2.125e+01   0.168   0.8732  
## ect6                    -2.861e+00  9.523e-01  -3.004   0.0300 *
## constant                 2.079e+03  7.821e+02   2.658   0.0450 *
## MRO.dl1                 -8.725e+00  9.562e+00  -0.912   0.4034  
## OMO.dl1                 -4.854e-03  1.071e-02  -0.453   0.6694  
## GDP.dl1                 -2.953e+01  1.622e+02  -0.182   0.8627  
## unemployment.dl1        -2.176e+01  1.190e+01  -1.829   0.1270  
## loanshsannualgrowth.dl1 -2.690e+01  2.505e+01  -1.074   0.3319  
## CCI.dl1                 -1.995e-01  4.803e-01  -0.415   0.6950  
## finalconsumption.dl1    -5.763e-04  2.919e-04  -1.974   0.1053  
## MRO.dl2                 -7.523e+00  1.486e+01  -0.506   0.6342  
## OMO.dl2                  3.780e-02  1.790e-02   2.112   0.0884 .
## GDP.dl2                 -1.849e+02  2.147e+02  -0.861   0.4285  
## unemployment.dl2        -4.146e+01  2.260e+01  -1.834   0.1261  
## loanshsannualgrowth.dl2  1.545e+01  1.133e+01   1.363   0.2310  
## CCI.dl2                 -8.407e-01  3.939e-01  -2.134   0.0859 .
## finalconsumption.dl2    -1.401e-04  9.331e-05  -1.501   0.1937  
## MRO.dl3                 -1.158e+01  8.968e+00  -1.292   0.2529  
## OMO.dl3                  1.303e-02  2.543e-02   0.512   0.6302  
## GDP.dl3                 -1.014e+02  1.931e+02  -0.525   0.6218  
## unemployment.dl3        -4.158e+01  2.575e+01  -1.615   0.1673  
## loanshsannualgrowth.dl3  3.828e+00  8.687e+00   0.441   0.6778  
## CCI.dl3                  3.096e-01  7.005e-01   0.442   0.6770  
## finalconsumption.dl3    -3.167e-04  2.197e-04  -1.441   0.2091  
## MRO.dl4                 -8.750e+00  1.100e+01  -0.795   0.4625  
## OMO.dl4                  5.290e-02  2.472e-02   2.140   0.0854 .
## GDP.dl4                 -5.899e+02  3.072e+02  -1.920   0.1129  
## unemployment.dl4        -4.373e+01  2.901e+01  -1.507   0.1921  
## loanshsannualgrowth.dl4 -2.874e-01  9.705e+00  -0.030   0.9775  
## CCI.dl4                 -1.053e+00  4.363e-01  -2.414   0.0606 .
## finalconsumption.dl4    -6.414e-04  3.021e-04  -2.123   0.0872 .
## MRO.dl5                  1.289e+01  8.867e+00   1.454   0.2058  
## OMO.dl5                  6.897e-02  2.765e-02   2.495   0.0548 .
## GDP.dl5                 -1.924e+02  4.853e+02  -0.396   0.7081  
## unemployment.dl5        -5.642e+01  3.173e+01  -1.778   0.1355  
## loanshsannualgrowth.dl5 -1.377e+01  2.176e+01  -0.633   0.5548  
## CCI.dl5                 -1.082e+00  5.447e-01  -1.987   0.1037  
## finalconsumption.dl5    -2.549e-04  1.631e-04  -1.564   0.1787  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.308 on 5 degrees of freedom
## Multiple R-squared:  0.9258, Adjusted R-squared:  0.3026 
## F-statistic: 1.486 on 42 and 5 DF,  p-value: 0.354
## 
## 
## Response finalconsumption.d :
## 
## Call:
## lm(formula = finalconsumption.d ~ ect1 + ect2 + ect3 + ect4 + 
##     ect5 + ect6 + constant + MRO.dl1 + OMO.dl1 + GDP.dl1 + unemployment.dl1 + 
##     loanshsannualgrowth.dl1 + CCI.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + GDP.dl2 + unemployment.dl2 + loanshsannualgrowth.dl2 + 
##     CCI.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + GDP.dl3 + 
##     unemployment.dl3 + loanshsannualgrowth.dl3 + CCI.dl3 + finalconsumption.dl3 + 
##     MRO.dl4 + OMO.dl4 + GDP.dl4 + unemployment.dl4 + loanshsannualgrowth.dl4 + 
##     CCI.dl4 + finalconsumption.dl4 + MRO.dl5 + OMO.dl5 + GDP.dl5 + 
##     unemployment.dl5 + loanshsannualgrowth.dl5 + CCI.dl5 + finalconsumption.dl5 - 
##     1, data = data.mat)
## 
## Residuals:
##        1        2        3        4        5        6        7        8 
##  -200.28  -245.85   932.15  -982.80  -222.27  1008.12  -774.82  -734.01 
##        9       10       11       12       13       14       15       16 
##   696.90  1008.47   147.62  -229.22   474.98  -389.01  1505.42 -1057.97 
##       17       18       19       20       21       22       23       24 
##   168.08   955.30 -1568.82  1517.22 -1773.61  -275.92  -222.39  1276.95 
##       25       26       27       28       29       30       31       32 
##   355.01  -362.31   -22.01  -251.25  -477.85    71.56   656.92  -202.94 
##       33       34       35       36       37       38       39       40 
## -1721.03  2283.31    23.07  -703.51 -1185.17   533.85  3005.55 -2291.57 
##       41       42       43       44       45       46       47 
## -1757.19  3917.36 -1272.56   193.56 -1970.82  1726.49 -1562.74 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)  
## ect1                     5.452e+04  1.968e+04   2.771   0.0393 *
## ect2                     1.006e+02  6.849e+01   1.469   0.2019  
## ect3                     2.040e+05  5.285e+05   0.386   0.7154  
## ect4                    -1.810e+05  7.493e+04  -2.416   0.0604 .
## ect5                    -3.262e+04  3.571e+04  -0.913   0.4029  
## ect6                    -2.824e+03  1.600e+03  -1.765   0.1378  
## constant                 2.769e+06  1.314e+06   2.107   0.0889 .
## MRO.dl1                  1.548e+04  1.607e+04   0.964   0.3795  
## OMO.dl1                  1.761e+01  1.800e+01   0.978   0.3728  
## GDP.dl1                  4.143e+05  2.725e+05   1.521   0.1888  
## unemployment.dl1        -4.596e+04  1.999e+04  -2.299   0.0699 .
## loanshsannualgrowth.dl1 -2.725e+04  4.209e+04  -0.648   0.5459  
## CCI.dl1                  1.123e+03  8.069e+02   1.392   0.2228  
## finalconsumption.dl1    -9.918e-01  4.904e-01  -2.022   0.0991 .
## MRO.dl2                  3.708e+04  2.496e+04   1.485   0.1976  
## OMO.dl2                  3.757e+01  3.007e+01   1.249   0.2669  
## GDP.dl2                  5.102e+05  3.608e+05   1.414   0.2164  
## unemployment.dl2        -8.940e+04  3.798e+04  -2.354   0.0652 .
## loanshsannualgrowth.dl2  8.324e+03  1.904e+04   0.437   0.6801  
## CCI.dl2                  1.586e+03  6.618e+02   2.396   0.0619 .
## finalconsumption.dl2    -4.164e-01  1.568e-01  -2.656   0.0451 *
## MRO.dl3                  1.871e+04  1.507e+04   1.242   0.2693  
## OMO.dl3                 -4.144e+01  4.272e+01  -0.970   0.3766  
## GDP.dl3                  2.081e+05  3.244e+05   0.642   0.5494  
## unemployment.dl3        -1.086e+05  4.327e+04  -2.509   0.0539 .
## loanshsannualgrowth.dl3  3.484e+04  1.459e+04   2.387   0.0626 .
## CCI.dl3                  2.006e+03  1.177e+03   1.704   0.1491  
## finalconsumption.dl3    -1.135e+00  3.692e-01  -3.074   0.0277 *
## MRO.dl4                 -5.400e+03  1.848e+04  -0.292   0.7819  
## OMO.dl4                 -2.033e+01  4.154e+01  -0.490   0.6452  
## GDP.dl4                  7.391e+05  5.162e+05   1.432   0.2116  
## unemployment.dl4        -1.191e+05  4.874e+04  -2.443   0.0584 .
## loanshsannualgrowth.dl4  2.086e+03  1.631e+04   0.128   0.9032  
## CCI.dl4                  5.680e+02  7.331e+02   0.775   0.4735  
## finalconsumption.dl4    -1.126e+00  5.076e-01  -2.218   0.0774 .
## MRO.dl5                  2.534e+04  1.490e+04   1.701   0.1497  
## OMO.dl5                  4.166e+01  4.645e+01   0.897   0.4109  
## GDP.dl5                  1.109e+06  8.153e+05   1.361   0.2317  
## unemployment.dl5        -1.453e+05  5.331e+04  -2.726   0.0415 *
## loanshsannualgrowth.dl5 -3.113e+04  3.657e+04  -0.851   0.4335  
## CCI.dl5                 -7.093e+02  9.151e+02  -0.775   0.4733  
## finalconsumption.dl5    -7.294e-01  2.740e-01  -2.662   0.0448 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3877 on 5 degrees of freedom
## Multiple R-squared:  0.9962, Adjusted R-squared:  0.9643 
## F-statistic:  31.2 on 42 and 5 DF,  p-value: 0.0005595
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      6      6      1      6 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) 2.082059e+01 2.089102e+01 2.077284e+01 2.047392e+01 2.044448e+01
## HQ(n)  2.090994e+01 2.103994e+01 2.098132e+01 2.074197e+01 2.077209e+01
## SC(n)  2.105911e+01 2.128856e+01 2.132938e+01 2.118948e+01 2.131904e+01
## FPE(n) 1.102626e+09 1.184692e+09 1.055840e+09 7.873183e+08 7.711244e+08
##                   6            7            8            9           10
## AIC(n) 2.022831e+01 2.022932e+01 2.039105e+01 2.053559e+01 2.043323e+01
## HQ(n)  2.061549e+01 2.067607e+01 2.089737e+01 2.110148e+01 2.105869e+01
## SC(n)  2.126189e+01 2.142191e+01 2.174265e+01 2.204621e+01 2.210286e+01
## FPE(n) 6.291822e+08 6.411304e+08 7.719766e+08 9.205840e+08 8.654678e+08
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 0.35979669 0.07847159
## 
## Values of teststatistic and critical values of test:
## 
##           test 10pct  5pct  1pct
## r <= 1 |  4.09  6.50  8.18 11.65
## r = 0  | 26.38 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                            MRO.l6 totalassetshs_diff.l6
## MRO.l6                1.00000e+00          1.000000e+00
## totalassetshs_diff.l6 3.71072e-05         -6.569614e-06
## 
## Weights W:
## (This is the loading matrix)
## 
##                             MRO.l6 totalassetshs_diff.l6
## MRO.d                -1.993742e-02         -4.691205e-03
## totalassetshs_diff.d -1.588643e+03          1.859275e+04

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##     10      1      1      1 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) 3.359993e+01 3.371064e+01 3.383363e+01 3.390122e+01 3.392050e+01
## HQ(n)  3.369092e+01 3.386229e+01 3.404594e+01 3.417419e+01 3.425413e+01
## SC(n)  3.384817e+01 3.412437e+01 3.441285e+01 3.464593e+01 3.483071e+01
## FPE(n) 3.912695e+14 4.378539e+14 4.971470e+14 5.357622e+14 5.525095e+14
##                   6            7            8            9           10
## AIC(n) 3.396983e+01 3.397575e+01 3.405351e+01 3.377214e+01 3.344911e+01
## HQ(n)  3.436412e+01 3.443070e+01 3.456911e+01 3.434841e+01 3.408603e+01
## SC(n)  3.504553e+01 3.521694e+01 3.546019e+01 3.534432e+01 3.518678e+01
## FPE(n) 5.903944e+14 6.082506e+14 6.790952e+14 5.350473e+14 4.096535e+14
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 0.191592303 0.001016666
## 
## Values of teststatistic and critical values of test:
## 
##          test 10pct  5pct  1pct
## r <= 1 | 0.05  6.50  8.18 11.65
## r = 0  | 9.83 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                            OMO.l6 totalassetshs_diff.l6
## OMO.l6                1.000000000          1.000000e+00
## totalassetshs_diff.l6 0.009085887          6.022359e-05
## 
## Weights W:
## (This is the loading matrix)
## 
##                            OMO.l6 totalassetshs_diff.l6
## OMO.d                  0.01532957          -0.005753946
## totalassetshs_diff.d -47.37345656          -2.113000291

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      2      2      2      2 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) 2.199085e+01 2.132519e+01 2.140307e+01 2.149492e+01 2.157531e+01
## HQ(n)  2.207973e+01 2.147332e+01 2.161046e+01 2.176156e+01 2.190121e+01
## SC(n)  2.222704e+01 2.171884e+01 2.195418e+01 2.220349e+01 2.244134e+01
## FPE(n) 3.553505e+09 1.828575e+09 1.982329e+09 2.184154e+09 2.386256e+09
##                   6            7            8            9           10
## AIC(n) 2.159642e+01 2.151631e+01 2.153409e+01 2.164587e+01 2.158524e+01
## HQ(n)  2.198156e+01 2.196071e+01 2.203774e+01 2.220878e+01 2.220740e+01
## SC(n)  2.261990e+01 2.269725e+01 2.287250e+01 2.314174e+01 2.323857e+01
## FPE(n) 2.466340e+09 2.314618e+09 2.409424e+09 2.774549e+09 2.711676e+09
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 0.29536481 0.05366998
## 
## Values of teststatistic and critical values of test:
## 
##           test 10pct  5pct  1pct
## r <= 1 |  3.03  6.50  8.18 11.65
## r = 0  | 22.29 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                        hsassets.l2 Finalconsumptionmag.l2
## hsassets.l2                      1                      1
## Finalconsumptionmag.l2   -18227533                -244817
## 
## Weights W:
## (This is the loading matrix)
## 
##                         hsassets.l2 Finalconsumptionmag.l2
## hsassets.d            -7.466474e-05          -2.446995e-02
## Finalconsumptionmag.d  2.888021e-08           9.395244e-08

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      8      7      7     10 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) 2.142461e+01 2.124899e+01 2.147031e+01 2.119352e+01 2.121868e+01
## HQ(n)  2.148938e+01 2.135693e+01 2.162143e+01 2.138783e+01 2.145617e+01
## SC(n)  2.172304e+01 2.174638e+01 2.216666e+01 2.208883e+01 2.231295e+01
## FPE(n) 2.024409e+09 1.723499e+09 2.225545e+09 1.801381e+09 2.067795e+09
##                   6            7            8             9   10
## AIC(n) 2.112519e+01 1.779746e+01 1.776988e+01           NaN  NaN
## HQ(n)  2.140585e+01 1.812130e+01 1.813690e+01           NaN  NaN
## SC(n)  2.241840e+01 1.928964e+01 1.946101e+01           NaN  NaN
## FPE(n) 2.269518e+09 1.108669e+08 1.847235e+08 -6.261283e-08 -Inf
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 1.000000000 0.007983767
## 
## Values of teststatistic and critical values of test:
## 
##          test 10pct  5pct  1pct
## r <= 1 | 0.18  6.50  8.18 11.65
## r = 0  |  NaN 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##              hsassets.l9 durablehs.l9
## hsassets.l9          1.0          1.0
## durablehs.l9    803485.4    -267127.7
## 
## Weights W:
## (This is the loading matrix)
## 
##               hsassets.l9  durablehs.l9
## hsassets.d  -9.761049e-02 -4.924270e-02
## durablehs.d -7.599131e-07 -6.529027e-08

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      3      2      2      3 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) 2.643023e+01 2.558036e+01 2.556901e+01 2.558227e+01 2.571113e+01
## HQ(n)  2.651911e+01 2.572849e+01 2.577639e+01 2.584891e+01 2.603702e+01
## SC(n)  2.666642e+01 2.597401e+01 2.612012e+01 2.629083e+01 2.657715e+01
## FPE(n) 3.010596e+11 1.288581e+11 1.277668e+11 1.301354e+11 1.492373e+11
##                   6            7            8            9           10
## AIC(n) 2.577692e+01 2.564743e+01 2.577236e+01 2.580693e+01 2.588136e+01
## HQ(n)  2.616206e+01 2.609183e+01 2.627601e+01 2.636984e+01 2.650351e+01
## SC(n)  2.680041e+01 2.682838e+01 2.711076e+01 2.730280e+01 2.753468e+01
## FPE(n) 1.612957e+11 1.440796e+11 1.669433e+11 1.779581e+11 1.990747e+11
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 0.1776930 0.0425294
## 
## Values of teststatistic and critical values of test:
## 
##           test 10pct  5pct  1pct
## r <= 1 |  2.39  6.50  8.18 11.65
## r = 0  | 13.15 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##             hsassets.l2   CCI.l2
## hsassets.l2           1     1.00
## CCI.l2         -1033094 17085.32
## 
## Weights W:
## (This is the loading matrix)
## 
##             hsassets.l2        CCI.l2
## hsassets.d 4.665975e-04 -2.028839e-02
## CCI.d      1.806019e-07  8.396235e-08

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      7      1      1      7 
## 
## $criteria
##                  1           2           3           4           5          6
## AIC(n) -0.26054546 -0.23078217 -0.11299383 -0.08187188 -0.01304564 -0.1835513
## HQ(n)  -0.17166593 -0.08264963  0.09439174  0.18476671  0.31284596  0.2015933
## SC(n)  -0.02435641  0.16286625  0.43811397  0.62669529  0.85298089  0.8399346
## FPE(n)  0.77089903  0.79519661  0.89715259  0.93025339  1.00464303  0.8573010
##                  7           8          9         10
## AIC(n) -0.52998485 -0.43484747 -0.3434521 -0.4099794
## HQ(n)  -0.08558721  0.06880319  0.2194516  0.2121773
## SC(n)   0.65096043  0.90355718  1.1524119  1.2433440
## FPE(n)  0.61644657  0.69330547  0.7822562  0.7600348
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 0.2905202 0.1044079
## 
## Values of teststatistic and critical values of test:
## 
##           test 10pct  5pct  1pct
## r <= 1 |  6.06  6.50  8.18 11.65
## r = 0  | 24.94 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                          CCI.l2 Finalconsumptionmag.l2
## CCI.l2                   1.0000              1.0000000
## Finalconsumptionmag.l2 141.2335             -0.7701332
## 
## Weights W:
## (This is the loading matrix)
## 
##                             CCI.l2 Finalconsumptionmag.l2
## CCI.d                 -0.002259561           -0.168545342
## Finalconsumptionmag.d -0.003716164            0.009575811

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##     10     10     10      9 
## 
## $criteria
##                  1           2           3           4           5           6
## AIC(n) -2.37825252 -2.59870083 -2.35593605 -2.58657481 -2.85645211 -2.92909776
## HQ(n)  -2.31348449 -2.49075411 -2.20481065 -2.39227072 -2.61896933 -2.64843629
## SC(n)  -2.07981754 -2.10130919 -1.65958776 -1.69126987 -1.76219050 -1.63587950
## FPE(n)  0.09307804  0.07576899  0.09996101  0.08473055  0.07241161  0.08115046
##                  7          8            9   10
## AIC(n) -4.00590955 -5.7554281 -9.310894323 -Inf
## HQ(n)  -3.68206939 -5.3884093 -8.900696795 -Inf
## SC(n)  -2.51373464 -4.0642965 -7.420806103 -Inf
## FPE(n)  0.03764582  0.0112101  0.000969745  NaN
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 1 1
## 
## Values of teststatistic and critical values of test:
## 
##          test 10pct  5pct  1pct
## r <= 1 |  NaN  6.50  8.18 11.65
## r = 0  |  NaN 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                 CCI.l10 durablehs.l10
## CCI.l10        1.000000      1.000000
## durablehs.l10 -1.844122      4.576057
## 
## Weights W:
## (This is the loading matrix)
## 
##                 CCI.l10 durablehs.l10
## CCI.d       -0.82063061    0.12805410
## durablehs.d -0.03821304   -0.06964912

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      9      3      2      9 
## 
## $criteria
##                 1          2          3          4         5          6
## AIC(n) -1.4177349 -1.9409118 -2.0374933 -2.0255767 -1.967462 -2.0911907
## HQ(n)  -1.3303618 -1.7952900 -1.8336227 -1.7634573 -1.647094 -1.7125739
## SC(n)  -1.1882921 -1.5585072 -1.5021269 -1.3372484 -1.126172 -1.0969387
## FPE(n)  0.2423321  0.1437657  0.1308386  0.1329681  0.141871  0.1265957
##                 7          8          9         10
## AIC(n) -2.0847115 -2.1103864 -2.2209903 -2.1757848
## HQ(n)  -1.6478459 -1.6152721 -1.6676272 -1.5641730
## SC(n)  -0.9374977 -0.8102107 -0.7678528 -0.5696855
## FPE(n)  0.1291691  0.1282189  0.1175664  0.1268162
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 0.13575442 0.04684662
## 
## Values of teststatistic and critical values of test:
## 
##           test 10pct  5pct  1pct
## r <= 1 |  2.73  6.50  8.18 11.65
## r = 0  | 11.05 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                        loanshsannualgrowth.l3    CCI.l3
## loanshsannualgrowth.l3              1.0000000 1.0000000
## CCI.l3                             -0.7558389 0.1354641
## 
## Weights W:
## (This is the loading matrix)
## 
##                       loanshsannualgrowth.l3     CCI.l3
## loanshsannualgrowth.d           -0.008478487 -0.0100707
## CCI.d                            0.112638035 -0.3765174

## 
##   Optimal (m+1)-segment partition: 
## 
## Call:
## breakpoints.formula(formula = hsassets ~ 1, data = dataeurozone)
## 
## Breakpoints at observation number:
##                          
## m = 1   12               
## m = 2   11             46
## m = 3   11          38 47
## m = 4   11    28 37    47
## m = 5   9  17 28 37    47
## m = 6   9  17 25 33 41 49
## 
## Corresponding to breakdates:
##                                                                                
## m = 1   0.210526315789474                                                      
## m = 2   0.192982456140351                                                      
## m = 3   0.192982456140351                                                      
## m = 4   0.192982456140351                   0.491228070175439 0.649122807017544
## m = 5   0.157894736842105 0.298245614035088 0.491228070175439 0.649122807017544
## m = 6   0.157894736842105 0.298245614035088 0.43859649122807  0.578947368421053
##                                            
## m = 1                                      
## m = 2                     0.807017543859649
## m = 3   0.666666666666667 0.824561403508772
## m = 4                     0.824561403508772
## m = 5                     0.824561403508772
## m = 6   0.719298245614035 0.859649122807018
## 
## Fit:
##                                                                          
## m   0         1         2         3         4         5         6        
## RSS 1.299e+14 5.657e+13 1.929e+13 1.583e+13 1.273e+13 8.358e+12 1.175e+13
## BIC 1.792e+03 1.752e+03 1.699e+03 1.696e+03 1.692e+03 1.676e+03 1.703e+03
## 
##   Optimal (m+1)-segment partition: 
## 
## Call:
## breakpoints.formula(formula = CCI ~ 1, data = dataeurozone)
## 
## Breakpoints at observation number:
##                      
## m = 1        26      
## m = 2        26 37   
## m = 3     14 26 37   
## m = 4     14 26 37 50
## m = 5   9 18 27 37 50
## 
## Corresponding to breakdates:
##                                                                   
## m = 1                          0.433333333333333                  
## m = 2                          0.433333333333333 0.616666666666667
## m = 3        0.233333333333333 0.433333333333333 0.616666666666667
## m = 4        0.233333333333333 0.433333333333333 0.616666666666667
## m = 5   0.15 0.3               0.45              0.616666666666667
##                          
## m = 1                    
## m = 2                    
## m = 3                    
## m = 4   0.833333333333333
## m = 5   0.833333333333333
## 
## Fit:
##                                              
## m   0      1      2      3      4      5     
## RSS 2303.8 1461.2  918.7  575.2  519.5  870.7
## BIC  397.3  378.2  358.6  338.6  340.7  379.9

## 
##   Optimal (m+1)-segment partition: 
## 
## Call:
## breakpoints.formula(formula = interactiontermassetCCI ~ 1)
## 
## Breakpoints at observation number:
##                         
## m = 1        26         
## m = 2        26 37      
## m = 3     14 26 37      
## m = 4     14 26 37    49
## m = 5   8 16 26 37    49
## m = 6   8 16 25 33 41 49
## 
## Corresponding to breakdates:
##                                                                                
## m = 1                                       0.456140350877193                  
## m = 2                                       0.456140350877193 0.649122807017544
## m = 3                     0.245614035087719 0.456140350877193 0.649122807017544
## m = 4                     0.245614035087719 0.456140350877193 0.649122807017544
## m = 5   0.140350877192982 0.280701754385965 0.456140350877193 0.649122807017544
## m = 6   0.140350877192982 0.280701754385965 0.43859649122807  0.578947368421053
##                                            
## m = 1                                      
## m = 2                                      
## m = 3                                      
## m = 4                     0.859649122807018
## m = 5                     0.859649122807018
## m = 6   0.719298245614035 0.859649122807018
## 
## Fit:
##                                                                          
## m   0         1         2         3         4         5         6        
## RSS 2.000e+18 1.034e+18 6.862e+17 4.535e+17 4.216e+17 4.226e+17 6.133e+17
## BIC 2.341e+03 2.312e+03 2.297e+03 2.281e+03 2.285e+03 2.293e+03 2.322e+03

The total assets of households react differently to OMO and MRO and shocks. From half of the time periods, the reaction to OMO shocks is the opposite, the reaction to MRO shocks is positive. Furthermore, we can see in Figure … that the shock response of final consumption to CCI is composed of different components. At the beginning of the period, the shock response of marginal household consumption appears to be stronger than at the end of the period. If the interaction between CCI and total assets is taken into account, then the reaction to the third breakpoint becomes negative, whereas it is marginally positive beforehand in the reaction to CCI alone.

4.4 Credit channel

Anton (2015) described with the credit channel that the increase in bank re serves and bank deposits due to expansionary MPs leads to an increase in the volume of loans of households. The data for this channel is available via the ECB database, therefore it is possible to examine the significance of the credit channel. First, I examine the relation between the MPs, MROs and non-reg ular OMOs, and the bank reserves and the bank deposits. After this I examine the connection between the bank reserves and the volume of loans. Anton (2015) sees the rising debt as a crowding out effect for further indebtedness of private households within his analysis for the years 2004 to 2014.19 How ever, Anton (2015) analyzes this primarily based on the time series. My meth odology is therefore based on the study “House prices and credit as transmis sion channels from monetary policy to inequality: Evidence from OECD 19 Anton (2015) summarizes this part of the analysis of the credit, cash flow and liquidity channel. 41 countries” by Vale (2024). A panel vector autoregression model was used here. Real GDP was used as a control variable, as Vale (2024) uses the share of household credit in GDP from bis-database as an endogenous variable. However, I used the adjusted loans of households in the euro area.20
With a VAR model and an OLS regression model, it is possible to investigate the transmission channel. The OLS can be used in several phases. First, the link between the MPs of the ECB and the bank reserves, then the link between the bank reserves and the quantity of loans granted to households and finally the link between the loans of households and the consumption of households can be examined. In the next step, I will use the pvar model by Vale (2024) as a guide, as I only have the aggregated eurozone data in this dataset and I will only carry out a more country-specific differentiation in the next step, I will first use a var model. In addition, an impulsive response function can be used to analyze the effects of changes in the MPs of the ECB. For the OLS regres sion, the three equations look like this: reservest = α + β1 × MROt + β2 × OMOt + β3 × SovCISS t + ɛt, (11)21 bankloanst = α + β1 × reservest + β2 × realGDPt + β3 × unemploymentt + β4 × (MROt × reservest) + β5 × (OMOt × reservest) + ɛt, (12) Consumptiont = α + β1 × bankloanst + β2 × realGDPt + β3 × unemploymentt + β4 × (bankloanst × reservest) + ɛt. (13) The variable reserves from equations (11) and (12) describe the total excess reserves of all credit institutions in the euro area. The variable SovCISS de scribes the Sovereign Systemic Stress Composite Indicator. I used it as an indicator for the stress of the financial markets of the euro area, similar to the Financial Stress Index (FSI) which is used by Mundra and Bicchal (2022) for their analysis effects of monetary policy in India. The variable bankloans in equations (12) and (13) represent the change in bank loans to households. The consumption C in (13) is measured with the final consumption. The variable 20 One reason for this is the available frequency of the data. Vale (2024) analyzes a time horizon from 1995Q1 to 2019Q4 in her paper, so quarterly data is also appropriate. However, here I need monthly data and I try to avoid approximating data, especially since this is the endogenous variable. 21 This is monthly data (2020M1 to 2024M11) taken from the ECB database. 42 realGDP in (12) and (13) represent the realGDP growth of the euro area.22 In terms of equation (11) the variable OMO is significant to the 0.01 level and the variable MRO is significant to the 0.001 level.23 The coefficients of MRO and OMO are as expected, MRO has a negative intercept and OMO a positive intercept. In equation (12) all variables are significant, the interaction term with OMO is only significant to 0.1 significance level.24 Both interaction terms have a positive coefficient, the effect of bank reserves and the effect of MRO and OMO influence each other positively in terms of the effect on household loans. In equation (13) only the control variable unemployment is not significant.25 The interaction term has a positive coefficient, the effect of reserves and household loans on household consumption influences each other positively. For the further analysis, I use an autoregressive model, sim ilar to the previous transmission channels, to take into account the temporal shifts in the relationships. The variables are MRO, OMO, SovCISS, bankloans, reserves, realGDP, un employment, bankdeposits26 and final consumption. First, the respective time series of the data subset are tested for stationarity using the augmented dickey-fuller test. None of the variables is stationary at a critical value of 0.05. Now I test the data subset for cointegration using the Johansen test. The Jo hansen test suggests four cointegration relationships, in any case r ≥ 1. The number of lags L are estimated as one. With the help of the regression (11), the credit channel can also be proven to be largely significant. Only the cor relation between bank deposits and household consumption is weak. There fore, a VECM model is relatively evident. Without the implication of interac tion terms in the VECM, almost exclusively the last part of the transmission channel can be traced through significant connections. Final consumption is, 22 The data for the variable realGDP is available at the ECBs data base, the data is available in a quarterly frequency, therefore the two months in between are estimated. 23 In the regression to model (11), an R2 of 0.87. 24 For the sake of completeness, OMO and MRO are of course directly included as variables in the actual regression; these are not significant. These were not taken into account in the model presentation, as they are not the focus of the content. 25 Further results of the regressions are in appendix at B.18 for (11), at
B.19 for (12) and at B.20 for (13). 26 Overnight deposits in the euro area, excluding the central governments. 43 in addition to the control variable unemployment, significantly negatively in fluenced by bank reserves, MRO and hausholdloans. Under the implication of the interaction terms, the short-term relationships change somewhat. Since there are a total of three interaction terms with four affected variables, the multicollinearity of several variables is unavoidable, which complicates the estimation of an autoregressive model for this transmission channel that takes the interaction terms into account. The three interaction terms, MRO and OMO with reserves and with householdloans, can be estimated with their co efficients using a VAR, whereby, with the exception of the coefficients of these interaction terms, these results are not discussed in more detail here, as important prerequisites such as stationarity and no cointegration are not given for the estimation of the VAR. The first part of the interaction terms concerns the interaction between the MPs and the bank reserves. The coefficient of the interaction of MRO with reserves is positive with respect to household loans at each lag. The coefficient related to the interaction term with OMO is rela tively low. The coefficient related to final consumption of the interaction term regarding the interaction of reserves and householdloans becomes positive with increasing lag, i.e. the effect is initially negative related to final con sumption, then becomes neutral and finally positive at the third lag. To further track the interactions, the IRFs are analyzed to investigate the structure of the effect.

## 
## Call:
## lm(formula = dataeurozone$reserves ~ dataeurozone$MRO + dataeurozone$OMO + 
##     dataeurozone$SovCISS, data = dataeurozone)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1701660  -319603    28530   261631  1324028 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            666176.4   364062.7   1.830   0.0734 .  
## dataeurozone$MRO      -276313.1    80952.7  -3.413   0.0013 ** 
## dataeurozone$OMO         1321.5      202.3   6.532 3.52e-08 ***
## dataeurozone$SovCISS -1529849.7   662943.3  -2.308   0.0253 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 576000 on 49 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.8705, Adjusted R-squared:  0.8626 
## F-statistic: 109.8 on 3 and 49 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = dataeurozone$Householdloans ~ dataeurozone$reserves + 
##     dataeurozone$GDP + dataeurozone$unemployment + (dataeurozone$reserves * 
##     dataeurozone$MRO) + (dataeurozone$reserves * dataeurozone$OMO), 
##     data = dataeurozone)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.93474 -0.19900  0.02601  0.16403  0.77123 
## 
## Coefficients:
##                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)                            -5.869e+00  4.401e+00  -1.333 0.189082
## dataeurozone$reserves                  -1.644e-06  6.825e-07  -2.409 0.020152
## dataeurozone$GDP                        1.048e+01  2.976e+00   3.522 0.000995
## dataeurozone$unemployment              -4.269e-01  1.324e-01  -3.223 0.002359
## dataeurozone$MRO                       -1.041e+00  1.808e-01  -5.756 7.17e-07
## dataeurozone$OMO                       -4.878e-05  4.425e-04  -0.110 0.912708
## dataeurozone$reserves:dataeurozone$MRO  2.411e-07  9.134e-08   2.640 0.011357
## dataeurozone$reserves:dataeurozone$OMO  4.932e-10  2.820e-10   1.749 0.087170
##                                           
## (Intercept)                               
## dataeurozone$reserves                  *  
## dataeurozone$GDP                       ***
## dataeurozone$unemployment              ** 
## dataeurozone$MRO                       ***
## dataeurozone$OMO                          
## dataeurozone$reserves:dataeurozone$MRO *  
## dataeurozone$reserves:dataeurozone$OMO .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3221 on 45 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.9555, Adjusted R-squared:  0.9486 
## F-statistic:   138 on 7 and 45 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = dataeurozone$finalconsumption ~ dataeurozone$Householdloans + 
##     dataeurozone$unemployment + dataeurozone$GDP + (dataeurozone$Householdloans * 
##     dataeurozone$reserves), data = dataeurozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -238772  -14525     723   35202   94573 
## 
## Coefficients:
##                                                     Estimate Std. Error t value
## (Intercept)                                        9.860e+05  5.904e+05   1.670
## dataeurozone$Householdloans                       -7.013e+04  1.492e+04  -4.701
## dataeurozone$unemployment                         -3.573e+04  3.337e+04  -1.071
## dataeurozone$GDP                                   9.469e+05  3.876e+05   2.443
## dataeurozone$reserves                             -3.590e-01  7.326e-02  -4.901
## dataeurozone$Householdloans:dataeurozone$reserves  7.674e-02  1.650e-02   4.650
##                                                   Pr(>|t|)    
## (Intercept)                                         0.1010    
## dataeurozone$Householdloans                       2.01e-05 ***
## dataeurozone$unemployment                           0.2893    
## dataeurozone$GDP                                    0.0181 *  
## dataeurozone$reserves                             1.01e-05 ***
## dataeurozone$Householdloans:dataeurozone$reserves 2.39e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 61550 on 51 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.9028, Adjusted R-squared:  0.8933 
## F-statistic: 94.74 on 5 and 51 DF,  p-value: < 2.2e-16
## 
##  Augmented Dickey-Fuller Test
## 
## data:  cOMO
## Dickey-Fuller = -2.4946, Lag order = 3, p-value = 0.3754
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  cMRO
## Dickey-Fuller = -2.4526, Lag order = 3, p-value = 0.3919
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  cTotalbankreserves
## Dickey-Fuller = -2.3355, Lag order = 3, p-value = 0.4392
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  cHouseholdloans
## Dickey-Fuller = -3.2619, Lag order = 3, p-value = 0.08632
## alternative hypothesis: stationary
## 
##  Augmented Dickey-Fuller Test
## 
## data:  cFinalconsumption
## Dickey-Fuller = -2.211, Lag order = 3, p-value = 0.4895
## alternative hypothesis: stationary
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      9      9      9      9 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) 4.449617e+01 4.357749e+01 4.373439e+01 4.299390e+01 4.238465e+01
## HQ(n)  4.494929e+01 4.440821e+01 4.494272e+01 4.457983e+01 4.434819e+01
## SC(n)  4.572491e+01 4.583019e+01 4.701104e+01 4.729450e+01 4.770921e+01
## FPE(n) 2.130202e+19 8.926789e+18 1.188683e+19 7.410122e+18 6.659718e+18
##                   6            7             8    9   10
## AIC(n) 3.781290e+01 3.264569e+01 -7.500696e+01 -Inf -Inf
## HQ(n)  4.015404e+01 3.536443e+01 -7.191062e+01 -Inf -Inf
## SC(n)  4.416142e+01 4.001816e+01 -6.661054e+01 -Inf -Inf
## FPE(n) 1.742719e+17 6.375827e+15  2.512977e-29    0    0
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend in cointegration 
## 
## Eigenvalues (lambda):
## [1]  9.749071e-01  7.921490e-01  6.477729e-01  5.283576e-01  2.706390e-01
## [6] -4.996004e-16
## 
## Values of teststatistic and critical values of test:
## 
##            test 10pct  5pct  1pct
## r <= 4 |  14.83 10.49 12.25 16.26
## r <= 3 |  50.15 22.76 25.32 30.45
## r <= 2 |  99.20 39.06 42.44 48.45
## r <= 1 | 173.03 59.14 62.99 70.05
## r = 0  | 346.24 83.20 87.31 96.58
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                            MRO.l1        OMO.l1   reserves.l1 Householdloans.l1
## MRO.l1               1.000000e+00  1.000000e+00  1.000000e+00      1.000000e+00
## OMO.l1              -6.230827e-04 -1.633645e-03 -3.573917e-03      1.834638e-03
## reserves.l1          8.746218e-08  8.678386e-07  2.264156e-06     -2.439115e-07
## Householdloans.l1    9.597909e-01  5.687067e-01  2.570748e+00      3.828127e-03
## finalconsumption.l1 -8.630672e-07  3.609106e-06 -9.878148e-05      7.588448e-06
## trend.l1            -4.291277e-02 -1.301432e-01  1.199138e+00     -1.598240e-01
##                     finalconsumption.l1      trend.l1
## MRO.l1                     1.000000e+00  1.000000e+00
## OMO.l1                     2.316564e-03  3.624722e-03
## reserves.l1                4.018369e-07 -5.413492e-07
## Householdloans.l1         -6.864896e-01 -5.742840e-01
## finalconsumption.l1        1.120513e-05  3.329893e-05
## trend.l1                  -1.714703e-01 -4.576525e-01
## 
## Weights W:
## (This is the loading matrix)
## 
##                           MRO.l1        OMO.l1   reserves.l1 Householdloans.l1
## MRO.d              -1.410643e-01 -1.688733e-01 -5.608403e-03     -4.415793e-01
## OMO.d              -3.294987e+02  3.951709e+02  2.008293e+01      6.680356e+01
## reserves.d          3.182352e+05 -1.059715e+06  5.499802e+04      1.286183e+06
## Householdloans.d   -5.117124e-01 -4.497214e-02  3.694115e-02      1.253526e-01
## finalconsumption.d  4.750312e+04  2.543968e+03  4.090539e+03     -8.191049e+03
##                    finalconsumption.l1      trend.l1
## MRO.d                    -4.334208e-02  3.411511e-11
## OMO.d                    -6.696152e+01 -3.822832e-09
## reserves.d               -4.813130e+05  4.004696e-05
## Householdloans.d          3.889161e-02  2.207763e-11
## finalconsumption.d       -1.704904e+03  1.494508e-06
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      6      6      6      7 
## 
## $criteria
##                   1            2            3            4            5    6
## AIC(n) 3.367692e+01 3.246247e+01 3.152359e+01 2.889503e+01 2.239628e+01 -Inf
## HQ(n)  3.452275e+01 3.404840e+01 3.384962e+01 3.196116e+01 2.620251e+01 -Inf
## SC(n)  3.597057e+01 3.676307e+01 3.783115e+01 3.720953e+01 3.271773e+01 -Inf
## FPE(n) 4.355403e+14 1.553058e+14 1.034239e+14 2.671996e+13 1.009135e+12  NaN
##           7    8    9   10
## AIC(n) -Inf -Inf -Inf -Inf
## HQ(n)  -Inf -Inf -Inf -Inf
## SC(n)  -Inf -Inf -Inf -Inf
## FPE(n)    0    0    0    0
## Response MRO.d :
## 
## Call:
## lm(formula = MRO.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + ect6 + 
##     constant + MRO.dl1 + OMO.dl1 + SovCISS.dl1 + unemployment.dl1 + 
##     reserves.dl1 + Householdloans.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + SovCISS.dl2 + unemployment.dl2 + reserves.dl2 + 
##     Householdloans.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + 
##     SovCISS.dl3 + unemployment.dl3 + reserves.dl3 + Householdloans.dl3 + 
##     finalconsumption.dl3 + MRO.dl4 + OMO.dl4 + SovCISS.dl4 + 
##     unemployment.dl4 + reserves.dl4 + Householdloans.dl4 + finalconsumption.dl4 - 
##     1, data = data.mat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.12587 -0.02962  0.00074  0.02814  0.09488 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)   
## ect1                 -9.056e-02  3.379e-01  -0.268  0.79289   
## ect2                 -1.479e-03  6.813e-04  -2.171  0.04903 * 
## ect3                  2.008e+00  5.652e-01   3.554  0.00353 **
## ect4                  5.205e-01  3.692e-01   1.410  0.18206   
## ect5                  5.276e-07  2.858e-07   1.846  0.08779 . 
## ect6                  3.246e-01  3.967e-01   0.818  0.42792   
## constant             -1.546e+00  6.456e+00  -0.240  0.81445   
## MRO.dl1              -4.292e-01  3.696e-01  -1.161  0.26648   
## OMO.dl1               1.342e-03  6.424e-04   2.089  0.05693 . 
## SovCISS.dl1          -1.965e+00  1.284e+00  -1.530  0.14989   
## unemployment.dl1     -4.706e-01  3.367e-01  -1.398  0.18559   
## reserves.dl1         -4.965e-07  2.411e-07  -2.059  0.06009 . 
## Householdloans.dl1   -6.080e-01  5.436e-01  -1.118  0.28362   
## finalconsumption.dl1  3.340e-06  2.622e-06   1.274  0.22501   
## MRO.dl2              -2.570e-01  4.886e-01  -0.526  0.60768   
## OMO.dl2               8.585e-04  4.652e-04   1.846  0.08785 . 
## SovCISS.dl2          -2.513e+00  1.571e+00  -1.600  0.13355   
## unemployment.dl2     -5.653e-01  2.641e-01  -2.140  0.05186 . 
## reserves.dl2         -5.392e-07  2.208e-07  -2.442  0.02965 * 
## Householdloans.dl2   -5.663e-01  3.706e-01  -1.528  0.15039   
## finalconsumption.dl2  4.451e-06  1.838e-06   2.422  0.03078 * 
## MRO.dl3              -4.331e-02  4.556e-01  -0.095  0.92571   
## OMO.dl3               1.482e-04  3.779e-04   0.392  0.70132   
## SovCISS.dl3          -2.782e+00  1.241e+00  -2.241  0.04314 * 
## unemployment.dl3     -3.638e-01  1.692e-01  -2.150  0.05097 . 
## reserves.dl3         -1.304e-07  1.487e-07  -0.877  0.39657   
## Householdloans.dl3   -5.466e-01  3.158e-01  -1.731  0.10712   
## finalconsumption.dl3  1.327e-07  2.730e-06   0.049  0.96196   
## MRO.dl4              -5.692e-02  3.005e-01  -0.189  0.85270   
## OMO.dl4               2.988e-05  2.560e-04   0.117  0.90888   
## SovCISS.dl4          -1.897e+00  1.183e+00  -1.604  0.13273   
## unemployment.dl4     -2.064e-01  1.850e-01  -1.116  0.28477   
## reserves.dl4         -3.248e-07  1.298e-07  -2.503  0.02646 * 
## Householdloans.dl4   -4.503e-01  2.133e-01  -2.111  0.05468 . 
## finalconsumption.dl4  7.991e-07  2.330e-06   0.343  0.73706   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1001 on 13 degrees of freedom
## Multiple R-squared:  0.9451, Adjusted R-squared:  0.7974 
## F-statistic: 6.397 on 35 and 13 DF,  p-value: 0.0004646
## 
## 
## Response OMO.d :
## 
## Call:
## lm(formula = OMO.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + ect6 + 
##     constant + MRO.dl1 + OMO.dl1 + SovCISS.dl1 + unemployment.dl1 + 
##     reserves.dl1 + Householdloans.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + SovCISS.dl2 + unemployment.dl2 + reserves.dl2 + 
##     Householdloans.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + 
##     SovCISS.dl3 + unemployment.dl3 + reserves.dl3 + Householdloans.dl3 + 
##     finalconsumption.dl3 + MRO.dl4 + OMO.dl4 + SovCISS.dl4 + 
##     unemployment.dl4 + reserves.dl4 + Householdloans.dl4 + finalconsumption.dl4 - 
##     1, data = data.mat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -117.802  -25.368    0.543   24.305  114.776 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## ect1                  7.051e+02  3.111e+02   2.266   0.0412 *
## ect2                 -7.618e-01  6.273e-01  -1.214   0.2462  
## ect3                  7.592e+02  5.204e+02   1.459   0.1683  
## ect4                  3.423e+02  3.399e+02   1.007   0.3323  
## ect5                  5.158e-04  2.632e-04   1.960   0.0718 .
## ect6                  6.812e+02  3.653e+02   1.865   0.0849 .
## constant             -7.580e+03  5.944e+03  -1.275   0.2245  
## MRO.dl1              -9.591e+02  3.403e+02  -2.818   0.0145 *
## OMO.dl1              -1.741e-01  5.915e-01  -0.294   0.7732  
## SovCISS.dl1          -3.512e+03  1.182e+03  -2.971   0.0108 *
## unemployment.dl1     -5.136e+02  3.100e+02  -1.657   0.1215  
## reserves.dl1         -2.789e-04  2.220e-04  -1.256   0.2311  
## Householdloans.dl1   -6.557e+02  5.005e+02  -1.310   0.2128  
## finalconsumption.dl1 -4.589e-03  2.414e-03  -1.901   0.0797 .
## MRO.dl2              -9.864e+02  4.498e+02  -2.193   0.0471 *
## OMO.dl2              -4.205e-01  4.283e-01  -0.982   0.3441  
## SovCISS.dl2          -2.983e+03  1.446e+03  -2.063   0.0597 .
## unemployment.dl2      9.812e+00  2.432e+02   0.040   0.9684  
## reserves.dl2         -1.868e-04  2.033e-04  -0.919   0.3748  
## Householdloans.dl2   -3.756e+02  3.412e+02  -1.101   0.2909  
## finalconsumption.dl2 -3.316e-03  1.692e-03  -1.960   0.0718 .
## MRO.dl3              -1.181e+03  4.194e+02  -2.816   0.0146 *
## OMO.dl3              -3.665e-01  3.480e-01  -1.053   0.3114  
## SovCISS.dl3          -1.776e+03  1.143e+03  -1.553   0.1443  
## unemployment.dl3      5.443e+01  1.558e+02   0.349   0.7324  
## reserves.dl3         -1.410e-04  1.369e-04  -1.030   0.3220  
## Householdloans.dl3   -7.592e+01  2.908e+02  -0.261   0.7981  
## finalconsumption.dl3 -3.677e-03  2.513e-03  -1.463   0.1672  
## MRO.dl4              -6.308e+02  2.767e+02  -2.280   0.0401 *
## OMO.dl4              -8.602e-02  2.357e-01  -0.365   0.7210  
## SovCISS.dl4          -1.008e+03  1.089e+03  -0.925   0.3716  
## unemployment.dl4      3.136e+02  1.703e+02   1.842   0.0885 .
## reserves.dl4          3.522e-05  1.195e-04   0.295   0.7728  
## Householdloans.dl4    4.445e+01  1.964e+02   0.226   0.8245  
## finalconsumption.dl4 -3.459e-03  2.145e-03  -1.613   0.1308  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 92.19 on 13 degrees of freedom
## Multiple R-squared:  0.9054, Adjusted R-squared:  0.6508 
## F-statistic: 3.556 on 35 and 13 DF,  p-value: 0.008832
## 
## 
## Response SovCISS.d :
## 
## Call:
## lm(formula = SovCISS.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + ect6 + 
##     constant + MRO.dl1 + OMO.dl1 + SovCISS.dl1 + unemployment.dl1 + 
##     reserves.dl1 + Householdloans.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + SovCISS.dl2 + unemployment.dl2 + reserves.dl2 + 
##     Householdloans.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + 
##     SovCISS.dl3 + unemployment.dl3 + reserves.dl3 + Householdloans.dl3 + 
##     finalconsumption.dl3 + MRO.dl4 + OMO.dl4 + SovCISS.dl4 + 
##     unemployment.dl4 + reserves.dl4 + Householdloans.dl4 + finalconsumption.dl4 - 
##     1, data = data.mat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.036800 -0.007447 -0.000788  0.007232  0.048320 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## ect1                  6.513e-02  9.960e-02   0.654    0.525  
## ect2                  6.505e-05  2.008e-04   0.324    0.751  
## ect3                 -3.461e-02  1.666e-01  -0.208    0.839  
## ect4                 -8.769e-03  1.088e-01  -0.081    0.937  
## ect5                 -4.073e-09  8.424e-08  -0.048    0.962  
## ect6                  4.168e-02  1.169e-01   0.356    0.727  
## constant              5.555e-02  1.903e+00   0.029    0.977  
## MRO.dl1              -1.135e-01  1.090e-01  -1.042    0.316  
## OMO.dl1              -1.572e-04  1.894e-04  -0.830    0.421  
## SovCISS.dl1           1.908e-01  3.784e-01   0.504    0.623  
## unemployment.dl1      4.384e-02  9.925e-02   0.442    0.666  
## reserves.dl1          2.485e-09  7.107e-08   0.035    0.973  
## Householdloans.dl1   -9.729e-02  1.602e-01  -0.607    0.554  
## finalconsumption.dl1 -1.305e-07  7.729e-07  -0.169    0.869  
## MRO.dl2              -1.270e-01  1.440e-01  -0.882    0.394  
## OMO.dl2              -1.178e-04  1.371e-04  -0.859    0.406  
## SovCISS.dl2          -2.661e-01  4.629e-01  -0.575    0.575  
## unemployment.dl2      3.493e-02  7.785e-02   0.449    0.661  
## reserves.dl2          2.324e-08  6.508e-08   0.357    0.727  
## Householdloans.dl2    8.695e-02  1.092e-01   0.796    0.440  
## finalconsumption.dl2 -4.281e-07  5.417e-07  -0.790    0.443  
## MRO.dl3              -1.654e-02  1.343e-01  -0.123    0.904  
## OMO.dl3              -5.871e-05  1.114e-04  -0.527    0.607  
## SovCISS.dl3           4.906e-01  3.659e-01   1.341    0.203  
## unemployment.dl3      9.401e-02  4.988e-02   1.885    0.082 .
## reserves.dl3          4.173e-08  4.384e-08   0.952    0.359  
## Householdloans.dl3    5.337e-04  9.308e-02   0.006    0.996  
## finalconsumption.dl3 -1.756e-07  8.046e-07  -0.218    0.831  
## MRO.dl4              -3.607e-02  8.858e-02  -0.407    0.690  
## OMO.dl4               7.520e-06  7.546e-05   0.100    0.922  
## SovCISS.dl4           1.441e-01  3.486e-01   0.413    0.686  
## unemployment.dl4      2.529e-02  5.452e-02   0.464    0.650  
## reserves.dl4          7.048e-09  3.826e-08   0.184    0.857  
## Householdloans.dl4    4.341e-02  6.287e-02   0.691    0.502  
## finalconsumption.dl4  2.917e-07  6.867e-07   0.425    0.678  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02951 on 13 degrees of freedom
## Multiple R-squared:  0.7522, Adjusted R-squared:  0.08508 
## F-statistic: 1.128 on 35 and 13 DF,  p-value: 0.4265
## 
## 
## Response unemployment.d :
## 
## Call:
## lm(formula = unemployment.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + 
##     ect6 + constant + MRO.dl1 + OMO.dl1 + SovCISS.dl1 + unemployment.dl1 + 
##     reserves.dl1 + Householdloans.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + SovCISS.dl2 + unemployment.dl2 + reserves.dl2 + 
##     Householdloans.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + 
##     SovCISS.dl3 + unemployment.dl3 + reserves.dl3 + Householdloans.dl3 + 
##     finalconsumption.dl3 + MRO.dl4 + OMO.dl4 + SovCISS.dl4 + 
##     unemployment.dl4 + reserves.dl4 + Householdloans.dl4 + finalconsumption.dl4 - 
##     1, data = data.mat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.169945 -0.038548  0.001429  0.040015  0.168856 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## ect1                 -7.457e-01  3.862e-01  -1.931   0.0756 .
## ect2                  9.570e-04  7.787e-04   1.229   0.2408  
## ect3                  9.319e-01  6.459e-01   1.443   0.1728  
## ect4                 -7.609e-01  4.220e-01  -1.803   0.0946 .
## ect5                 -3.188e-07  3.266e-07  -0.976   0.3469  
## ect6                 -9.400e-01  4.534e-01  -2.073   0.0586 .
## constant              1.605e-01  7.378e+00   0.022   0.9830  
## MRO.dl1               7.134e-01  4.224e-01   1.689   0.1151  
## OMO.dl1              -5.471e-04  7.342e-04  -0.745   0.4694  
## SovCISS.dl1          -2.813e+00  1.467e+00  -1.917   0.0774 .
## unemployment.dl1      1.939e-01  3.848e-01   0.504   0.6228  
## reserves.dl1          2.309e-07  2.756e-07   0.838   0.4171  
## Householdloans.dl1    1.252e+00  6.213e-01   2.016   0.0649 .
## finalconsumption.dl1 -5.874e-07  2.997e-06  -0.196   0.8476  
## MRO.dl2               4.197e-01  5.584e-01   0.752   0.4656  
## OMO.dl2              -1.129e-03  5.316e-04  -2.123   0.0535 .
## SovCISS.dl2          -1.193e+00  1.795e+00  -0.664   0.5181  
## unemployment.dl2     -9.036e-02  3.018e-01  -0.299   0.7694  
## reserves.dl2          1.260e-07  2.523e-07   0.499   0.6260  
## Householdloans.dl2    3.320e-01  4.235e-01   0.784   0.4471  
## finalconsumption.dl2 -4.906e-06  2.100e-06  -2.336   0.0362 *
## MRO.dl3               1.564e-01  5.207e-01   0.300   0.7686  
## OMO.dl3              -3.347e-04  4.319e-04  -0.775   0.4523  
## SovCISS.dl3          -3.553e+00  1.419e+00  -2.504   0.0264 *
## unemployment.dl3     -5.773e-02  1.934e-01  -0.298   0.7700  
## reserves.dl3          8.932e-08  1.700e-07   0.525   0.6081  
## Householdloans.dl3    1.678e-01  3.609e-01   0.465   0.6496  
## finalconsumption.dl3 -5.680e-06  3.120e-06  -1.821   0.0917 .
## MRO.dl4               4.683e-01  3.434e-01   1.364   0.1958  
## OMO.dl4              -2.524e-04  2.926e-04  -0.863   0.4039  
## SovCISS.dl4          -8.113e-01  1.352e+00  -0.600   0.5587  
## unemployment.dl4     -1.944e-01  2.114e-01  -0.920   0.3745  
## reserves.dl4          1.451e-07  1.484e-07   0.978   0.3457  
## Householdloans.dl4    2.541e-01  2.438e-01   1.043   0.3162  
## finalconsumption.dl4  3.634e-07  2.662e-06   0.137   0.8935  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1144 on 13 degrees of freedom
## Multiple R-squared:  0.9263, Adjusted R-squared:  0.7279 
## F-statistic: 4.669 on 35 and 13 DF,  p-value: 0.002388
## 
## 
## Response reserves.d :
## 
## Call:
## lm(formula = reserves.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + 
##     ect6 + constant + MRO.dl1 + OMO.dl1 + SovCISS.dl1 + unemployment.dl1 + 
##     reserves.dl1 + Householdloans.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + SovCISS.dl2 + unemployment.dl2 + reserves.dl2 + 
##     Householdloans.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + 
##     SovCISS.dl3 + unemployment.dl3 + reserves.dl3 + Householdloans.dl3 + 
##     finalconsumption.dl3 + MRO.dl4 + OMO.dl4 + SovCISS.dl4 + 
##     unemployment.dl4 + reserves.dl4 + Householdloans.dl4 + finalconsumption.dl4 - 
##     1, data = data.mat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -304834 -115566    2351   69590  378925 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)   
## ect1                 -2.405e+06  9.642e+05  -2.495  0.02686 * 
## ect2                  6.608e+03  1.944e+03   3.399  0.00475 **
## ect3                  1.058e+06  1.613e+06   0.656  0.52334   
## ect4                 -2.039e+06  1.054e+06  -1.935  0.07502 . 
## ect5                 -2.628e+00  8.156e-01  -3.223  0.00667 **
## ect6                 -3.009e+06  1.132e+06  -2.658  0.01972 * 
## constant              8.504e+06  1.842e+07   0.462  0.65200   
## MRO.dl1               2.070e+06  1.055e+06   1.962  0.07151 . 
## OMO.dl1              -4.833e+03  1.833e+03  -2.637  0.02053 * 
## SovCISS.dl1          -2.087e+05  3.664e+06  -0.057  0.95544   
## unemployment.dl1     -1.197e+05  9.608e+05  -0.125  0.90278   
## reserves.dl1          1.798e+00  6.881e-01   2.613  0.02148 * 
## Householdloans.dl1    2.616e+06  1.551e+06   1.686  0.11555   
## finalconsumption.dl1 -1.189e+01  7.483e+00  -1.589  0.13607   
## MRO.dl2               1.627e+06  1.394e+06   1.167  0.26430   
## OMO.dl2              -2.199e+03  1.327e+03  -1.657  0.12147   
## SovCISS.dl2          -8.123e+06  4.482e+06  -1.813  0.09305 . 
## unemployment.dl2      4.311e+05  7.537e+05   0.572  0.57706   
## reserves.dl2          1.378e+00  6.300e-01   2.187  0.04766 * 
## Householdloans.dl2    2.146e+06  1.057e+06   2.029  0.06345 . 
## finalconsumption.dl2 -1.623e+00  5.244e+00  -0.310  0.76180   
## MRO.dl3              -7.337e+05  1.300e+06  -0.564  0.58213   
## OMO.dl3              -1.923e+03  1.078e+03  -1.784  0.09785 . 
## SovCISS.dl3           1.785e+06  3.543e+06   0.504  0.62271   
## unemployment.dl3      5.980e+04  4.829e+05   0.124  0.90335   
## reserves.dl3          5.784e-01  4.245e-01   1.363  0.19611   
## Householdloans.dl3   -1.392e+05  9.012e+05  -0.154  0.87962   
## finalconsumption.dl3 -6.057e+00  7.790e+00  -0.778  0.45073   
## MRO.dl4              -2.282e+06  8.576e+05  -2.661  0.01959 * 
## OMO.dl4              -6.100e+02  7.306e+02  -0.835  0.41886   
## SovCISS.dl4          -4.135e+06  3.375e+06  -1.225  0.24226   
## unemployment.dl4     -5.450e+05  5.279e+05  -1.033  0.32064   
## reserves.dl4         -7.933e-02  3.704e-01  -0.214  0.83373   
## Householdloans.dl4    4.829e+05  6.087e+05   0.793  0.44184   
## finalconsumption.dl4 -1.106e+01  6.648e+00  -1.663  0.12015   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 285700 on 13 degrees of freedom
## Multiple R-squared:  0.8807, Adjusted R-squared:  0.5596 
## F-statistic: 2.742 on 35 and 13 DF,  p-value: 0.02744
## 
## 
## Response Householdloans.d :
## 
## Call:
## lm(formula = Householdloans.d ~ ect1 + ect2 + ect3 + ect4 + ect5 + 
##     ect6 + constant + MRO.dl1 + OMO.dl1 + SovCISS.dl1 + unemployment.dl1 + 
##     reserves.dl1 + Householdloans.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + SovCISS.dl2 + unemployment.dl2 + reserves.dl2 + 
##     Householdloans.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + 
##     SovCISS.dl3 + unemployment.dl3 + reserves.dl3 + Householdloans.dl3 + 
##     finalconsumption.dl3 + MRO.dl4 + OMO.dl4 + SovCISS.dl4 + 
##     unemployment.dl4 + reserves.dl4 + Householdloans.dl4 + finalconsumption.dl4 - 
##     1, data = data.mat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.086615 -0.020432  0.000039  0.020796  0.094096 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## ect1                  1.530e-01  2.595e-01   0.590   0.5656  
## ect2                  2.535e-04  5.233e-04   0.484   0.6362  
## ect3                  4.243e-01  4.341e-01   0.978   0.3462  
## ect4                  8.037e-03  2.836e-01   0.028   0.9778  
## ect5                  2.132e-07  2.195e-07   0.971   0.3492  
## ect6                 -5.685e-02  3.047e-01  -0.187   0.8549  
## constant              1.108e+00  4.958e+00   0.223   0.8267  
## MRO.dl1              -2.969e-01  2.839e-01  -1.046   0.3147  
## OMO.dl1              -1.180e-04  4.934e-04  -0.239   0.8147  
## SovCISS.dl1          -1.262e+00  9.861e-01  -1.280   0.2229  
## unemployment.dl1     -2.866e-01  2.586e-01  -1.108   0.2878  
## reserves.dl1         -1.816e-07  1.852e-07  -0.981   0.3446  
## Householdloans.dl1   -2.896e-01  4.175e-01  -0.694   0.5001  
## finalconsumption.dl1 -1.142e-06  2.014e-06  -0.567   0.5803  
## MRO.dl2              -4.561e-01  3.752e-01  -1.216   0.2458  
## OMO.dl2              -4.584e-04  3.573e-04  -1.283   0.2219  
## SovCISS.dl2          -1.395e+00  1.206e+00  -1.156   0.2683  
## unemployment.dl2      1.313e-01  2.029e-01   0.647   0.5286  
## reserves.dl2         -1.305e-07  1.696e-07  -0.770   0.4553  
## Householdloans.dl2   -1.177e-01  2.846e-01  -0.413   0.6860  
## finalconsumption.dl2 -2.560e-06  1.411e-06  -1.814   0.0928 .
## MRO.dl3              -6.491e-01  3.499e-01  -1.855   0.0864 .
## OMO.dl3              -1.403e-04  2.903e-04  -0.483   0.6369  
## SovCISS.dl3          -1.585e-02  9.535e-01  -0.017   0.9870  
## unemployment.dl3      1.791e-01  1.300e-01   1.378   0.1915  
## reserves.dl3         -1.291e-07  1.142e-07  -1.130   0.2788  
## Householdloans.dl3   -9.068e-02  2.426e-01  -0.374   0.7145  
## finalconsumption.dl3 -1.288e-07  2.097e-06  -0.061   0.9519  
## MRO.dl4              -2.313e-01  2.308e-01  -1.002   0.3346  
## OMO.dl4              -1.204e-04  1.966e-04  -0.612   0.5510  
## SovCISS.dl4          -1.265e+00  9.083e-01  -1.393   0.1871  
## unemployment.dl4      2.110e-01  1.421e-01   1.485   0.1614  
## reserves.dl4         -5.165e-08  9.970e-08  -0.518   0.6131  
## Householdloans.dl4    1.108e-01  1.638e-01   0.676   0.5107  
## finalconsumption.dl4 -3.255e-06  1.789e-06  -1.819   0.0920 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0769 on 13 degrees of freedom
## Multiple R-squared:  0.9575, Adjusted R-squared:  0.8432 
## F-statistic: 8.373 on 35 and 13 DF,  p-value: 0.0001055
## 
## 
## Response finalconsumption.d :
## 
## Call:
## lm(formula = finalconsumption.d ~ ect1 + ect2 + ect3 + ect4 + 
##     ect5 + ect6 + constant + MRO.dl1 + OMO.dl1 + SovCISS.dl1 + 
##     unemployment.dl1 + reserves.dl1 + Householdloans.dl1 + finalconsumption.dl1 + 
##     MRO.dl2 + OMO.dl2 + SovCISS.dl2 + unemployment.dl2 + reserves.dl2 + 
##     Householdloans.dl2 + finalconsumption.dl2 + MRO.dl3 + OMO.dl3 + 
##     SovCISS.dl3 + unemployment.dl3 + reserves.dl3 + Householdloans.dl3 + 
##     finalconsumption.dl3 + MRO.dl4 + OMO.dl4 + SovCISS.dl4 + 
##     unemployment.dl4 + reserves.dl4 + Householdloans.dl4 + finalconsumption.dl4 - 
##     1, data = data.mat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5055.1 -1408.7  -281.2  1247.9  5164.4 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## ect1                 -5.727e+04  1.423e+04  -4.025 0.001442 ** 
## ect2                  1.083e+02  2.869e+01   3.776 0.002312 ** 
## ect3                 -6.425e+03  2.380e+04  -0.270 0.791411    
## ect4                 -9.499e+04  1.555e+04  -6.110 3.72e-05 ***
## ect5                 -6.549e-02  1.204e-02  -5.441 0.000113 ***
## ect6                 -5.014e+04  1.671e+04  -3.001 0.010217 *  
## constant              2.591e+06  2.718e+05   9.532 3.13e-07 ***
## MRO.dl1               6.335e+04  1.556e+04   4.070 0.001325 ** 
## OMO.dl1              -6.515e+01  2.705e+01  -2.408 0.031595 *  
## SovCISS.dl1           9.844e+04  5.406e+04   1.821 0.091711 .  
## unemployment.dl1      1.045e+05  1.418e+04   7.371 5.42e-06 ***
## reserves.dl1          5.410e-02  1.015e-02   5.328 0.000137 ***
## Householdloans.dl1    6.580e+04  2.289e+04   2.874 0.013031 *  
## finalconsumption.dl1  7.461e-01  1.104e-01   6.757 1.35e-05 ***
## MRO.dl2               7.922e+04  2.057e+04   3.851 0.002005 ** 
## OMO.dl2              -4.783e+01  1.959e+01  -2.442 0.029666 *  
## SovCISS.dl2           1.873e+05  6.613e+04   2.832 0.014141 *  
## unemployment.dl2      6.072e+04  1.112e+04   5.460 0.000109 ***
## reserves.dl2          4.432e-02  9.297e-03   4.767 0.000368 ***
## Householdloans.dl2    4.232e+04  1.560e+04   2.712 0.017776 *  
## finalconsumption.dl2  4.770e-01  7.738e-02   6.164 3.41e-05 ***
## MRO.dl3               8.835e+04  1.918e+04   4.606 0.000493 ***
## OMO.dl3               1.740e+01  1.591e+01   1.093 0.294112    
## SovCISS.dl3           5.628e+04  5.228e+04   1.077 0.301257    
## unemployment.dl3      3.726e+04  7.126e+03   5.229 0.000163 ***
## reserves.dl3          3.317e-02  6.264e-03   5.296 0.000145 ***
## Householdloans.dl3    3.601e+04  1.330e+04   2.708 0.017933 *  
## finalconsumption.dl3  3.304e-01  1.149e-01   2.874 0.013044 *  
## MRO.dl4               5.769e+04  1.265e+04   4.559 0.000537 ***
## OMO.dl4              -8.581e+00  1.078e+01  -0.796 0.440350    
## SovCISS.dl4           9.938e+04  4.980e+04   1.996 0.067376 .  
## unemployment.dl4      4.439e+03  7.789e+03   0.570 0.578482    
## reserves.dl4          1.455e-02  5.466e-03   2.662 0.019565 *  
## Householdloans.dl4    1.898e+04  8.982e+03   2.113 0.054529 .  
## finalconsumption.dl4  5.122e-01  9.810e-02   5.221 0.000165 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4216 on 13 degrees of freedom
## Multiple R-squared:  0.9903, Adjusted R-squared:  0.9641 
## F-statistic: 37.82 on 35 and 13 DF,  p-value: 1.171e-08
##       ect1                 ect2               ect3           
##  Min.   :-1.4489456   Min.   : -0.0392   Min.   :-0.1405110  
##  1st Qu.: 0.0000000   1st Qu.:  0.0000   1st Qu.: 0.0000000  
##  Median : 0.0000000   Median :  0.0000   Median : 0.0000000  
##  Mean   :-0.0561045   Mean   : 62.9572   Mean   : 0.1074375  
##  3rd Qu.: 0.0000274   3rd Qu.:  0.2500   3rd Qu.: 0.0000027  
##  Max.   : 1.0000000   Max.   :502.6964   Max.   : 1.0000000  
##       ect4               ect5                ect6           
##  Min.   :-2.0e-01   Min.   :    -89.4   Min.   :-0.0001086  
##  1st Qu.: 0.0e+00   1st Qu.:      0.0   1st Qu.: 0.0000000  
##  Median : 0.0e+00   Median :      0.0   Median : 0.0000000  
##  Mean   : 1.0e-01   Mean   : 142044.3   Mean   : 0.2979746  
##  3rd Qu.: 5.1e-06   3rd Qu.:      0.2   3rd Qu.: 0.2500000  
##  Max.   : 1.0e+00   Max.   :1136442.7   Max.   : 1.3839054
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      3      3      3      2 
## 
## $criteria
##                  1             2    3    4    5    6    7    8    9   10
## AIC(n) -5.41101628           NaN -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## HQ(n)  -5.13818741           NaN -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## SC(n)  -2.66631350           NaN -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## FPE(n)  0.00784646 -1.125729e-77    0    0    0    0    0    0    0    0
## [1] 7
## [1] 7
##                       MRO        OMO    SovCISS unemployment   reserves
## MRO             1.0000000 -0.9694646 -0.6971271   -0.3553923 -0.9060649
## OMO            -0.9694646  1.0000000  0.8108057    0.3644879  0.8462709
## SovCISS        -0.6971271  0.8108057  1.0000000    0.1972952  0.4922168
## unemployment   -0.3553923  0.3644879  0.1972952    1.0000000  0.2144227
## reserves       -0.9060649  0.8462709  0.4922168    0.2144227  1.0000000
## Householdloans -0.9418832  0.9741303  0.8697506    0.3833306  0.7594852
## durablehs       0.7201660 -0.7949001 -0.8996729   -0.2800758 -0.5313504
##                Householdloans  durablehs
## MRO                -0.9418832  0.7201660
## OMO                 0.9741303 -0.7949001
## SovCISS             0.8697506 -0.8996729
## unemployment        0.3833306 -0.2800758
## reserves            0.7594852 -0.5313504
## Householdloans      1.0000000 -0.8493747
## durablehs          -0.8493747  1.0000000
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      5      5      5      5 
## 
## $criteria
##                   1            2            3             4    5    6    7    8
## AIC(n) 1.184072e+02 1.139654e+02 1.038211e+02 -1.823512e+02 -Inf -Inf -Inf -Inf
## HQ(n)  1.200686e+02 1.171373e+02 1.085034e+02 -1.761585e+02 -Inf -Inf -Inf -Inf
## SC(n)  1.229126e+02 1.225666e+02 1.165181e+02 -1.655584e+02 -Inf -Inf -Inf -Inf
## FPE(n) 2.978906e+51 7.765794e+49 5.339688e+46  5.707828e-72    0    0    0    0
##           9   10
## AIC(n) -Inf -Inf
## HQ(n)  -Inf -Inf
## SC(n)  -Inf -Inf
## FPE(n)    0    0
## 
## VAR Estimation Results:
## ======================= 
## 
## Estimated coefficients for equation MRO: 
## ======================================== 
## Call:
## MRO = MRO.l1 + OMO.l1 + reserves.l1 + Householdloans.l1 + SovCISS.l1 + unemployment.l1 + finalconsumption.l1 + interactionOMOreserves.l1 + interactionMROreserves.l1 + interactioncreditreservesloans.l1 + MRO.l2 + OMO.l2 + reserves.l2 + Householdloans.l2 + SovCISS.l2 + unemployment.l2 + finalconsumption.l2 + interactionOMOreserves.l2 + interactionMROreserves.l2 + interactioncreditreservesloans.l2 + MRO.l3 + OMO.l3 + reserves.l3 + Householdloans.l3 + SovCISS.l3 + unemployment.l3 + finalconsumption.l3 + interactionOMOreserves.l3 + interactionMROreserves.l3 + interactioncreditreservesloans.l3 + const 
## 
##                            MRO.l1                            OMO.l1 
##                      1.091204e+00                     -2.611277e-04 
##                       reserves.l1                 Householdloans.l1 
##                      1.474542e-06                      5.735326e-01 
##                        SovCISS.l1                   unemployment.l1 
##                     -1.631003e+00                     -7.068903e-02 
##               finalconsumption.l1         interactionOMOreserves.l1 
##                      6.560903e-07                     -3.116661e-07 
##         interactionMROreserves.l1 interactioncreditreservesloans.l1 
##                      1.557921e-10                     -3.157045e-07 
##                            MRO.l2                            OMO.l2 
##                     -3.690988e-01                     -6.262471e-04 
##                       reserves.l2                 Householdloans.l2 
##                     -8.494386e-07                      3.082801e-02 
##                        SovCISS.l2                   unemployment.l2 
##                      1.713108e+00                      1.183063e-01 
##               finalconsumption.l2         interactionOMOreserves.l2 
##                      5.341483e-07                      3.902547e-07 
##         interactionMROreserves.l2 interactioncreditreservesloans.l2 
##                      1.130108e-10                      9.797363e-08 
##                            MRO.l3                            OMO.l3 
##                      6.212481e-01                      4.942052e-04 
##                       reserves.l3                 Householdloans.l3 
##                      4.712551e-07                     -1.576228e-01 
##                        SovCISS.l3                   unemployment.l3 
##                      9.390983e-01                     -6.506807e-02 
##               finalconsumption.l3         interactionOMOreserves.l3 
##                     -5.446687e-07                     -6.984004e-08 
##         interactionMROreserves.l3 interactioncreditreservesloans.l3 
##                     -3.996595e-10                      8.823921e-08 
##                             const 
##                     -2.925080e+00 
## 
## 
## Estimated coefficients for equation OMO: 
## ======================================== 
## Call:
## OMO = MRO.l1 + OMO.l1 + reserves.l1 + Householdloans.l1 + SovCISS.l1 + unemployment.l1 + finalconsumption.l1 + interactionOMOreserves.l1 + interactionMROreserves.l1 + interactioncreditreservesloans.l1 + MRO.l2 + OMO.l2 + reserves.l2 + Householdloans.l2 + SovCISS.l2 + unemployment.l2 + finalconsumption.l2 + interactionOMOreserves.l2 + interactionMROreserves.l2 + interactioncreditreservesloans.l2 + MRO.l3 + OMO.l3 + reserves.l3 + Householdloans.l3 + SovCISS.l3 + unemployment.l3 + finalconsumption.l3 + interactionOMOreserves.l3 + interactionMROreserves.l3 + interactioncreditreservesloans.l3 + const 
## 
##                            MRO.l1                            OMO.l1 
##                     -4.171794e+02                      7.986175e-02 
##                       reserves.l1                 Householdloans.l1 
##                     -3.568207e-04                     -2.884112e+01 
##                        SovCISS.l1                   unemployment.l1 
##                      2.696271e+02                      3.349529e+01 
##               finalconsumption.l1         interactionOMOreserves.l1 
##                     -1.328820e-03                      1.025345e-04 
##         interactionMROreserves.l1 interactioncreditreservesloans.l1 
##                     -6.482568e-08                      1.233900e-04 
##                            MRO.l2                            OMO.l2 
##                      6.333667e+02                     -1.260807e-01 
##                       reserves.l2                 Householdloans.l2 
##                      1.101561e-03                      2.109245e+02 
##                        SovCISS.l2                   unemployment.l2 
##                     -9.632697e+01                      8.661739e+01 
##               finalconsumption.l2         interactionOMOreserves.l2 
##                     -1.061344e-03                     -1.694971e-04 
##         interactionMROreserves.l2 interactioncreditreservesloans.l2 
##                      2.044165e-07                     -3.047237e-04 
##                            MRO.l3                            OMO.l3 
##                     -3.778978e+02                     -4.657969e-01 
##                       reserves.l3                 Householdloans.l3 
##                     -1.425685e-03                      7.486362e+00 
##                        SovCISS.l3                   unemployment.l3 
##                      1.324321e+03                      3.772195e+01 
##               finalconsumption.l3         interactionOMOreserves.l3 
##                      1.038962e-03                      1.003061e-04 
##         interactionMROreserves.l3 interactioncreditreservesloans.l3 
##                      5.458232e-07                      5.108755e-05 
##                             const 
##                      2.521451e+03 
## 
## 
## Estimated coefficients for equation reserves: 
## ============================================= 
## Call:
## reserves = MRO.l1 + OMO.l1 + reserves.l1 + Householdloans.l1 + SovCISS.l1 + unemployment.l1 + finalconsumption.l1 + interactionOMOreserves.l1 + interactionMROreserves.l1 + interactioncreditreservesloans.l1 + MRO.l2 + OMO.l2 + reserves.l2 + Householdloans.l2 + SovCISS.l2 + unemployment.l2 + finalconsumption.l2 + interactionOMOreserves.l2 + interactionMROreserves.l2 + interactioncreditreservesloans.l2 + MRO.l3 + OMO.l3 + reserves.l3 + Householdloans.l3 + SovCISS.l3 + unemployment.l3 + finalconsumption.l3 + interactionOMOreserves.l3 + interactionMROreserves.l3 + interactioncreditreservesloans.l3 + const 
## 
##                            MRO.l1                            OMO.l1 
##                      1.423259e+06                     -9.175948e+01 
##                       reserves.l1                 Householdloans.l1 
##                      3.380069e+00                      1.720921e+06 
##                        SovCISS.l1                   unemployment.l1 
##                     -2.744785e+06                     -5.699052e+05 
##               finalconsumption.l1         interactionOMOreserves.l1 
##                      1.194955e+00                     -3.844194e-01 
##         interactionMROreserves.l1 interactioncreditreservesloans.l1 
##                      3.772056e-05                     -7.000619e-01 
##                            MRO.l2                            OMO.l2 
##                     -6.610102e+05                     -5.424986e+02 
##                       reserves.l2                 Householdloans.l2 
##                     -4.216832e-01                     -2.661995e+05 
##                        SovCISS.l2                   unemployment.l2 
##                      1.581827e+06                      1.505221e+05 
##               finalconsumption.l2         interactionOMOreserves.l2 
##                     -1.234183e-01                     -4.250779e-01 
##         interactionMROreserves.l2 interactioncreditreservesloans.l2 
##                     -4.584764e-05                      2.025725e-01 
##                            MRO.l3                            OMO.l3 
##                      2.912083e+05                      1.132954e+03 
##                       reserves.l3                 Householdloans.l3 
##                      1.622354e+00                     -9.306179e+05 
##                        SovCISS.l3                   unemployment.l3 
##                      9.816405e+05                     -2.530435e+05 
##               finalconsumption.l3         interactionOMOreserves.l3 
##                     -2.799981e+00                     -6.874811e-01 
##         interactionMROreserves.l3 interactioncreditreservesloans.l3 
##                     -1.092979e-03                      3.407608e-01 
##                             const 
##                      2.799841e+06 
## 
## 
## Estimated coefficients for equation Householdloans: 
## =================================================== 
## Call:
## Householdloans = MRO.l1 + OMO.l1 + reserves.l1 + Householdloans.l1 + SovCISS.l1 + unemployment.l1 + finalconsumption.l1 + interactionOMOreserves.l1 + interactionMROreserves.l1 + interactioncreditreservesloans.l1 + MRO.l2 + OMO.l2 + reserves.l2 + Householdloans.l2 + SovCISS.l2 + unemployment.l2 + finalconsumption.l2 + interactionOMOreserves.l2 + interactionMROreserves.l2 + interactioncreditreservesloans.l2 + MRO.l3 + OMO.l3 + reserves.l3 + Householdloans.l3 + SovCISS.l3 + unemployment.l3 + finalconsumption.l3 + interactionOMOreserves.l3 + interactionMROreserves.l3 + interactioncreditreservesloans.l3 + const 
## 
##                            MRO.l1                            OMO.l1 
##                     -5.852919e-01                     -7.165781e-05 
##                       reserves.l1                 Householdloans.l1 
##                     -2.289057e-06                     -2.883322e-02 
##                        SovCISS.l1                   unemployment.l1 
##                      2.097648e-02                     -5.939372e-02 
##               finalconsumption.l1         interactionOMOreserves.l1 
##                      2.235954e-06                      1.664282e-07 
##         interactionMROreserves.l1 interactioncreditreservesloans.l1 
##                      3.042255e-10                      3.343842e-07 
##                            MRO.l2                            OMO.l2 
##                     -2.544154e-02                     -4.906958e-05 
##                       reserves.l2                 Householdloans.l2 
##                      7.051550e-07                     -9.907610e-02 
##                        SovCISS.l2                   unemployment.l2 
##                      1.328690e+00                      3.688917e-01 
##               finalconsumption.l2         interactionOMOreserves.l2 
##                     -4.622956e-06                     -3.334712e-09 
##         interactionMROreserves.l2 interactioncreditreservesloans.l2 
##                      3.658692e-11                     -1.890162e-07 
##                            MRO.l3                            OMO.l3 
##                     -5.244721e-01                     -3.616576e-04 
##                       reserves.l3                 Householdloans.l3 
##                     -7.908822e-07                      3.885657e-01 
##                        SovCISS.l3                   unemployment.l3 
##                     -4.302868e-01                     -8.118398e-02 
##               finalconsumption.l3         interactionOMOreserves.l3 
##                      3.858979e-06                      7.014214e-08 
##         interactionMROreserves.l3 interactioncreditreservesloans.l3 
##                      5.962373e-10                     -1.292763e-07 
##                             const 
##                      8.993693e-01 
## 
## 
## Estimated coefficients for equation SovCISS: 
## ============================================ 
## Call:
## SovCISS = MRO.l1 + OMO.l1 + reserves.l1 + Householdloans.l1 + SovCISS.l1 + unemployment.l1 + finalconsumption.l1 + interactionOMOreserves.l1 + interactionMROreserves.l1 + interactioncreditreservesloans.l1 + MRO.l2 + OMO.l2 + reserves.l2 + Householdloans.l2 + SovCISS.l2 + unemployment.l2 + finalconsumption.l2 + interactionOMOreserves.l2 + interactionMROreserves.l2 + interactioncreditreservesloans.l2 + MRO.l3 + OMO.l3 + reserves.l3 + Householdloans.l3 + SovCISS.l3 + unemployment.l3 + finalconsumption.l3 + interactionOMOreserves.l3 + interactionMROreserves.l3 + interactioncreditreservesloans.l3 + const 
## 
##                            MRO.l1                            OMO.l1 
##                     -9.367919e-02                      2.656792e-05 
##                       reserves.l1                 Householdloans.l1 
##                     -4.399840e-07                     -2.518485e-01 
##                        SovCISS.l1                   unemployment.l1 
##                      8.410062e-01                      2.973028e-02 
##               finalconsumption.l1         interactionOMOreserves.l1 
##                      2.363888e-07                      2.095182e-08 
##         interactionMROreserves.l1 interactioncreditreservesloans.l1 
##                     -1.581941e-11                      9.957423e-08 
##                            MRO.l2                            OMO.l2 
##                     -1.585690e-02                      4.525534e-05 
##                       reserves.l2                 Householdloans.l2 
##                      3.348078e-07                      1.766766e-01 
##                        SovCISS.l2                   unemployment.l2 
##                     -3.576603e-01                      4.100073e-02 
##               finalconsumption.l2         interactionOMOreserves.l2 
##                     -4.616150e-07                     -1.785792e-08 
##         interactionMROreserves.l2 interactioncreditreservesloans.l2 
##                      1.178563e-12                     -7.096339e-08 
##                            MRO.l3                            OMO.l3 
##                      4.070417e-02                      1.419095e-05 
##                       reserves.l3                 Householdloans.l3 
##                     -3.456431e-08                      1.697179e-02 
##                        SovCISS.l3                   unemployment.l3 
##                      4.469603e-01                     -1.286257e-02 
##               finalconsumption.l3         interactionOMOreserves.l3 
##                      6.277897e-07                     -6.588510e-09 
##         interactionMROreserves.l3 interactioncreditreservesloans.l3 
##                     -6.645637e-12                      1.162951e-08 
##                             const 
##                     -9.116446e-01 
## 
## 
## Estimated coefficients for equation unemployment: 
## ================================================= 
## Call:
## unemployment = MRO.l1 + OMO.l1 + reserves.l1 + Householdloans.l1 + SovCISS.l1 + unemployment.l1 + finalconsumption.l1 + interactionOMOreserves.l1 + interactionMROreserves.l1 + interactioncreditreservesloans.l1 + MRO.l2 + OMO.l2 + reserves.l2 + Householdloans.l2 + SovCISS.l2 + unemployment.l2 + finalconsumption.l2 + interactionOMOreserves.l2 + interactionMROreserves.l2 + interactioncreditreservesloans.l2 + MRO.l3 + OMO.l3 + reserves.l3 + Householdloans.l3 + SovCISS.l3 + unemployment.l3 + finalconsumption.l3 + interactionOMOreserves.l3 + interactionMROreserves.l3 + interactioncreditreservesloans.l3 + const 
## 
##                            MRO.l1                            OMO.l1 
##                      9.835568e-01                      4.739510e-04 
##                       reserves.l1                 Householdloans.l1 
##                      1.191088e-06                      5.410269e-01 
##                        SovCISS.l1                   unemployment.l1 
##                      1.378554e-01                      5.383361e-01 
##               finalconsumption.l1         interactionOMOreserves.l1 
##                     -8.403864e-08                      5.535917e-08 
##         interactionMROreserves.l1 interactioncreditreservesloans.l1 
##                     -2.452010e-10                     -1.961894e-07 
##                            MRO.l2                            OMO.l2 
##                     -8.310082e-01                     -1.611666e-04 
##                       reserves.l2                 Householdloans.l2 
##                      3.209974e-07                     -5.010887e-02 
##                        SovCISS.l2                   unemployment.l2 
##                      8.616446e-01                     -6.104912e-01 
##               finalconsumption.l2         interactionOMOreserves.l2 
##                     -2.755920e-06                      9.924174e-08 
##         interactionMROreserves.l2 interactioncreditreservesloans.l2 
##                     -1.755578e-10                     -6.899233e-08 
##                            MRO.l3                            OMO.l3 
##                     -1.564215e-02                      1.016255e-03 
##                       reserves.l3                 Householdloans.l3 
##                     -1.753884e-07                     -7.763925e-01 
##                        SovCISS.l3                   unemployment.l3 
##                     -2.319638e+00                     -2.667143e-02 
##               finalconsumption.l3         interactionOMOreserves.l3 
##                      2.543024e-07                     -3.468979e-07 
##         interactionMROreserves.l3 interactioncreditreservesloans.l3 
##                     -1.351457e-10                      1.628151e-07 
##                             const 
##                      1.165409e+01 
## 
## 
## Estimated coefficients for equation finalconsumption: 
## ===================================================== 
## Call:
## finalconsumption = MRO.l1 + OMO.l1 + reserves.l1 + Householdloans.l1 + SovCISS.l1 + unemployment.l1 + finalconsumption.l1 + interactionOMOreserves.l1 + interactionMROreserves.l1 + interactioncreditreservesloans.l1 + MRO.l2 + OMO.l2 + reserves.l2 + Householdloans.l2 + SovCISS.l2 + unemployment.l2 + finalconsumption.l2 + interactionOMOreserves.l2 + interactionMROreserves.l2 + interactioncreditreservesloans.l2 + MRO.l3 + OMO.l3 + reserves.l3 + Householdloans.l3 + SovCISS.l3 + unemployment.l3 + finalconsumption.l3 + interactionOMOreserves.l3 + interactionMROreserves.l3 + interactioncreditreservesloans.l3 + const 
## 
##                            MRO.l1                            OMO.l1 
##                      7.271596e+04                      3.071775e+01 
##                       reserves.l1                 Householdloans.l1 
##                      5.744981e-02                      7.940088e+04 
##                        SovCISS.l1                   unemployment.l1 
##                      2.031745e+05                     -6.893902e+03 
##               finalconsumption.l1         interactionOMOreserves.l1 
##                      7.879699e-01                     -6.798070e-03 
##         interactionMROreserves.l1 interactioncreditreservesloans.l1 
##                      2.483684e-05                     -2.583023e-02 
##                            MRO.l2                            OMO.l2 
##                     -2.977523e+04                     -8.681595e+00 
##                       reserves.l2                 Householdloans.l2 
##                      5.302765e-02                      6.509449e+04 
##                        SovCISS.l2                   unemployment.l2 
##                     -1.940887e+03                     -5.986889e+03 
##               finalconsumption.l2         interactionOMOreserves.l2 
##                     -9.821163e-02                      5.265233e-03 
##         interactionMROreserves.l2 interactioncreditreservesloans.l2 
##                      2.068057e-06                     -1.510898e-02 
##                            MRO.l3                            OMO.l3 
##                      2.660591e+04                      6.784324e+01 
##                       reserves.l3                 Householdloans.l3 
##                     -1.391646e-01                     -1.357653e+05 
##                        SovCISS.l3                   unemployment.l3 
##                     -1.455203e+05                     -2.425590e+04 
##               finalconsumption.l3         interactionOMOreserves.l3 
##                     -2.120366e-01                     -1.841008e-02 
##         interactionMROreserves.l3 interactioncreditreservesloans.l3 
##                     -2.766081e-05                      4.600827e-02 
##                             const 
##                      9.441980e+05 
## 
## 
## Estimated coefficients for equation interactionOMOreserves: 
## =========================================================== 
## Call:
## interactionOMOreserves = MRO.l1 + OMO.l1 + reserves.l1 + Householdloans.l1 + SovCISS.l1 + unemployment.l1 + finalconsumption.l1 + interactionOMOreserves.l1 + interactionMROreserves.l1 + interactioncreditreservesloans.l1 + MRO.l2 + OMO.l2 + reserves.l2 + Householdloans.l2 + SovCISS.l2 + unemployment.l2 + finalconsumption.l2 + interactionOMOreserves.l2 + interactionMROreserves.l2 + interactioncreditreservesloans.l2 + MRO.l3 + OMO.l3 + reserves.l3 + Householdloans.l3 + SovCISS.l3 + unemployment.l3 + finalconsumption.l3 + interactionOMOreserves.l3 + interactionMROreserves.l3 + interactioncreditreservesloans.l3 + const 
## 
##                            MRO.l1                            OMO.l1 
##                      6.073781e+06                     -1.519717e+03 
##                       reserves.l1                 Householdloans.l1 
##                      1.437484e+01                      7.633607e+06 
##                        SovCISS.l1                   unemployment.l1 
##                     -1.280579e+07                     -1.188952e+06 
##               finalconsumption.l1         interactionOMOreserves.l1 
##                      1.042998e+00                     -1.254074e+00 
##         interactionMROreserves.l1 interactioncreditreservesloans.l1 
##                     -2.852743e-04                     -2.615306e+00 
##                            MRO.l2                            OMO.l2 
##                     -2.244154e+06                     -1.587772e+03 
##                       reserves.l2                 Householdloans.l2 
##                     -5.043852e+00                     -2.248277e+06 
##                        SovCISS.l2                   unemployment.l2 
##                      1.256297e+07                      7.177191e+05 
##               finalconsumption.l2         interactionOMOreserves.l2 
##                      1.512486e+00                      7.153362e-01 
##         interactionMROreserves.l2 interactioncreditreservesloans.l2 
##                     -1.278496e-03                      1.631650e+00 
##                            MRO.l3                            OMO.l3 
##                      1.996893e+06                      4.832851e+03 
##                       reserves.l3                 Householdloans.l3 
##                      5.766362e+00                     -2.299971e+06 
##                        SovCISS.l3                   unemployment.l3 
##                     -2.194306e+06                     -7.113261e+05 
##               finalconsumption.l3         interactionOMOreserves.l3 
##                     -8.102030e+00                     -1.442352e+00 
##         interactionMROreserves.l3 interactioncreditreservesloans.l3 
##                     -3.963356e-03                      9.838102e-01 
##                             const 
##                     -8.849397e+06 
## 
## 
## Estimated coefficients for equation interactionMROreserves: 
## =========================================================== 
## Call:
## interactionMROreserves = MRO.l1 + OMO.l1 + reserves.l1 + Householdloans.l1 + SovCISS.l1 + unemployment.l1 + finalconsumption.l1 + interactionOMOreserves.l1 + interactionMROreserves.l1 + interactioncreditreservesloans.l1 + MRO.l2 + OMO.l2 + reserves.l2 + Householdloans.l2 + SovCISS.l2 + unemployment.l2 + finalconsumption.l2 + interactionOMOreserves.l2 + interactionMROreserves.l2 + interactioncreditreservesloans.l2 + MRO.l3 + OMO.l3 + reserves.l3 + Householdloans.l3 + SovCISS.l3 + unemployment.l3 + finalconsumption.l3 + interactionOMOreserves.l3 + interactionMROreserves.l3 + interactioncreditreservesloans.l3 + const 
## 
##                            MRO.l1                            OMO.l1 
##                      2.678995e+09                     -9.433815e+05 
##                       reserves.l1                 Householdloans.l1 
##                      5.589753e+03                      3.819660e+09 
##                        SovCISS.l1                   unemployment.l1 
##                     -6.882471e+09                     -1.397865e+09 
##               finalconsumption.l1         interactionOMOreserves.l1 
##                      1.228514e+03                     -8.242433e+02 
##         interactionMROreserves.l1 interactioncreditreservesloans.l1 
##                      4.393681e-01                     -1.251797e+03 
##                            MRO.l2                            OMO.l2 
##                     -9.467690e+08                     -1.191949e+06 
##                       reserves.l2                 Householdloans.l2 
##                     -9.233770e+02                     -1.416443e+09 
##                        SovCISS.l2                   unemployment.l2 
##                      3.887538e+09                      1.106194e+09 
##               finalconsumption.l2         interactionOMOreserves.l2 
##                     -4.648415e+03                     -8.878132e+02 
##         interactionMROreserves.l2 interactioncreditreservesloans.l2 
##                     -1.098615e-02                      4.395458e+02 
##                            MRO.l3                            OMO.l3 
##                      6.554338e+08                      2.359632e+06 
##                       reserves.l3                 Householdloans.l3 
##                      2.965512e+03                     -1.074700e+09 
##                        SovCISS.l3                   unemployment.l3 
##                      3.342604e+09                     -8.362490e+08 
##               finalconsumption.l3         interactionOMOreserves.l3 
##                     -1.755419e+03                     -1.295254e+03 
##         interactionMROreserves.l3 interactioncreditreservesloans.l3 
##                     -1.637489e+00                      4.775872e+02 
##                             const 
##                      6.164527e+09 
## 
## 
## Estimated coefficients for equation interactioncreditreservesloans: 
## =================================================================== 
## Call:
## interactioncreditreservesloans = MRO.l1 + OMO.l1 + reserves.l1 + Householdloans.l1 + SovCISS.l1 + unemployment.l1 + finalconsumption.l1 + interactionOMOreserves.l1 + interactionMROreserves.l1 + interactioncreditreservesloans.l1 + MRO.l2 + OMO.l2 + reserves.l2 + Householdloans.l2 + SovCISS.l2 + unemployment.l2 + finalconsumption.l2 + interactionOMOreserves.l2 + interactionMROreserves.l2 + interactioncreditreservesloans.l2 + MRO.l3 + OMO.l3 + reserves.l3 + Householdloans.l3 + SovCISS.l3 + unemployment.l3 + finalconsumption.l3 + interactionOMOreserves.l3 + interactionMROreserves.l3 + interactioncreditreservesloans.l3 + const 
## 
##                            MRO.l1                            OMO.l1 
##                      3.410528e+06                     -1.149528e+03 
##                       reserves.l1                 Householdloans.l1 
##                      4.418787e+00                      5.069794e+06 
##                        SovCISS.l1                   unemployment.l1 
##                     -9.854789e+06                     -2.532277e+06 
##               finalconsumption.l1         interactionOMOreserves.l1 
##                      1.297284e+01                     -1.226573e+00 
##         interactionMROreserves.l1 interactioncreditreservesloans.l1 
##                      1.269211e-03                     -1.346980e+00 
##                            MRO.l2                            OMO.l2 
##                     -1.660605e+06                     -1.500677e+03 
##                       reserves.l2                 Householdloans.l2 
##                      3.066015e-01                     -2.001108e+06 
##                        SovCISS.l2                   unemployment.l2 
##                      7.263317e+06                      1.564988e+06 
##               finalconsumption.l2         interactionOMOreserves.l2 
##                     -1.206300e+01                     -2.049611e+00 
##         interactionMROreserves.l2 interactioncreditreservesloans.l2 
##                     -5.693939e-04                      6.355867e-01 
##                            MRO.l3                            OMO.l3 
##                      3.579092e+05                      2.532786e+03 
##                       reserves.l3                 Householdloans.l3 
##                      6.073685e+00                     -1.750689e+06 
##                        SovCISS.l3                   unemployment.l3 
##                      5.202567e+06                     -1.346308e+06 
##               finalconsumption.l3         interactionOMOreserves.l3 
##                     -3.275872e+00                     -2.482156e+00 
##         interactionMROreserves.l3 interactioncreditreservesloans.l3 
##                     -2.739994e-03                      6.264049e-01 
##                             const 
##                      9.519648e+06
##               Length Class  Mode   
## deterministic  10    -none- numeric
## A               2    -none- list   
## p               1    -none- numeric
## K               1    -none- numeric
## y             265    -none- numeric
## obs             1    -none- numeric
## totobs          1    -none- numeric
## call            3    -none- call   
## vecm            1    ca.jo  S4     
## datamat       867    -none- numeric
## resid         255    -none- numeric
## r               1    -none- numeric

Except for Figure 38 the relationships of the transmission channel are easy to understand. The negative reaction of bank reserves to the MRO shock fits into the transmission channel, as the time series shows positive MRO shocks. The later reaction periods are also striking. To investigate this further, I perform IRFs based on the time series breakpoints.

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      5      4      1      5 
## 
## $criteria
##                   1            2            3             4             5
## AIC(n) -6.595749775 -6.531486988 -6.501958889 -6.9837006110 -7.0164689068
## HQ(n)  -6.507861532 -6.385006583 -6.296886322 -6.7200358828 -6.6942120168
## SC(n)  -6.364098310 -6.145401212 -5.961438804 -6.2887462158 -6.1670802015
## FPE(n)  0.001366581  0.001458916  0.001506414  0.0009347164  0.0009110514
##                   6            7            8            9           10
## AIC(n) -6.891377957 -6.839633413 -6.812019481 -6.882823445 -6.826807467
## HQ(n)  -6.510528905 -6.400192199 -6.313986106 -6.326197908 -6.211589768
## SC(n)  -5.887554942 -5.681376088 -5.499327846 -5.415697500 -5.205247212
## FPE(n)  0.001043295  0.001114802  0.001168614  0.001116872  0.001220479
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 0.27175358 0.05335604
## 
## Values of teststatistic and critical values of test:
## 
##           test 10pct  5pct  1pct
## r <= 1 |  2.80  6.50  8.18 11.65
## r = 0  | 18.97 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                           MRO.l8 Totalbankreservesmag.l8
## MRO.l8                   1.00000                 1.00000
## Totalbankreservesmag.l8 39.75563               -34.94521
## 
## Weights W:
## (This is the loading matrix)
## 
##                              MRO.l8 Totalbankreservesmag.l8
## MRO.d                  -0.004970236            -0.013145170
## Totalbankreservesmag.d -0.053358804             0.003408676

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##     10      1      1      1 
## 
## $criteria
##                 1          2          3          4          5          6
## AIC(n)   5.980493   6.116975   6.165569   6.285721   6.396666   6.304812
## HQ(n)    6.071117   6.268016   6.377027   6.557595   6.728956   6.697519
## SC(n)    6.226241   6.526557   6.738983   7.022968   7.297745   7.369724
## FPE(n) 395.814881 454.450444 478.863049 543.635257 613.945549 568.964733
##                 7          8          9         10
## AIC(n)   6.109879   6.214941   6.250699   5.805731
## HQ(n)    6.563002   6.728480   6.824654   6.440103
## SC(n)    7.338624   7.607518   7.807108   7.525973
## FPE(n) 478.668140 547.872038 590.764711 398.586370
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 0.358477807 0.007459177
## 
## Values of teststatistic and critical values of test:
## 
##           test 10pct  5pct  1pct
## r <= 1 |  0.34  6.50  8.18 11.65
## r = 0  | 20.31 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                            OMO.l8 Totalbankreservesmag.l8
## OMO.l8                        1.0                   1.000
## Totalbankreservesmag.l8 -153021.9               -1219.474
## 
## Weights W:
## (This is the loading matrix)
## 
##                               OMO.l8 Totalbankreservesmag.l8
## OMO.d                  -4.589228e-03            -0.007730577
## Totalbankreservesmag.d  7.077284e-06            -0.000024056

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##     10      1      1      5 
## 
## $criteria
##                   1            2           3            4            5
## AIC(n) -6.493519502 -6.441384098 -6.29570467 -6.278633436 -6.650015797
## HQ(n)  -6.406146390 -6.295762245 -6.09183408 -6.016514100 -6.329647720
## SC(n)  -6.264076741 -6.058979497 -5.76033823 -5.590305154 -5.808725674
## FPE(n)  0.001513651  0.001596339  0.00185105  0.001890899  0.001313065
##                   6            7           8            9           10
## AIC(n) -6.566264852 -6.584302717 -6.49227355 -6.687082757 -6.715338740
## HQ(n)  -6.187648034 -6.147437158 -5.99715924 -6.133719715 -6.103726957
## SC(n)  -5.572012889 -5.437088914 -5.19209790 -5.233945273 -5.109239415
## FPE(n)  0.001441846  0.001435525  0.00160296  0.001351089  0.001354164
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 0.19753210 0.08548003
## 
## Values of teststatistic and critical values of test:
## 
##           test 10pct  5pct  1pct
## r <= 1 |  5.18  6.50  8.18 11.65
## r = 0  | 17.95 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                         Totalbankreservesmag.l2 Householdloansmag.l2
## Totalbankreservesmag.l2                1.000000             1.000000
## Householdloansmag.l2                  -0.645172             4.362919
## 
## Weights W:
## (This is the loading matrix)
## 
##                        Totalbankreservesmag.l2 Householdloansmag.l2
## Totalbankreservesmag.d              -0.3942012          -0.03652812
## Householdloansmag.d                  0.2106976          -0.08230752

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      6      6      1      6 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) -5.954776813 -6.093561623 -6.074930891 -6.166059612 -6.209158783
## HQ(n)  -5.865897285 -5.945429076 -5.867545325 -5.899421027 -5.883267179
## SC(n)  -5.718587758 -5.699913197 -5.523823095 -5.457492446 -5.343132246
## FPE(n)  0.002594324  0.002261006  0.002310096  0.002119689  0.002046794
##                   6            7            8            9           10
## AIC(n) -6.403387295 -6.352252804 -6.361810056 -6.242427367 -6.330726135
## HQ(n)  -6.018242672 -5.907855162 -5.858159396 -5.679523688 -5.708569437
## SC(n)  -5.379901387 -5.171307526 -5.023405408 -4.746563349 -4.677402746
## FPE(n)  0.001705662  0.001825226  0.001848747  0.002145145  0.002039322
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: trace statistic , with linear trend 
## 
## Eigenvalues (lambda):
## [1] 0.28098229 0.08355418
## 
## Values of teststatistic and critical values of test:
## 
##           test 10pct  5pct  1pct
## r <= 1 |  4.80  6.50  8.18 11.65
## r = 0  | 22.94 15.66 17.95 23.52
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##                        Householdloansmag.l2 Finalconsumptionmag.l2
## Householdloansmag.l2              1.0000000            1.000000000
## Finalconsumptionmag.l2           -0.6359813            0.006870273
## 
## Weights W:
## (This is the loading matrix)
## 
##                       Householdloansmag.l2 Finalconsumptionmag.l2
## Householdloansmag.d           4.140293e-05            -0.29846780
## Finalconsumptionmag.d         8.584887e-01             0.02669315

## 
##   Optimal (m+1)-segment partition: 
## 
## Call:
## breakpoints.formula(formula = MRO ~ 1, data = dataeurozone)
## 
## Breakpoints at observation number:
##                         
## m = 1           35      
## m = 2           32 40   
## m = 3        26 34 42   
## m = 4        26 34 42 51
## m = 5   8    26 34 42 51
## m = 6   8 16 26 34 42 51
## 
## Corresponding to breakdates:
##                                                                                
## m = 1                                                         0.593220338983051
## m = 2                                                         0.542372881355932
## m = 3                                       0.440677966101695 0.576271186440678
## m = 4                                       0.440677966101695 0.576271186440678
## m = 5   0.135593220338983                   0.440677966101695 0.576271186440678
## m = 6   0.135593220338983 0.271186440677966 0.440677966101695 0.576271186440678
##                                            
## m = 1                                      
## m = 2   0.677966101694915                  
## m = 3   0.711864406779661                  
## m = 4   0.711864406779661 0.864406779661017
## m = 5   0.711864406779661 0.864406779661017
## m = 6   0.711864406779661 0.864406779661017
## 
## Fit:
##                                                            
## m   0       1       2       3       4       5       6      
## RSS 220.460  16.095   8.747   8.011   7.361   7.361   7.361
## BIC 253.362 107.103  79.279  82.246  85.410  93.566 101.721
## 
##   Optimal (m+1)-segment partition: 
## 
## Call:
## breakpoints.formula(formula = OMO ~ 1, data = dataeurozone)
## 
## Breakpoints at observation number:
##                         
## m = 1              38   
## m = 2   7          35   
## m = 3   7          35 42
## m = 4   7 14       34 41
## m = 5   7 14    28 35 42
## m = 6   7 14 21 28 35 42
## 
## Corresponding to breakdates:
##                                                                               
## m = 1                                                                         
## m = 2   0.132075471698113                                                     
## m = 3   0.132075471698113                                                     
## m = 4   0.132075471698113 0.264150943396226                                   
## m = 5   0.132075471698113 0.264150943396226                  0.528301886792453
## m = 6   0.132075471698113 0.264150943396226 0.39622641509434 0.528301886792453
##                                            
## m = 1   0.716981132075472                  
## m = 2   0.660377358490566                  
## m = 3   0.660377358490566 0.792452830188679
## m = 4   0.641509433962264 0.773584905660377
## m = 5   0.660377358490566 0.792452830188679
## m = 6   0.660377358490566 0.792452830188679
## 
## Fit:
##                                                                          
## m   0         1         2         3         4         5         6        
## RSS 2.704e+07 1.036e+07 4.804e+06 2.694e+06 1.825e+06 1.787e+06 1.783e+06
## BIC 8.549e+02 8.120e+02 7.792e+02 7.565e+02 7.438e+02 7.506e+02 7.584e+02
## 
##   Optimal (m+1)-segment partition: 
## 
## Call:
## breakpoints.formula(formula = Totalbankreservesmag ~ 1, data = dataeurozone)
## 
## Breakpoints at observation number:
##                      
## m = 1        33      
## m = 2        33 45   
## m = 3     16 33 45   
## m = 4     16 33 42 51
## m = 5   9 18 33 42 51
## 
## Corresponding to breakdates:
##                                              
## m = 1                          0.55          
## m = 2                          0.55 0.75     
## m = 3        0.266666666666667 0.55 0.75     
## m = 4        0.266666666666667 0.55 0.7  0.85
## m = 5   0.15 0.3               0.55 0.7  0.85
## 
## Fit:
##                                                    
## m   0       1       2       3       4       5      
## RSS   2.150   1.647   1.185   1.175   1.169   1.168
## BIC -21.258 -29.084 -40.619 -32.970 -25.079 -16.945
## 
##   Optimal (m+1)-segment partition: 
## 
## Call:
## breakpoints.formula(formula = Householdloansmag ~ 1, data = dataeurozone)
## 
## Breakpoints at observation number:
##                       
## m = 1               51
## m = 2            37 51
## m = 3         30 39 51
## m = 4   14    30 39 51
## m = 5   12 21 30 39 51
## 
## Corresponding to breakdates:
##                                                          
## m = 1                                                0.85
## m = 2                              0.616666666666667 0.85
## m = 3                          0.5 0.65              0.85
## m = 4   0.233333333333333      0.5 0.65              0.85
## m = 5   0.2               0.35 0.5 0.65              0.85
## 
## Fit:
##                                                    
## m   0       1       2       3       4       5      
## RSS   2.399   2.253   1.913   1.894   1.882   1.884
## BIC -14.684 -10.265 -11.916  -4.304   3.511  11.750

Figure 40: IRFs of the liquidity channel to the different breakpoint. # 5. Comparison of the 4 transmission channels In the following, the results of the four transmission channels are compared and further contextualized. Household consumption is influenced, at least in directly, by more than the four channels listed here.
The first regression of each transmission channel describes the relationship between MRO and OMO and the first transmission variable. The following table gives us a brief overview of the direct effect of the MP variables on the transmission variables.
45 Channels MRO coeffi cient ragreed 0.4730512 MRO p-value OMO coeffi cient 5.01e-10 *** OMO p-value -0.0006327 *** rhousing 0.4785135 8.50e-10 *** 0.000287 *** -0.0003643 *** equity 871929 3e-16 *** 1456 0.0342 * portfolio 0.000207 *** 1.280e+06 4.53e-13 *** 2.919e+03 Liquidity 5.16e-05 *** 9.605e+05 1.55e-12 *** 2.289e+03 Credit 4.70e-05 *** -276313.1 0.0013 ** 1321.5 Table 7: Coefficients and significance values of all four transmission channels OLS regressions (1st part). 3.52e-08 *** First of all, it can be seen that each of the transmission channels tested here is significant everywhere in the direct relationship to the first transmission chan nel variable. Initially, a positive correlation between expansionary MP and the first transmission channel variable is assumed by Anton (2015) for each of the transmission channels, but negative coefficients in relation to MRO are only found for the credit channel. In their analysis of the financial markets, Lombardi and Sushko (2023) show that the impact of monetary policy on equity and bonds has changed in recent years. From mid-2021, the impact on the correlation between the equity and bond markets became positive. The negative influence of inflation on investor expectations dominated the effect of growth expectations. Based on these results by Lombardi and Sushko (2023), the positive coefficient of the MRO and equity could be explained by the fact that the negative expectations of the financial markets with regard to inflation were reduced by the increase in the MRO. The marginal interaction variables of the transmission channels are shown below. Despite the differen tiation, the variables are scaled differently, which is why the marginal inter action variables are broken down below. Interaction variables with the largest scaling were deleted one by one.

## 
## Call:
## lm(formula = dataeurozone$finalconsumption ~ dataeurozone$rhousing + 
##     dataeurozone$ragreed + (dataeurozone$MRO * dataeurozone$rhousing) + 
##     (dataeurozone$MRO * dataeurozone$ragreed) + (dataeurozone$OMO * 
##     dataeurozone$rhousing) + (dataeurozone$OMO * dataeurozone$ragreed) + 
##     dataeurozone$unemployment, data = dataeurozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -176013  -16772    7828   22779   91222 
## 
## Coefficients:
##                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)                            2392775.04  398244.50   6.008 3.56e-07
## dataeurozone$rhousing                  -247851.83  316555.70  -0.783    0.438
## dataeurozone$ragreed                    353653.50  312731.96   1.131    0.264
## dataeurozone$MRO                         25350.90   77875.80   0.326    0.746
## dataeurozone$OMO                           -80.63     151.39  -0.533    0.597
## dataeurozone$unemployment               -89976.76   17306.48  -5.199 5.26e-06
## dataeurozone$rhousing:dataeurozone$MRO   50474.22   61186.00   0.825    0.414
## dataeurozone$ragreed:dataeurozone$MRO   -65325.55   58142.53  -1.124    0.267
## dataeurozone$rhousing:dataeurozone$OMO     149.25     134.61   1.109    0.274
## dataeurozone$ragreed:dataeurozone$OMO     -203.20     130.86  -1.553    0.128
##                                           
## (Intercept)                            ***
## dataeurozone$rhousing                     
## dataeurozone$ragreed                      
## dataeurozone$MRO                          
## dataeurozone$OMO                          
## dataeurozone$unemployment              ***
## dataeurozone$rhousing:dataeurozone$MRO    
## dataeurozone$ragreed:dataeurozone$MRO     
## dataeurozone$rhousing:dataeurozone$OMO    
## dataeurozone$ragreed:dataeurozone$OMO     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 47750 on 43 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.9432, Adjusted R-squared:  0.9313 
## F-statistic: 79.27 on 9 and 43 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = dataeurozone$durablehs ~ dataeurozone$rhousing + 
##     dataeurozone$ragreed + (dataeurozone$MRO * dataeurozone$rhousing) + 
##     (dataeurozone$MRO * dataeurozone$ragreed) + (dataeurozone$OMO * 
##     dataeurozone$rhousing) + (dataeurozone$OMO * dataeurozone$ragreed) + 
##     dataeurozone$unemployment, data = dataeurozone)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.03541 -0.18229  0.03258  0.26195  0.68816 
## 
## Coefficients:
##                                          Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                             2.322e+01  1.062e+01   2.187   0.0430 *
## dataeurozone$rhousing                  -1.114e+01  6.610e+00  -1.685   0.1102  
## dataeurozone$ragreed                    1.049e+01  5.453e+00   1.924   0.0713 .
## dataeurozone$MRO                       -1.507e+00  1.911e+00  -0.788   0.4413  
## dataeurozone$OMO                        6.103e-04  4.759e-03   0.128   0.8995  
## dataeurozone$unemployment              -1.192e+00  5.599e-01  -2.129   0.0482 *
## dataeurozone$rhousing:dataeurozone$MRO  8.874e-01  1.221e+00   0.727   0.4774  
## dataeurozone$ragreed:dataeurozone$MRO  -7.751e-01  9.751e-01  -0.795   0.4376  
## dataeurozone$rhousing:dataeurozone$OMO -3.007e-04  2.934e-03  -0.103   0.9196  
## dataeurozone$ragreed:dataeurozone$OMO   3.201e-04  2.259e-03   0.142   0.8890  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5134 on 17 degrees of freedom
##   (33 observations deleted due to missingness)
## Multiple R-squared:  0.9776, Adjusted R-squared:  0.9657 
## F-statistic: 82.34 on 9 and 17 DF,  p-value: 3.08e-12

Figure 41: Interaction variables of the 1st part of each transmission channel (all variables). It is noticeable that the OMO interaction variables interact over the entire pe riod, but the transmission channels differ. The change in the coefficients of the interaction term variables from OMO to the financial wealth and house hold liquidity channel changes to negative in the middle to end of 2022. Com parable dynamics can be observed in relation to the credit channel. Here, the change in the coefficient of the interaction term takes place one year later in comparison and is not negative, but the change is very small in relation to before. The different significance levels of the variables seem to be loosely related to different patterns of the marginal interaction terms.

Furthermore, the interaction terms for MRO are more significant than the in teraction terms for OMO, except for the liquidity channel, where the interac tion term of the liquidity channel refers to CCI. In addition, the interaction terms that have a break halfway through the period are more significant. With MRO, the positive changes increase abruptly; with OMO, the change becomes negative. The MRO probably had more influence on the channels, except for the liquidity channel, than the OMOs. To compare the impression with the VECM models. I perform a Ganger causality test with the VECM model of the corresponding transmission channel, using MRO and OMO as impulses. For this purpose, the VECM models are transformed into a VAR model, but the stationarity and co-integration of the variables are not taken into account. Furthermore, the following table refers to VAR models that were only esti mated with the impulse and the effect, or response, variable in order to apply a suitable Granger causality test. For this reason, the following results are only to be understood as a further indicator.
rhousing MRO delayed MRO instant OMO delayed OMO instant 0.01073 * 0.005102 ** 0.5613 ragreed 0.005148 ** 0.001584 ** 0.02004 * 0.1591 equity 0.1682 0.4015 0.8551 0.00406 ** portfolio 0.684 0.1058 0.2969 0.6238 assets 0.7834 0.1201 0.2456 0.597 hsloans 0.777 0.08302 (.) 0.6786
0.01558 * reserves 0.08461 (.) 0.0001331 *** 0.093 (.) 0.8899 Table 8: P-values of the Granger-causality test for the 1st part of the transmis sion channels. 0.1749 48 Notes: If the p-value < 0.1 this can be interpreted as a rejection of the H0 hypothesis of the Granger causality test. So A Granger-causes B. Table 8 shows that the real interest rate channel is very relevant for monetary policy. Furthermore, the liquidity channel seems to be partly relevant for the transmission of OMO. Furthermore, the credit channel is important for the transfer of MRO. It is to note that the variables, especially from the wealth and liquidity channel, are less significant when the time dimension is taken into account as in a Granger causality test. The following table compares the significance and the coefficients of the transmission channel of each channel to the two consumption variables in the OLS regression frame. The regressions are done with the same control varia bles, namely GDP, unemployment and Gini. rhousing f.c. coefficient f.c. p-value d.c. coefficient d.c. p-value -12006 0.893 -9.1366 ragreed 1.02e-12 *** 74603 0.401 8.8049 equity 3.124e-01 1.54e-14 *** -8.477e-07 3.54e-12 *** portfolio 0.7820 -1.320e-01 6.37e-10 *** 1.071e-06 CCI 0.3805 -4469 0.149462 0.2024 hsloans 0.1913 -58179 0.0019 ** -1.7250 Table 9: Coefficients and significance values of all four transmission chan nels OLS regressions (2nd part). 0.00127 ** Notes: In contrast to Table 8, here the exogenous variables of the regressions are on the y-axis and endogenous variables on the x-axis. f.c. stands for final consumption and d.c. stands for durable goods consumption. When comparing the p-values, it is noticeable that the transmission channels are relevant for different consumption variables. It is noticeable that the trans mission variables of the wealth channel are more significant for final con sumption than for durable goods consumption. It should also be emphasized that CCI alone is not significant for consumption in the context of the OLS. This impression of the liquidity channel in relation to the other three channels is confirmed in Table 10. 49 rhousimg f.c. delayed f.c. instant d.c. delayed d.c. instant 0.01455 * 0.3757 0.03425 * ragreed 0.09777 0.04642 * 0.6856 0.02348 * equity 0.0307 * 0.07363 (.) 0.3759 0.1291 portfolio 0.04448 * 0.03516 * 0.154 0.6721 CCI 0.08977 (.) 0.4903 0.7912 0.218 hsloans 0.5373 8.071e-06 *** 0.09473 (.) 0.3872 Table 10: P-values of the Granger-causality test for the 2nd part of the trans mission channels. 0.03723 * Notes: In contrast to Table 9, here the exogenous variables of the regressions are on the y-axis and endogenous variables on the x-axis. The regressions are performed in the same way as described in the transmission channel part, but without the implementation interaction terms. The interaction terms are not relevant here and distort significance for corresponding variables. If we now summarize the results from tables 9 and 10, it appears that the real interest rate channel and the credit channel are particularly significant for the transmission of monetary policy in the euro area. And the time delay of the transmission channel seems to play an important role, as I have al ready shown in sections 4.1 to 4.4. The time delays can be seen in Figure 46.

## 
##   Optimal (m+1)-segment partition: 
## 
## Call:
## breakpoints.formula(formula = Assetliabilities ~ OMO + MRO + 
##     GDP, data = dataeurozone)
## 
## Breakpoints at observation number:
##                          
## m = 1            28      
## m = 2   10       28      
## m = 3   10       28    46
## m = 4   7        25 33 46
## m = 5   7     20 27 34 46
## m = 6   7  14 21 28 36 46
## 
## Corresponding to breakdates:
##                                                                                
## m = 1                                                         0.528301886792453
## m = 2   0.188679245283019                                     0.528301886792453
## m = 3   0.188679245283019                                     0.528301886792453
## m = 4   0.132075471698113                                     0.471698113207547
## m = 5   0.132075471698113                   0.377358490566038 0.509433962264151
## m = 6   0.132075471698113 0.264150943396226 0.39622641509434  0.528301886792453
##                                            
## m = 1                                      
## m = 2                                      
## m = 3                     0.867924528301887
## m = 4   0.622641509433962 0.867924528301887
## m = 5   0.641509433962264 0.867924528301887
## m = 6   0.679245283018868 0.867924528301887
## 
## Fit:
##                                                                          
## m   0         1         2         3         4         5         6        
## RSS 5.619e+13 1.301e+13 8.055e+12 4.587e+12 2.236e+12 1.089e+12 1.498e+12
## BIC 1.638e+03 1.580e+03 1.575e+03 1.565e+03 1.546e+03 1.528e+03 1.565e+03

## 
##   Optimal (m+1)-segment partition: 
## 
## Call:
## breakpoints.formula(formula = hsequity ~ OMO + MRO + GDP, data = dataeurozone)
## 
## Breakpoints at observation number:
##                         
## m = 1     16            
## m = 2   7       26      
## m = 3   7    21 28      
## m = 4   7    22    33 46
## m = 5   7    20 27 34 46
## m = 6   7 14 21 28 36 46
## 
## Corresponding to breakdates:
##                                                                                
## m = 1                     0.30188679245283                                     
## m = 2   0.132075471698113                                     0.490566037735849
## m = 3   0.132075471698113                   0.39622641509434  0.528301886792453
## m = 4   0.132075471698113                   0.415094339622642                  
## m = 5   0.132075471698113                   0.377358490566038 0.509433962264151
## m = 6   0.132075471698113 0.264150943396226 0.39622641509434  0.528301886792453
##                                            
## m = 1                                      
## m = 2                                      
## m = 3                                      
## m = 4   0.622641509433962 0.867924528301887
## m = 5   0.641509433962264 0.867924528301887
## m = 6   0.679245283018868 0.867924528301887
## 
## Fit:
##                                                                          
## m   0         1         2         3         4         5         6        
## RSS 1.690e+13 4.746e+12 2.041e+12 1.342e+12 7.009e+11 3.946e+11 4.769e+11
## BIC 1.574e+03 1.527e+03 1.502e+03 1.499e+03 1.485e+03 1.474e+03 1.504e+03

## 
##   Optimal (m+1)-segment partition: 
## 
## Call:
## breakpoints.formula(formula = finalconsumption ~ hsequity + Assetliabilities + 
##     GDP, data = dataeurozone)
## 
## Breakpoints at observation number:
##                          
## m = 1         25         
## m = 2      18       38   
## m = 3   12 20       39   
## m = 4   12 20    30 39   
## m = 5   12 20    30 39 48
## m = 6   9  17 25 33 41 49
## 
## Corresponding to breakdates:
##                                                                               
## m = 1                                       0.43859649122807                  
## m = 2                     0.315789473684211                                   
## m = 3   0.210526315789474 0.350877192982456                                   
## m = 4   0.210526315789474 0.350877192982456                  0.526315789473684
## m = 5   0.210526315789474 0.350877192982456                  0.526315789473684
## m = 6   0.157894736842105 0.298245614035088 0.43859649122807 0.578947368421053
##                                            
## m = 1                                      
## m = 2   0.666666666666667                  
## m = 3   0.684210526315789                  
## m = 4   0.684210526315789                  
## m = 5   0.684210526315789 0.842105263157895
## m = 6   0.719298245614035 0.859649122807018
## 
## Fit:
##                                                                          
## m   0         1         2         3         4         5         6        
## RSS 1.122e+11 5.188e+10 9.100e+09 1.276e+09 5.963e+08 4.164e+08 2.782e+08
## BIC 1.402e+03 1.378e+03 1.299e+03 1.207e+03 1.184e+03 1.184e+03 1.181e+03

## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      6      6      6      7 
## 
## $criteria
##                 1          2         3         4          5    6    7    8    9
## AIC(n)   6.804743   5.613916  3.223175  2.169419 -6.5220188 -Inf -Inf -Inf -Inf
## HQ(n)    7.650572   7.199846  5.549206  5.235551 -2.7157864 -Inf -Inf -Inf -Inf
## SC(n)    9.098399   9.914521  9.530729 10.483922  3.7994330 -Inf -Inf -Inf -Inf
## FPE(n) 930.232590 339.632650 52.954762 66.076988  0.2785424  NaN    0    0    0
##          10
## AIC(n) -Inf
## HQ(n)  -Inf
## SC(n)  -Inf
## FPE(n)    0
## $Granger
## 
##  Granger causality H0: OMO do not Granger-cause rhousing
## 
## data:  VAR object var_model_rhousing
## F-Test = 0.81601, df1 = 6, df2 = 68, p-value = 0.5613
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: OMO and rhousing
## 
## data:  VAR object var_model_rhousing
## Chi-squared = 7.8268, df = 1, p-value = 0.005148
## $Granger
## 
##  Granger causality H0: MRO do not Granger-cause rhousing
## 
## data:  VAR object var_model_rhousing2
## F-Test = 3.0428, df1 = 6, df2 = 68, p-value = 0.01073
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: MRO and rhousing
## 
## data:  VAR object var_model_rhousing2
## Chi-squared = 7.8428, df = 1, p-value = 0.005102
## $Granger
## 
##  Granger causality H0: OMO do not Granger-cause ragreed
## 
## data:  VAR object var_model_rhousing
## F-Test = 1.6053, df1 = 6, df2 = 68, p-value = 0.1591
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: OMO and ragreed
## 
## data:  VAR object var_model_rhousing
## Chi-squared = 8.2568, df = 1, p-value = 0.00406
## $Granger
## 
##  Granger causality H0: MRO do not Granger-cause ragreed
## 
## data:  VAR object var_model_rhousing2
## F-Test = 4.0473, df1 = 6, df2 = 68, p-value = 0.001584
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: MRO and ragreed
## 
## data:  VAR object var_model_rhousing2
## Chi-squared = 5.4084, df = 1, p-value = 0.02004
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      6      6      6      7
## $Granger
## 
##  Granger causality H0: OMO do not Granger-cause hsequity
## 
## data:  VAR object var_model_rhousing
## F-Test = 0.4319, df1 = 6, df2 = 68, p-value = 0.8551
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: OMO and hsequity
## 
## data:  VAR object var_model_rhousing
## Chi-squared = 0.1657, df = 1, p-value = 0.684
## $Granger
## 
##  Granger causality H0: MRO do not Granger-cause hsequity
## 
## data:  VAR object var_model_rhousing2
## F-Test = 1.5739, df1 = 6, df2 = 68, p-value = 0.1682
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: MRO and hsequity
## 
## data:  VAR object var_model_rhousing2
## Chi-squared = 0.70379, df = 1, p-value = 0.4015
## $Granger
## 
##  Granger causality H0: OMO do not Granger-cause Assetliabilities
## 
## data:  VAR object var_model_rhousing
## F-Test = 0.73423, df1 = 6, df2 = 68, p-value = 0.6238
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: OMO and Assetliabilities
## 
## data:  VAR object var_model_rhousing
## Chi-squared = 0.075561, df = 1, p-value = 0.7834
## $Granger
## 
##  Granger causality H0: MRO do not Granger-cause Assetliabilities
## 
## data:  VAR object var_model_rhousing2
## F-Test = 1.8317, df1 = 6, df2 = 68, p-value = 0.1058
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: MRO and Assetliabilities
## 
## data:  VAR object var_model_rhousing2
## Chi-squared = 1.088, df = 1, p-value = 0.2969
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      7      7      7      8 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) 4.577159e+01 4.426627e+01 4.409700e+01 4.268494e+01 4.153193e+01
## HQ(n)  4.640596e+01 4.544439e+01 4.581886e+01 4.495056e+01 4.434129e+01
## SC(n)  4.749183e+01 4.746101e+01 4.876622e+01 4.882866e+01 4.915015e+01
## FPE(n) 7.690667e+19 1.885470e+19 2.096011e+19 9.360338e+18 1.047705e+19
##                   6    7    8    9   10
## AIC(n) 3.684674e+01 -Inf -Inf -Inf -Inf
## HQ(n)  4.019985e+01 -Inf -Inf -Inf -Inf
## SC(n)  4.593944e+01 -Inf -Inf -Inf -Inf
## FPE(n) 1.851926e+18  NaN    0    0    0
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      7      7      7      8 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) 1.789257e+01 1.648779e+01 1.607973e+01 1.513468e+01 1.264310e+01
## HQ(n)  1.852694e+01 1.766591e+01 1.780160e+01 1.740029e+01 1.545246e+01
## SC(n)  1.961281e+01 1.968252e+01 2.074896e+01 2.127840e+01 2.026132e+01
## FPE(n) 6.001507e+07 1.626956e+07 1.424466e+07 1.014762e+07 2.978381e+06
##                   6    7    8    9   10
## AIC(n)      6.91609 -Inf -Inf -Inf -Inf
## HQ(n)      10.26920 -Inf -Inf -Inf -Inf
## SC(n)      16.00880 -Inf -Inf -Inf -Inf
## FPE(n) 185741.56349  NaN    0    0    0
## $Granger
## 
##  Granger causality H0: OMO do not Granger-cause hsassets
## 
## data:  VAR object var_model_hsassets1
## F-Test = 0.76887, df1 = 6, df2 = 68, p-value = 0.597
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: OMO and hsassets
## 
## data:  VAR object var_model_hsassets1
## Chi-squared = 0.080249, df = 1, p-value = 0.777
## $Granger
## 
##  Granger causality H0: MRO do not Granger-cause hsassets
## 
## data:  VAR object var_model_hsassets2
## F-Test = 1.7619, df1 = 6, df2 = 68, p-value = 0.1201
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: MRO and hsassets
## 
## data:  VAR object var_model_hsassets2
## Chi-squared = 1.3483, df = 1, p-value = 0.2456
## $Granger
## 
##  Granger causality H0: OMO do not Granger-cause loanshsannualgrowth
## 
## data:  VAR object var_model_loans1
## F-Test = 2.7284, df1 = 7, df2 = 62, p-value = 0.01558
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: OMO and loanshsannualgrowth
## 
## data:  VAR object var_model_loans1
## Chi-squared = 2.974, df = 1, p-value = 0.08461
## $Granger
## 
##  Granger causality H0: MRO do not Granger-cause loanshsannualgrowth
## 
## data:  VAR object var_model_loans2
## F-Test = 1.9098, df1 = 7, df2 = 62, p-value = 0.08302
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: MRO and loanshsannualgrowth
## 
## data:  VAR object var_model_loans2
## Chi-squared = 0.17167, df = 1, p-value = 0.6786
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      9      9      9      9 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) 4.449617e+01 4.357749e+01 4.373439e+01 4.299390e+01 4.238465e+01
## HQ(n)  4.494929e+01 4.440821e+01 4.494272e+01 4.457983e+01 4.434819e+01
## SC(n)  4.572491e+01 4.583019e+01 4.701104e+01 4.729450e+01 4.770921e+01
## FPE(n) 2.130202e+19 8.926789e+18 1.188683e+19 7.410122e+18 6.659718e+18
##                   6            7             8    9   10
## AIC(n) 3.781290e+01 3.264569e+01 -7.500696e+01 -Inf -Inf
## HQ(n)  4.015404e+01 3.536443e+01 -7.191062e+01 -Inf -Inf
## SC(n)  4.416142e+01 4.001816e+01 -6.661054e+01 -Inf -Inf
## FPE(n) 1.742719e+17 6.375827e+15  2.512977e-29    0    0
## $Granger
## 
##  Granger causality H0: OMO do not Granger-cause reserves
## 
## data:  VAR object var_model_reserves1
## F-Test = 0.46682, df1 = 9, df2 = 50, p-value = 0.8899
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: OMO and reserves
## 
## data:  VAR object var_model_reserves1
## Chi-squared = 1.8401, df = 1, p-value = 0.1749
## $Granger
## 
##  Granger causality H0: MRO do not Granger-cause reserves
## 
## data:  VAR object var_model_reserves2
## F-Test = 4.7693, df1 = 9, df2 = 50, p-value = 0.0001331
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: MRO and reserves
## 
## data:  VAR object var_model_reserves2
## Chi-squared = 2.8216, df = 1, p-value = 0.093
## 
## Call:
## lm(formula = dataeurozone$finalconsumption ~ dataeurozone$rhousing + 
##     dataeurozone$ragreed + dataeurozone$unemployment + dataeurozone$GDP + 
##     dataeurozone$Gini, data = dataeurozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -228213  -28908    1347   37415  118919 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                1822569    9282921   0.196    0.845    
## dataeurozone$rhousing       -12006      88506  -0.136    0.893    
## dataeurozone$ragreed         74603      88181   0.846    0.401    
## dataeurozone$unemployment  -167029      18616  -8.972 4.55e-12 ***
## dataeurozone$GDP            476001     438133   1.086    0.282    
## dataeurozone$Gini             5614     132108   0.042    0.966    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 70870 on 51 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.8711, Adjusted R-squared:  0.8585 
## F-statistic: 68.95 on 5 and 51 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = dataeurozone$durablehs ~ dataeurozone$rhousing + 
##     dataeurozone$ragreed + dataeurozone$unemployment + dataeurozone$GDP + 
##     dataeurozone$Gini, data = dataeurozone)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.89427 -0.32339 -0.08518  0.41398  0.90498 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -216.7270    86.9347  -2.493 0.019650 *  
## dataeurozone$rhousing       -9.1366     0.6957 -13.132 1.02e-12 ***
## dataeurozone$ragreed         8.8049     0.7100  12.401 3.54e-12 ***
## dataeurozone$unemployment   -1.4937     0.4409  -3.388 0.002335 ** 
## dataeurozone$GDP            17.0057     4.5289   3.755 0.000927 ***
## dataeurozone$Gini            2.9732     1.2140   2.449 0.021674 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.477 on 25 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.9754, Adjusted R-squared:  0.9704 
## F-statistic: 197.9 on 5 and 25 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = dataeurozone$finalconsumption ~ dataeurozone$hsequity + 
##     dataeurozone$Assetliabilities + dataeurozone$GDP + dataeurozone$unemployment + 
##     dataeurozone$Gini, data = dataeurozone)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -99476 -20759   3460  18543  64554 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    2.312e+07  3.393e+06   6.815 1.07e-08 ***
## dataeurozone$hsequity          3.124e-01  2.938e-02  10.631 1.54e-14 ***
## dataeurozone$Assetliabilities -1.320e-01  1.739e-02  -7.591 6.37e-10 ***
## dataeurozone$GDP              -8.300e+05  8.597e+04  -9.654 4.22e-13 ***
## dataeurozone$unemployment     -2.127e+04  1.351e+04  -1.575    0.122    
## dataeurozone$Gini             -2.651e+05  4.913e+04  -5.396 1.78e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32950 on 51 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.9722, Adjusted R-squared:  0.9694 
## F-statistic: 356.1 on 5 and 51 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = dataeurozone$durablehs ~ dataeurozone$hsequity + 
##     dataeurozone$Assetliabilities + dataeurozone$GDP + dataeurozone$unemployment + 
##     dataeurozone$Gini, data = dataeurozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9498 -0.6926 -0.1846  0.4590  3.4864 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                   -7.557e+02  2.783e+02  -2.715   0.0118 *
## dataeurozone$hsequity         -8.477e-07  3.030e-06  -0.280   0.7820  
## dataeurozone$Assetliabilities  1.071e-06  1.199e-06   0.893   0.3805  
## dataeurozone$GDP              -6.771e+00  9.262e+00  -0.731   0.4715  
## dataeurozone$unemployment     -6.919e-01  1.265e+00  -0.547   0.5892  
## dataeurozone$Gini              1.030e+01  4.035e+00   2.552   0.0172 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.276 on 25 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.8236, Adjusted R-squared:  0.7883 
## F-statistic: 23.34 on 5 and 25 DF,  p-value: 1.123e-08
## 
## Call:
## lm(formula = dataeurozone$finalconsumption ~ dataeurozone$CCI + 
##     dataeurozone$GDP + dataeurozone$unemployment + dataeurozone$Gini, 
##     data = dataeurozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -284248  -20253    7623   40720  117054 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -10068210   10642130  -0.946 0.348488    
## dataeurozone$CCI              -4469       3054  -1.463 0.149462    
## dataeurozone$GDP            -767188     205325  -3.736 0.000465 ***
## dataeurozone$unemployment   -208945      17229 -12.128  < 2e-16 ***
## dataeurozone$Gini            198162     146957   1.348 0.183361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 80480 on 52 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.8306, Adjusted R-squared:  0.8175 
## F-statistic: 63.73 on 4 and 52 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = dataeurozone$durablehs ~ dataeurozone$CCI + dataeurozone$GDP + 
##     dataeurozone$unemployment + dataeurozone$Gini, data = dataeurozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0724 -0.7717 -0.2513  0.4810  3.2775 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)  
## (Intercept)               -650.3577   277.3851  -2.345   0.0270 *
## dataeurozone$CCI             0.2024     0.1509   1.342   0.1913  
## dataeurozone$GDP            -8.3040     6.8027  -1.221   0.2332  
## dataeurozone$unemployment   -0.3156     1.4416  -0.219   0.8284  
## dataeurozone$Gini            9.2665     3.8973   2.378   0.0251 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.294 on 26 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.8113, Adjusted R-squared:  0.7823 
## F-statistic: 27.95 on 4 and 26 DF,  p-value: 4.441e-09
## 
## Call:
## lm(formula = dataeurozone$finalconsumption ~ dataeurozone$loanshsannualgrowth + 
##     dataeurozone$GDP + dataeurozone$unemployment + dataeurozone$Gini, 
##     data = dataeurozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -252822  -21791    4625   41580  136104 
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                       5798230    6192626   0.936   0.3534    
## dataeurozone$loanshsannualgrowth   -58179      17781  -3.272   0.0019 ** 
## dataeurozone$GDP                   572698     440565   1.300   0.1994    
## dataeurozone$unemployment         -184755      17916 -10.312 3.55e-14 ***
## dataeurozone$Gini                  -46623      87290  -0.534   0.5955    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 74780 on 52 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.8537, Adjusted R-squared:  0.8425 
## F-statistic: 75.87 on 4 and 52 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = dataeurozone$durablehs ~ dataeurozone$loanshsannualgrowth + 
##     dataeurozone$GDP + dataeurozone$unemployment + dataeurozone$Gini, 
##     data = dataeurozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1296 -0.6832 -0.4291  0.6054  2.9815 
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                      -646.9518   175.7378  -3.681  0.00107 **
## dataeurozone$loanshsannualgrowth   -1.7250     0.4773  -3.614  0.00127 **
## dataeurozone$GDP                   23.7696    11.3695   2.091  0.04648 * 
## dataeurozone$unemployment          -0.8860     1.0189  -0.870  0.39246   
## dataeurozone$Gini                   8.6558     2.4930   3.472  0.00182 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.092 on 26 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.8657, Adjusted R-squared:  0.845 
## F-statistic:  41.9 on 4 and 26 DF,  p-value: 5.666e-11
## $Granger
## 
##  Granger causality H0: rhousing do not Granger-cause finalconsumption
## 
## data:  VAR object var_model_rhousing_fcons
## F-Test = 2.8837, df1 = 6, df2 = 68, p-value = 0.01455
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: rhousing and finalconsumption
## 
## data:  VAR object var_model_rhousing_fcons
## Chi-squared = 0.78464, df = 1, p-value = 0.3757
## $Granger
## 
##  Granger causality H0: ragreed do not Granger-cause finalconsumption
## 
## data:  VAR object var_model_ragreed_fcons
## F-Test = 2.2746, df1 = 6, df2 = 68, p-value = 0.04642
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: ragreed and finalconsumption
## 
## data:  VAR object var_model_ragreed_fcons
## Chi-squared = 0.16391, df = 1, p-value = 0.6856
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      3      3      3      3 
## 
## $criteria
##                    1             2    3    4    5    6    7    8    9   10
## AIC(n) -1.851809e+01 -1.952590e+02 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## HQ(n)  -1.824526e+01 -1.947474e+02 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## SC(n)  -1.577339e+01 -1.901127e+02 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## FPE(n)  1.593468e-08  1.837067e-82    0    0    0    0    0    0    0    0
## $Granger
## 
##  Granger causality H0: rhousing do not Granger-cause durablehs
## 
## data:  VAR object var_model_rhousing_dcons
## F-Test = 3.2332, df1 = 3, df2 = 34, p-value = 0.03425
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: rhousing and durablehs
## 
## data:  VAR object var_model_rhousing_dcons
## Chi-squared = 2.7416, df = 1, p-value = 0.09777
## $Granger
## 
##  Granger causality H0: ragreed do not Granger-cause durablehs
## 
## data:  VAR object var_model_ragreed_dcons
## F-Test = 3.5889, df1 = 3, df2 = 34, p-value = 0.02348
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: ragreed and durablehs
## 
## data:  VAR object var_model_ragreed_dcons
## Chi-squared = 2.303, df = 1, p-value = 0.1291
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      6      6      6      7
## $Granger
## 
##  Granger causality H0: hsequity do not Granger-cause finalconsumption
## 
## data:  VAR object var_model_equity_fcons
## F-Test = 2.4928, df1 = 6, df2 = 68, p-value = 0.0307
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: hsequity and finalconsumption
## 
## data:  VAR object var_model_equity_fcons
## Chi-squared = 3.2002, df = 1, p-value = 0.07363
## $Granger
## 
##  Granger causality H0: Assetliabilities do not Granger-cause
##  finalconsumption
## 
## data:  VAR object var_model_portfolio_fcons
## F-Test = 2.4214, df1 = 6, df2 = 68, p-value = 0.03516
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: Assetliabilities and
##  finalconsumption
## 
## data:  VAR object var_model_portfolio_fcons
## Chi-squared = 2.0322, df = 1, p-value = 0.154
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      3      3      3      3
## $Granger
## 
##  Granger causality H0: hsequity do not Granger-cause durablehs
## 
## data:  VAR object var_model_equity_dcons
## F-Test = 1.0672, df1 = 3, df2 = 34, p-value = 0.3759
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: hsequity and durablehs
## 
## data:  VAR object var_model_equity_dcons
## Chi-squared = 4.0383, df = 1, p-value = 0.04448
## $Granger
## 
##  Granger causality H0: Assetliabilities do not Granger-cause durablehs
## 
## data:  VAR object var_model_portfolio_dcons
## F-Test = 0.51891, df1 = 3, df2 = 34, p-value = 0.6721
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: Assetliabilities and durablehs
## 
## data:  VAR object var_model_portfolio_dcons
## Chi-squared = 2.8785, df = 1, p-value = 0.08977
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      6      6      6      7
## $Granger
## 
##  Granger causality H0: CCI do not Granger-cause finalconsumption
## 
## data:  VAR object var_model_CCI_fcons
## F-Test = 0.92958, df1 = 7, df2 = 62, p-value = 0.4903
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: CCI and finalconsumption
## 
## data:  VAR object var_model_CCI_fcons
## Chi-squared = 0.070127, df = 1, p-value = 0.7912
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      3      3      3      3
## $Granger
## 
##  Granger causality H0: CCI do not Granger-cause durablehs
## 
## data:  VAR object var_model_CCI_dcons
## F-Test = 1.5558, df1 = 3, df2 = 34, p-value = 0.218
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: CCI and durablehs
## 
## data:  VAR object var_model_CCI_dcons
## Chi-squared = 0.38051, df = 1, p-value = 0.5373
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      9      9      9      9 
## 
## $criteria
##                   1            2            3            4            5
## AIC(n) 4.449617e+01 4.357749e+01 4.373439e+01 4.299390e+01 4.238465e+01
## HQ(n)  4.494929e+01 4.440821e+01 4.494272e+01 4.457983e+01 4.434819e+01
## SC(n)  4.572491e+01 4.583019e+01 4.701104e+01 4.729450e+01 4.770921e+01
## FPE(n) 2.130202e+19 8.926789e+18 1.188683e+19 7.410122e+18 6.659718e+18
##                   6            7             8    9   10
## AIC(n) 3.781290e+01 3.264569e+01 -7.500696e+01 -Inf -Inf
## HQ(n)  4.015404e+01 3.536443e+01 -7.191062e+01 -Inf -Inf
## SC(n)  4.416142e+01 4.001816e+01 -6.661054e+01 -Inf -Inf
## FPE(n) 1.742719e+17 6.375827e+15  2.512977e-29    0    0
## $Granger
## 
##  Granger causality H0: Householdloans do not Granger-cause
##  finalconsumption
## 
## data:  VAR object var_model_reserves1
## F-Test = 6.1919, df1 = 9, df2 = 50, p-value = 8.071e-06
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: Householdloans and
##  finalconsumption
## 
## data:  VAR object var_model_reserves1
## Chi-squared = 2.7921, df = 1, p-value = 0.09473
## $selection
## AIC(n)  HQ(n)  SC(n) FPE(n) 
##      4      4      4      3 
## 
## $criteria
##                   1          2             3    4    5    6    7    8    9   10
## AIC(n)     9.683592   5.341256           NaN -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## HQ(n)      9.829750   5.609213           NaN -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## SC(n)     11.153968   8.036946           NaN -Inf -Inf -Inf -Inf -Inf -Inf -Inf
## FPE(n) 18810.575367 715.436623 -5.756325e-65    0    0    0    0    0    0    0
## $Granger
## 
##  Granger causality H0: Householdloans do not Granger-cause durablehs
## 
## data:  VAR object var_model_reserves2
## F-Test = 1.0757, df1 = 4, df2 = 28, p-value = 0.3872
## 
## 
## $Instant
## 
##  H0: No instantaneous causality between: Householdloans and durablehs
## 
## data:  VAR object var_model_reserves2
## Chi-squared = 4.3397, df = 1, p-value = 0.03723

Figure 46: IRFs of the four transmission channels. Figure 46 shows that the IRFs of the wealth and liquidity channels are dis tributed over the entire time period. The IRFs of the first and last transmission channel are mainly located in the second half of the time period. This is partly 50 continuous with the course of the interaction terms from Figure 42 to 44. The process of the CCI × assets interaction term is volatile over the entire period.
The non-significance of the third transmission channel is also confirmed by the results of the OLS regressions and the Granger tests. The wealth channel appears to be partially significant, the first part less so and the second part more so. The first and last transmission channels appear to play the largest role.

5 Country comparison

In order to test the hypotheses of Uxo et al. (2024) and D it is important to implement fiscal policies in the analysis. In order to do this, I differentiate between different countries and their fiscal policy in the following. Here I focus on Spain, as the results of the analysis by Uxo et al. related to Spain. I also implement Germany and France, as these are the largest economies in the euro area. Furthermore, this makes it possible to analyze the influence of the Gini more precisely, as it differentiates more between the three economies than the time series of the aggregated data at EU level alone. The previously used data from the ECB database and Eurostat are also available at the coun try level. The fiscal measures are calculated using the ECB and eurostat data base. From the ECB data base, I use the monthly data on average nominal yields for total government debt securities in order to take into account the respective borrowing costs and market confidence. This is to take into account interest costs in response to MPs. And I use the monthly data on the total government debt securities (totalgovdebt) and holdings of debt securities is sued by the government (holddebtgov). The totalgovdebt I use implicate if debt level of the government has an influence on the monetary policy trans mission. The variable holddebtgov I use as an indicator for the impact of mon etary policy on fiscal policy via the commercial banks’ demand for govern ment bonds. When looking at the time series, the differences and similarities between the countries become clear.

The dynamics of figure 47 can be partly explained by the dynamics of the figure 48. Thus, the dynamics in Figure 47 can be explained by changes in demand for cash and a change in the issuance of government bonds. The con stant slope of the total government debt securities in the figure 48 indicates a constant increase in government debt. The rise in demand for government bonds can therefore be partly explained by the increase in issuance. Overall, the dynamic differs greatly from the government debt dynamic in some cases. This indicates the influence of changes in demand for government bonds. This may be related to changes in interest rates, for example. Furthermore, French and Spanish bonds have been held more by financial institutions than German government bonds since 2022. Factors such as risk could play a role here. However, if the risk ratings of rating agencies such as Standard & Poor’s, Moody’s, Fitch Ratings or the Scope Group are taken into account, it becomes clear that risk cannot be responsible for the difference in bond holdings.27 The differences could also be due to differing fiscal policies and the dynamics within the time series could be partly determined by the changes in MPs. The effects of the MP on transmission channel variables are checked in a similar way as before, only with the implementation fiscal variable.
tcvariable = α + β1 × MRO + β2 × OMO + β3 × fiscal + fiscal × MRO + fiscal × OMO + ɛ (14) 27 German government bonds are rated AAA by each of the rating agencies mentioned. The French government bonds are rated AA- or Aa2. Spanish government bonds are rated A, A- or Baa1. (cf. Standard & Poor’s 52 The endogenous variable is a is a placeholder in (14) tcvariable which repre sents the respective transmission channel variables. The variable fiscal is a placeholder for the fiscal policy variables. In the case of Germany, a high level of government bonds held by banks has a positive effect on the impact of MRO on the real interest rate for home loans. The same applies to the in teraction with OMO, higher government bond holdings in combination with increased liquidity lead to higher real interest rates. However, the signs of the coefficients of the interaction terms of Spain and France differ. In the case of Spain, the influence of monetary policy on the real interest rates of household loans is reduced by the stock of government bonds held by commercial banks. In the case of France, the interaction terms of the first part of the first trans mission are not significant in each case. For the first part of the financial wealth channel, it can be seen that the negative effect of MRO on household wealth is amplified by the change in government bonds held. The interaction with OMO is only significant for Germany. The asset variable of the liquidity channel is only significantly influenced by an interaction term for Spain. The coefficient has here a negative sign. Overall, the impression of aggregated data that the liquidity channel is less significant via asset variables than the other transmission channels continues here. In the first part of the credit chan nel, the effects of MRO and OMO are synchronized with the euro area level. For Spain, however, MRO is only significant at a 0.05 level. With the interac tion terms for Germany and France, the interaction of MRO and holddebtgov are significant with a positive coefficient. In Spain, only the direct effect of OMO is highly significant.28 For the first part of the transmission channel, it can thus be concluded that the MRO changes are more significant for the transmission variables of Germany and France. Furthermore, the OMO changes play a much greater role in the interaction variables of Spain than the MRO changes. In addition, the significant MRO interaction terms have a pos itive coefficient for Germany and France and a negative coefficient for Spain. 28 The results of the regressions (14) can be found in the appendix at B.21 and B.22 for the real interest rate, B.23 for wealth,
B.24 for liquidity and B.25 for the wealth channel. 53 The full overviews of the results the second part of the transmission channels are in the appendix from B.26 to B.33. The effect of the transmission variable to the consumption is analyzed as for aggregate data of euro area with the implementation of the fiscal variables. When analyzing the second of the transmission channels, it turns out that for Germany in particular the real in terest rate channel and credit channel are highly significant, 0.01 level, over final consumption. For durable goods, the liquidity channel is significant at the 0.1 level. For Spain, the wealth channel and liquidity channel are signifi cant. Furthermore, only the wealth channel significantly influences final con sumption at the 0.01 level. Durable goods are significant for the liquidity and credit channel. France is mainly significantly influenced by the credit channel and the wealth channel via durable goods. If the transmission channels are considered as a whole for each country, the assumed transmission channel relationships can be confirmed. Where the coefficients indicate a different re lationship, these are again not significant. Only in the case of the wealth chan nel for Spain is there an initial indication of a negative effect of expansive MP on consumption, but only for the final consumption variable, not for durable goods consumption. Since the wealth channel according to Anton (2015) re fers to durable goods consumption, these results are not contradictory. How ever, the differing significance of the transmission channels for the three countries is striking. With the implementation of the fiscal variables, it is no ticeable that significance and interaction term coefficients changes. In the wealth channel with the endogenous variable final consumption, the interac tion terms from equity and MPs become more significant. In the case of France and Germany, the effect of the wealth transmission channel becomes more significant. In the case of Germany, this relates to the endogenous vari able final consumption and in the case of France to the variable durable goods consumption. In the case of Spain, there is a decrease in the significance of the wealth channel in relation to durable goods consumption. holdgovdebt has hardly any impact on the liquidity channel. Only in the case of Spain does the significance of the variables assets, CCI and the interaction term of assets and CCI decrease, instead of being significant at a 0.01 level, the variables are significant at a 0.05 level. The relationships do not change significantly with 54 55

the credit channel. Although household loans have an impact on total con sumption or the consumption of durable goods in each of the three countries, only in Spain do bank reserves have a significant influence on household loans, and this does not change with the implication of holdgovdebt. How ever, the implication of holdgovdebt changes the influence of hsloans on con sumption in the case of Spain, with durable goods consumption previously at a significance level of 0.05 with a negative coefficient, to a p-value of 0.442. In the following, I use the Granger causality test to check whether the impres sions of OLS regressions are also confirmed within VAR models and whether there is an indication of time dynamics here. MRO delayed MRO instant OMO delayed OMO instant GERrhousing 0.3343 0.4917 0.2289 0.6608 GERagreed 0.322 0.3778 0.322 0.3778 GERequity 0.4539 0.5165 0.8714 0.9392 GERassets 0.8211 0.3667 0.6669 0.4557 GERhsloans 0.002318 ** 0.721 0.02917 * 0.05302 (.) GERreserves 2.193e-05 *** 0.3399 0.5049 0.5062 FRrhousing 0.3667 0.06041 (.) 0.05425 (.) 0.08548 (.) FRagreed 0.2755 0.02121 * 0.07717 (.) 0.06929 (.) FRequity 0.5384 0.2788 0.8675 0.7621 FRassets 0.6478 0.3421 0.5145 0.5097 FRhsloans 0.00408 ** 0.8735 0.006027 ** 0.007886 ** FRreserves 5.146e-06 *** 0.9761 0.8377 0.5739 ESrhousing 0.1416 0.05224 (.) 0.411 0.2632 ESagreed 0.1279 0.04609 * 0.3909 0.1846 ESequity 0.6108 0.3463 0.6504 0.5614 ESassets 0.7554 0.3241 0.6648 0.4488 EShsloans 0.1959 0.5445 0.08596 0.8809 ESreserves 2.265e-05 *** 0.02274 * 0.3941 0.8615 Table 11: Comparison of the granger-causality test results - 1st part. Notes: The data frame used in table 11 is with final consumption, the same data frames but durable goods consumption instead of final consumption is available under A.4. The portfolio variable of the wealth channel is not in cluded here as it is not available at country level. It appears that the real interest rate channel and the liquidity channel in the first part of the MTC are not as significant with final consumption as with 56

durable goods consumption. This applies in particular to the reaction of rhousing and ragreed to MRO. Overall, the impression is confirmed that the wealth and credit channels are the most significant.
If we compare the consumption responses of final and durable goods con sumption from Table 12, it is implied that durable goods consumption in Spain was more significantly influenced by the transmission variables. f.c. deplayed f.c. instant d.c. deplayed d.c. instant GERrhousing 0.1163 0.7893 0.1311 0.3268 GERagreed 0.1621 0.7868 0.1164 0.3261 GERequity 0.004123 ** 0.02684 * 0.1049 0.1164 GERCCI 0.04171 * 0.7365 0.01163 * 0.516 GERhsloans 0.06573 (.) 0.06432 (.) 0.0002649 *** 0.5781 FRrhousing 0.2169 0.242 0.07668 (.) 0.2186 FRagreed 0.2532 0.3806 0.01517 * 0.3975 FRequity 0.354 0.1147 0.1158 0.4092 FRCCI 0.678 0.8565 0.9274 0.7881 FRhsloans 0.5323 0.1024 0.4126 0.03525 * ESrhousing 0.5652 0.06328 (.) 0.01029 * 0.8506 ESagreed 0.6295 0.09172 (.) 0.01409 * 0.701 ESequity 0.04713 * 0.5815 0.04034 * 0.5667 ESCCI 0.113 0.2943 0.04445 * 0.5879 EShsloans 0.7028 0.6324 0.08697 (.) 0.1401 Table 12: Comparison of the granger-causality test results - 2nd part. Table 12 does not confirm that the real interest rate is one of the most im portant, since in the case of Germany the credit and the liquidity channel via CCI is more significant for consumption. In France, hardly any consumption interactions are relevant compared to the OLS regression. A difference can be seen here between France and Germany, which appear relatively heterogene ous in their reactions, and Spain, where durable goods consumption seems to be much more significantly affected by MTC.

6 Conclusion

In the course of my analysis of the four transmission channels of monetary policy, I was able to demonstrate certain dynamics. The MRO change from mid-2022 is of particular relevance for the period 2020 to 2023. The most important transmission channels for the period for household consumption were the real interest rate channel, particularly in relation to durable goods consumption, and the credit channel. The analysis using the autoregressive models shows that the wealth channel is not significant, as neither OMO nor MRO has a significant influence on household equity. The liquidity channel also does not appear to be significant. The first part of the transmission chan nel in relation to household assets is even more closely linked to the MRO, but the transmission channel is no longer significant at the latest when the financial distress is implemented by the CCI. Furthermore, the significance of the transmission channels differs between European countries, similar to the results of Duarte and Pereira (2022).
In the future, further analysis of the transmission channels will be required. On the one hand, it is important to investigate the dynamics with further mod els and methodologies, as the implication of more models and data minimizes possible bias. Furthermore, the data is not always available in monthly format, so the temporal transmission needs to be investigated with additional data. Furthermore, the effects of transmission channels are sometimes only signif icant in the long term; in the literature, the real interest rate channel or the wealth channel are mentioned more frequently. In further analysis, the long term nature of the transmission dynamics could be part of the analysis. Fur thermore, an analysis, for example using a fixed effects model, is conceivable in order to further investigate the influence of fiscal policies on the imple mentation of monetary policies in the different European countries. Another option for analyzing the MPs 2020-2023 is to follow the methodology out lined in Fernández (2024) for his analysis of the credit channel in the euro area. This approach would enable the incorporation of a network character into the analysis. In my analysis, a relatively strict differentiation has been made between the channels on the basis of the four MTCs. However, it should be noted that there are some crossover effects, for example, the liquidity chan nel and the credit channel via household loans. 57

7 Bibliography

Albacete, N., Lindner, P., 2017. How strong is the wealth channel of monetary policy transmission? A microeconometric evaluation for Austria. Monetary Policy & the Economy. Albert, J.-F., Gómez-Fernández, N., 2024. The impact of monetary policy shocks on net worth and consumption across races in the United States. Eco nomic Systems 48, 101178. https://doi.org/10.1016/j.ecosys.2023.101178 of Alp, E., Seven, Ü., 2019. The dynamics of household final consumption: The role wealth channel. Central https://doi.org/10.1016/j.cbrev.2019.03.002 Bank Review 19, 21–32. Anton, D.R., n.d. Monetary Development and Transmission in the Eurosys tem. Cui, W., Sterk, V., 2021. Quantitative easing with heterogeneous agents. Jour nal of Monetary Economics 123, 68–90. https://doi.org/10.1016/j.jmo neco.2021.07.007 De Simone, F.N., 2024. The transmission of U.S. monetary policy to small open economies. Journal of International Money and Finance 142, 103038. https://doi.org/10.1016/j.jimonfin.2024.103038 affect Du, Z., Njangang, H., Kim, Y., 2025. Beyond the target: How do monetary policies energy poverty? https://doi.org/10.1016/j.energy.2025.135079 Energy 320, 135079. Duarte, J.B., Pereira, N., 2023. The effect of monetary policy on household consumption expenditures in Portugal: A decomposition of the transmission channel. Port Econ J 22, 149–172. https://doi.org/10.1007/s10258-022 00214-1 ECB, 2025. Data categories | ECB Data Portal [WWW Document], URL https://data.ecb.europa.eu/data/data-categories (accessed 3.12.25). 58 Eggertsson, G.B., Woodford, M., Professor, 2003. Zero Bound on Interest Rates and Optimal Monetary Policy. Brookings Papers on Economic Activity 2003, 139–233. Eurostat, 2025. Database - Eurostat [WWW Document], URL https://ec.eu ropa.eu/eurostat/web/main/data/database (accessed 3.12.25). Evgenidis, A., Salachas, E., 2019. Unconventional monetary policy and the credit channel in the euro area. Economics Letters 185, 108695. https://doi.org/10.1016/j.econlet.2019.108695 Fernández Fernández, J.A., 2024. “Banking systems in the euro zone and transmission of monetary policy.” Central Bank Review 24, 100148. https://doi.org/10.1016/j.cbrev.2024.100148 Geldvermögensbildung und Außenfinanzierung in Deutschland im ersten Quartal 2024 [WWW Document], n.d. URL https://www.bundes bank.de/de/presse/pressenotizen/geldvermoegensbildung-und-aussenfinan zierung-in-deutschland-im-ersten-quartal-2024-936128 (accessed 12.15.24). Glocker, C., Wegmüller, P., 2024. Energy price surges and inflation: Fiscal policy to the rescue? Journal of International Money and Finance 149, 103201. https://doi.org/10.1016/j.jimonfin.2024.103201 Gomes, P., Seoane, H.D., 2024. Made in Europe: Monetary–Fiscal policy mix with financial frictions. European Economic Review 165, 104727. https://doi.org/10.1016/j.euroecorev.2024.104727 Hayo, B., 2023. Does the ECB’s monetary policy affect personal finances and economic inequality? A household perspective from Germany. Economic Modelling 129, 106556. https://doi.org/10.1016/j.econmod.2023.106556 Herrenbrueck, L., 2019. Frictional asset markets and the liquidity channel of monetary policy. Journal of Economic Theory 181, 82–120. https://doi.org/10.1016/j.jet.2019.02.003 Horioka, C.Y., Niimi, Y., 2020. Was the expansion of housing credit in Japan good or bad? Japan and the World Economy 53, 100996. https://doi.org/10.1016/j.japwor.2020.100996 59 Household budget survey - Microdata - Eurostat [WWW Document], n.d. URL https://ec.europa.eu/eurostat/web/microdata/household-budget-survey (accessed 2.4.25). Hughson, H., Cava, G.L., Ryan, P., Smith, P., 2016. The Household Cash Flow Channel of Monetary Policy. Kawamoto, T., Nakazawa, T., Kishaba, Y., Matsumura, K., Nakajima, J., 2023. Estimating the macroeconomic effects of Japan’s expansionary mone tary policy under Quantitative and Qualitative Monetary Easing during 2013 2020. Economic Analysis and https://doi.org/10.1016/j.eap.2023.03.007 Policy 78, 208–224. Kim, M., 2024. Declining real interest rates: The role of energy prices in en ergy importers. Energy Economics 129, 107226. https://doi.org/10.1016/j.en eco.2023.107226 Bank of China, n.d., Law of the Peoples Republic of China on the People’s Bank of China Matusche, A., Wacks, J., 2023. Does wealth inequality affect the transmission of monetary policy? Journal of Macroeconomics 75, 103474. https://doi.org/10.1016/j.jmacro.2022.103474 Mishkin, F., 1996. The Channels of Monetary Transmission: Lessons for Monetary Policy (No. w5464). National Bureau of Economic Research, Cam bridge, MA. https://doi.org/10.3386/w5464 Mishkin, F.S., 2022. The economics of money, banking, and financial mar kets, Thirteenth edition, global edition. ed. Pearson, New York. Mishkin, F.S., 2019. The economics of money, banking and financial markets, Twelfth edition, global edition. ed, The Pearson series in economics. Pearson, Harlow, England Munich. Mundra, S., Bicchal, M., 2023. Asymmetric effects of monetary policy and financial accelerator: Evidence from India. The Journal of Economic Asym metries 27, e00296. https://doi.org/10.1016/j.jeca.2023.e00296 60 Pallotti, F., Paz-Pardo, G., Slacalek, J., Tristani, O., Violante, G.L., 2024. Who bears the costs of inflation? Euro area households and the 2021–2023 shock. Journal of Monetary Economics 148, 103671. https://doi.org/10.1016/j.jmo neco.2024.103671 Purposes and Functions [WWW Document], n.d. URL http://www.pbc.gov.cn/en/3688066/3688080/index.html (accessed 3.4.25). Journal Sapriza, H., Temesvary, J., 2024. Economic activity and the bank credit chan nel. of Banking & Finance 164, 107216. https://doi.org/10.1016/j.jbankfin.2024.107216 Statistics | Eurostat [WWW Document], n.d. URL https://ec.europa.eu/euro stat/databrowser/view/namq_10_fcs/default/table?lang=en (accessed 2.4.25). Tang, P., Yang, W., 2024. Monetary policy uncertainty and financial risk: The mediating role of corporate investment. Finance Research Letters 70, 106303. https://doi.org/10.1016/j.frl.2024.106303 The Federal Reserve’s Dual Mandate - Federal Reserve Bank of Chicago [WWW Document], n.d. URL https://www.chicagofed.org/research/dual mandate/dual-mandate (accessed 3.4.25). Uxó, J., Febrero, E., Álvarez, I., 2024. Prices, markups and wages: inflation and its distributive consequences in Spain, 2021-2023. Structural Change and Economic Dynamics https://doi.org/10.1016/j.strueco.2024.09.021 S0954349X24001504. Vale, S., 2024. House prices and credit as transmission channels from mone tary policy to inequality: Evidence from OECD countries. Economic Analysis and Policy 84, 293–307. https://doi.org/10.1016/j.eap.2024.08.027

8 Appendix A: Further explanations and overview tables.

8.1 A.1: Variables and sources

Variable Source Link source Frequency HICP Eurostat Statistics | Eurostat monthly Final con sumption Eurostat Statistics | Eurostat quarterly ihousing ECB data https://data.ecb.europa.eu/data/da tasets/MIR/MIR.M.U2.B.A2C.AM.R .A.2250.EUR.N

monthly rhousing Calculated HICP - ihousing monthly iagreed ECB data https://data.ecb.europa.eu/data/da tasets/MIR/MIR.M.U2.B.L22.F.R.A. 2250.EUR.N

monthly ragreed Calculated HICP - iagreed monthly CCI Eurostat Statistics | Eurostat monthly
MRO ECB data https://data.ecb.europa.eu/data/da tasets/FM/FM.B.U2.EUR.4F.KR.MR R_FR.LEV

daily OMO Statista https://www.statista.com/statis tics/254133/volume-of-ecb-open market-operations/

monthly GINI ECB data https://data.ecb.europa.eu/data/da tasets/DWA/DWA.Q.I9.S14._Z._Z.N WA._Z.GI.S.N

quarterly unemploy ment Eurostat https://ec.europa.eu/eurostat/data browser/view/ei_lmhr_m__cus tom_15480338/default/table?lang=en

monthly hsloans ECB data https://data.ecb.europa.eu/data/da tasets/BSI/BSI.M.U2.N.A.A20T.A.I. U2.2250.Z01.A

monthly hsequity ECB data https://data.ecb.europa.eu/data/da tasets/SHSS/SHSS.Q.N.U2.W0.S1M. S1.N.A.LE.F511._Z._Z.XDC._T.M. V.N._T

quarterly portfolio ECB data BPS.Q.N.I9.W1.S1M.S1.LE.N.FA.P. F52._Z.EUR._T.M.N.ALL | ECB Data Portal quarterly assets ECB data https://data.ecb.europa.eu/data/da tasets/QSA/QSA.Q.N.I9.W0.S1M.S1 .N.A.LE.F._Z._Z.XDC._T.S.V.N._T

quarterly SovCISS ECB data https://data.ecb.europa.eu/data/da tasets/CISS/CISS.M.U2.Z0Z.4F.E C.SOV_EW.IDX

monthly 63

CCI Eurostat Statistics | Eurostat monthly Re serves/To tal bank re serves ECB data https://data.ecb.europa.eu/data/da tasets/IVF/IVF.M.U2.N.40.T00.A.1.Z 5.0000.Z01.E

monthly GDP/real GDP ECB data https://data.ecb.europa.eu/data/da tasets/SPF/SPF.Q.U2.RGDP.POINT. LT.Q.AVG

quarterly Bankloans/ hsloans ECB data https://data.ecb.europa.eu/data/da tasets/BSI/BSI.M.U2.Y.U.A20T.A.I. U2.2250.Z01.A

monthly GERihous ing ECB data https://data.ecb.europa.eu/data/da tasets/MIR/MIR.M.DE.B.A2C.AM.R .A.2250.EUR.N

monthly GERHICP Eurostat https://ec.europa.eu/eurostat/data browser/view/prc_hicp_mmor/de fault/table?lang=de&cate gory=prc.prc_hicp

monthly GERrhous ing ECB data GERHICP – GERihousing

monthly GERi agreed ECB data https://data.ecb.europa.eu/data/da tasets/MIR/MIR.M.DE.B.L22.A.R.A. 2250.EUR.N

monthly GER ragreed Calculated GERHICP – GERiagreed monthly FRihous ing ECB data https://data.ecb.europa.eu/data/da tasets/MIR/MIR.M.FR.B.A2C.AM.R .A.2250.EUR.N

monthly FRHICP Eurostat https://ec.europa.eu/eurostat/data browser/view/prc_hicp_mmor/de fault/table?lang=de&cate gory=prc.prc_hicp

monthly FRrhous ing Calculated FRHICP – FRihousing

monthly FRiagreed ECB data https://data.ecb.europa.eu/data/da tasets/MIR/MIR.M.FR.B.L22.A.R.A. 2250.EUR.N

monthly FRragreed Calculated FRHICP – FRiagreed monthly ESihous ing ECB data https://data.ecb.europa.eu/data/da tasets/MIR/MIR.M.ES.B.A2C.AM.R. A.2250.EUR.N

monthly ESHICP Eurostat https://ec.europa.eu/eurostat/data browser/view/prc_hicp_mmor/de fault/table?lang=de&cate gory=prc.prc_hicp

monthly ESrhous ing Calculated ESHICP - ESihousing monthly 64

ESiagreed ECB data https://data.ecb.europa.eu/data/da tasets/MIR/MIR.M.ES.B.L22.A.R.A. 2250.EUR.N

monthly ESragreed ECB data ESHICP – ESiagreed monthly GERunem ployment Eurostat https://ec.europa.eu/eurostat/data browser/view/ei_lmhr_m__cus tom_15480338/default/table?lang=en

monthly ESunem ployment Eurostat https://ec.europa.eu/eurostat/data browser/view/UNE_RT_M/de fault/table?lang=en

monthly FRunem ployment Eurostat https://ec.europa.eu/eurostat/data browser/view/UNE_RT_M/de fault/table?lang=en

monthly GERfinal consump tion Eurostat https://data.ecb.europa.eu/data/da tasets/MNA/MNA.Q.Y.ES.W0.S1M. S1.D.P31._Z._Z._T.EUR.V.N

quarterly ESfinal consump tion Eurostat https://data.ecb.europa.eu/data/da tasets/MNA/MNA.Q.Y.ES.W0.S1M. S1.D.P31._Z._Z._T.EUR.V.N

quarterly FRfinal consump tion Eurostat https://data.ecb.europa.eu/data/da tasets/MNA/MNA.Q.Y.FR.W2.S1.S1 .B.B1GQ._Z._Z._Z.EUR.LR.N

quarterly GERhsquit y

ECB data https://data.ecb.europa.eu/data/da tasets/QSA/QSA.Q.N.DE.W0.S1M.S 1.N.A.LE.F511._Z._Z.XDC._T.S.V.N ._T

quarterly FRhsequit y ECB data https://data.ecb.europa.eu/data/da tasets/QSA/QSA.Q.N.ES.W0.S1M.S 1.N.A.LE.F511._Z._Z.XDC._T.S.V.N ._T

quarterly EShsequity ECB data https://data.ecb.europa.eu/data/da tasets/QSA/QSA.Q.N.FR.W0.S1M.S 1.N.A.LE.F511._Z._Z.XDC._T.S.V.N ._T

quarterly GERCCI Eurostat https://ec.europa.eu/eurostat/data browser/view/ei_bsco_m__cus tom_15066182/default/table

monthly FRCCI Eurostat https://ec.europa.eu/eurostat/data browser/view/ei_bsco_m__cus tom_15066182/default/table

monthly ESCCI Eurostat https://ec.europa.eu/eurostat/data browser/view/ei_bsco_m__cus tom_15066182/default/table

monthly GERhsas sets ECB data https://data.ecb.europa.eu/data/da tasets/QSA/QSA.Q.N.DE.W0.S1M.S 1.N.A.LE.F._Z._Z.XDC._T.S.V.N._T quarterly 65

FRhsassets ECB data https://data.ecb.europa.eu/data/da tasets/QSA/QSA.Q.N.FR.W0.S1M.S 1.N.A.LE.F._Z._Z.XDC._T.S.V.N._T

quarterly EShsassets ECB data https://data.ecb.europa.eu/data/da tasets/QSA/QSA.Q.N.ES.W0.S1M.S 1.N.A.LE.F._Z._Z.XDC._T.S.V.N._T

quarterly FRSo vCISS ECB data https://data.ecb.europa.eu/data/da tasets/CISS/CISS.M.FR.Z0Z.4F.EC.S OV_CI.IDX

monthly GERSo vCISS ECB data https://data.ecb.europa.eu/data/da tasets/CISS/CISS.M.DE.Z0Z.4F.EC. SOV_CI.IDX

monthly ESSo vCISS ECB data https://data.ecb.europa.eu/data/da tasets/CISS/CISS.M.ES.Z0Z.4F.EC.S OV_CI.IDX

monthly GERre serves ECB data https://data.ecb.europa.eu/data/da tasets/BSI/BSI.M.DE.N.R.LRE.X.1. A1.3000.Z01.E

monthly FRreserves ECB data https://data.ecb.europa.eu/data/da tasets/BSI/BSI.M.FR.N.R.LRE.X.1. A1.3000.Z01.E

monthly ESreserves ECB data https://data.ecb.europa.eu/data/da tasets/BSI/BSI.M.ES.N.R.LRE.X.1.A 1.3000.Z01.E

monthly GERhsloa ns ECB data https://data.ecb.europa.eu/data/da tasets/BSI/BSI.M.DE.N.A.A20T.A.I. U2.2250.Z01.A

monthly EShsloans ECD data https://data.ecb.europa.eu/data/da tasets/BSI/BSI.M.ES.N.A.A20T.A.I. U2.2250.Z01.A

monthly FRhsloans ECB data https://data.ecb.europa.eu/data/da tasets/BSI/BSI.M.FR.N.A.A20T.A.I. U2.2250.Z01.A

monthly GER holddebt gov ECB data https://data.ecb.europa.eu/data/da tasets/BSI/BSI.M.DE.N.A.A30.A.1. U2.2100.Z01.E

monthly FRholddeb tgov ECB data https://data.ecb.europa.eu/data/da tasets/BSI/BSI.M.ES.N.A.A30.A.1.U 2.2100.Z01.E

monthly ESholddeb tgov ECB data https://data.ecb.europa.eu/data/da tasets/BSI/BSI.M.FR.N.A.A30.A.1.U 2.2100.Z01.E

monthly 66

8.2 A.2 Further explanations to the variables

Variable Further explanation HICP I used HICP (harmonized indices of consumption prices) in the analy sis to measure inflation. There are of course other ways to measure in flation, for example the GDP deflator, but I wanted to imply the de mand side perspective here. GINI For the GINI variable, I mainly focus on literature that sees income ine quality as a significant factor for MTCs. Accordingly, the GINI is the income Gini coefficient. OMO OMO is one of the most important variables in this analysis; all open market operations of recent years, PELTROs, TLTROs, APP and PEPP are implied here. MRO The interest rate of the ECB’s main refinancing operations is the only time series in this analysis that is available on a daily basis. Nevertheless, in order to take the monthly format into account, I have used the rate on the last day of the month. CCI I used the CCI to measure financial distress in the context of the liquidity channel, to be precise the CCI measures households’ expectations about their future financial situation. Thus, the CCI does not directly measure the financial distress of households, although the general question is how the financial distress of households can be operationalized. unemploy ment The monthly unemployment rate I am using here is according to the in ternational labor organization (ILO). According to this, unemployed is when the person has not worked in the reference week, is available to the labor market in the two weeks and has actively looked for a job in the last four weeks or will start a job in the next three months (cf, ILO, 2022). This definition does not take hidden unemployment into account. Country spe cific varia bles The country-specific variables are synchronized with the aggregated euro area variables. They are only differentiated by adding the prefix GER for Germany, FR for France and ES for Spain.

##A.3: IRFs of the 2nd part of the real interest rate channel for gas and electricity consumption.

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

8.3 Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.