#install.packages("tidyverse")
library(tidyverse)
#install.packages("dplyr")
library (dplyr)
#install.packages("lubridate")
library(lubridate)
#install.packages("Matrix")
library(Matrix)
#install.packages("arules")
library(arules)
#install.packages("arulesViz")
library(arulesViz)
#install.packages("datasets")
library(datasets)
# install.packages ("plyr")
library (plyr)
#file.choose()
bd <- read.csv("/Users/maya/Downloads/abarrotes.csv")
summary(bd)
## vcClaveTienda DescGiro Codigo.Barras PLU
## Length:200625 Length:200625 Min. :8.347e+05 Min. : 1.00
## Class :character Class :character 1st Qu.:7.501e+12 1st Qu.: 1.00
## Mode :character Mode :character Median :7.501e+12 Median : 1.00
## Mean :5.950e+12 Mean : 2.11
## 3rd Qu.:7.501e+12 3rd Qu.: 1.00
## Max. :1.750e+13 Max. :30.00
## NA's :199188
## Fecha Hora Marca Fabricante
## Length:200625 Length:200625 Length:200625 Length:200625
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## Producto Precio Ult.Costo Unidades
## Length:200625 Min. :-147.00 Min. : 0.38 Min. : 0.200
## Class :character 1st Qu.: 11.00 1st Qu.: 8.46 1st Qu.: 1.000
## Mode :character Median : 16.00 Median : 12.31 Median : 1.000
## Mean : 19.42 Mean : 15.31 Mean : 1.262
## 3rd Qu.: 25.00 3rd Qu.: 19.23 3rd Qu.: 1.000
## Max. :1000.00 Max. :769.23 Max. :96.000
##
## F.Ticket NombreDepartamento NombreFamilia NombreCategoria
## Min. : 1 Length:200625 Length:200625 Length:200625
## 1st Qu.: 33964 Class :character Class :character Class :character
## Median :105993 Mode :character Mode :character Mode :character
## Mean :193990
## 3rd Qu.:383005
## Max. :450040
##
## Estado Mts.2 Tipo.ubicación Giro
## Length:200625 Min. :47.0 Length:200625 Length:200625
## Class :character 1st Qu.:53.0 Class :character Class :character
## Mode :character Median :60.0 Mode :character Mode :character
## Mean :56.6
## 3rd Qu.:60.0
## Max. :62.0
##
## Hora.inicio Hora.cierre
## Length:200625 Length:200625
## Class :character Class :character
## Mode :character Mode :character
##
##
##
##
str(bd)
## 'data.frame': 200625 obs. of 22 variables:
## $ vcClaveTienda : chr "MX001" "MX001" "MX001" "MX001" ...
## $ DescGiro : chr "Abarrotes" "Abarrotes" "Abarrotes" "Abarrotes" ...
## $ Codigo.Barras : num 7.5e+12 7.5e+12 7.5e+12 7.5e+12 7.5e+12 ...
## $ PLU : int NA NA NA NA NA NA NA NA NA NA ...
## $ Fecha : chr "19/06/2020" "19/06/2020" "19/06/2020" "19/06/2020" ...
## $ Hora : chr "08:16:21" "08:23:33" "08:24:33" "08:24:33" ...
## $ Marca : chr "NUTRI LECHE" "DAN UP" "BIMBO" "PEPSI" ...
## $ Fabricante : chr "MEXILAC" "DANONE DE MEXICO" "GRUPO BIMBO" "PEPSI-COLA MEXICANA" ...
## $ Producto : chr "Nutri Leche 1 Litro" "DANUP STRAWBERRY P/BEBER 350GR NAL" "Rebanadas Bimbo 2Pz" "Pepsi N.R. 400Ml" ...
## $ Precio : num 16 14 5 8 19.5 16 14 5 8 19.5 ...
## $ Ult.Costo : num 12.3 14 5 8 15 ...
## $ Unidades : num 1 1 1 1 1 1 1 1 1 1 ...
## $ F.Ticket : int 1 2 3 3 4 1 2 3 3 4 ...
## $ NombreDepartamento: chr "Abarrotes" "Abarrotes" "Abarrotes" "Abarrotes" ...
## $ NombreFamilia : chr "Lacteos y Refrigerados" "Lacteos y Refrigerados" "Pan y Tortilla" "Bebidas" ...
## $ NombreCategoria : chr "Leche" "Yogurt" "Pan Dulce Empaquetado" "Refrescos Plástico (N.R.)" ...
## $ Estado : chr "Nuevo León" "Nuevo León" "Nuevo León" "Nuevo León" ...
## $ Mts.2 : int 60 60 60 60 60 60 60 60 60 60 ...
## $ Tipo.ubicación : chr "Esquina" "Esquina" "Esquina" "Esquina" ...
## $ Giro : chr "Abarrotes" "Abarrotes" "Abarrotes" "Abarrotes" ...
## $ Hora.inicio : chr "08:00" "08:00" "08:00" "08:00" ...
## $ Hora.cierre : chr "22:00" "22:00" "22:00" "22:00" ...
head(bd,n=10)
## vcClaveTienda DescGiro Codigo.Barras PLU Fecha Hora
## 1 MX001 Abarrotes 7.501021e+12 NA 19/06/2020 08:16:21
## 2 MX001 Abarrotes 7.501032e+12 NA 19/06/2020 08:23:33
## 3 MX001 Abarrotes 7.501000e+12 NA 19/06/2020 08:24:33
## 4 MX001 Abarrotes 7.501031e+12 NA 19/06/2020 08:24:33
## 5 MX001 Abarrotes 7.501026e+12 NA 19/06/2020 08:26:28
## 6 MX001 Abarrotes 7.501021e+12 NA 19/06/2020 08:16:21
## 7 MX001 Abarrotes 7.501032e+12 NA 19/06/2020 08:23:33
## 8 MX001 Abarrotes 7.501000e+12 NA 19/06/2020 08:24:33
## 9 MX001 Abarrotes 7.501031e+12 NA 19/06/2020 08:24:33
## 10 MX001 Abarrotes 7.501026e+12 NA 19/06/2020 08:26:28
## Marca Fabricante
## 1 NUTRI LECHE MEXILAC
## 2 DAN UP DANONE DE MEXICO
## 3 BIMBO GRUPO BIMBO
## 4 PEPSI PEPSI-COLA MEXICANA
## 5 BLANCA NIEVES (DETERGENTE) FABRICA DE JABON LA CORONA
## 6 NUTRI LECHE MEXILAC
## 7 DAN UP DANONE DE MEXICO
## 8 BIMBO GRUPO BIMBO
## 9 PEPSI PEPSI-COLA MEXICANA
## 10 BLANCA NIEVES (DETERGENTE) FABRICA DE JABON LA CORONA
## Producto Precio Ult.Costo Unidades F.Ticket
## 1 Nutri Leche 1 Litro 16.0 12.31 1 1
## 2 DANUP STRAWBERRY P/BEBER 350GR NAL 14.0 14.00 1 2
## 3 Rebanadas Bimbo 2Pz 5.0 5.00 1 3
## 4 Pepsi N.R. 400Ml 8.0 8.00 1 3
## 5 Detergente Blanca Nieves 500G 19.5 15.00 1 4
## 6 Nutri Leche 1 Litro 16.0 12.31 1 1
## 7 DANUP STRAWBERRY P/BEBER 350GR NAL 14.0 14.00 1 2
## 8 Rebanadas Bimbo 2Pz 5.0 5.00 1 3
## 9 Pepsi N.R. 400Ml 8.0 8.00 1 3
## 10 Detergente Blanca Nieves 500G 19.5 15.00 1 4
## NombreDepartamento NombreFamilia NombreCategoria
## 1 Abarrotes Lacteos y Refrigerados Leche
## 2 Abarrotes Lacteos y Refrigerados Yogurt
## 3 Abarrotes Pan y Tortilla Pan Dulce Empaquetado
## 4 Abarrotes Bebidas Refrescos Plástico (N.R.)
## 5 Abarrotes Limpieza del Hogar Lavandería
## 6 Abarrotes Lacteos y Refrigerados Leche
## 7 Abarrotes Lacteos y Refrigerados Yogurt
## 8 Abarrotes Pan y Tortilla Pan Dulce Empaquetado
## 9 Abarrotes Bebidas Refrescos Plástico (N.R.)
## 10 Abarrotes Limpieza del Hogar Lavandería
## Estado Mts.2 Tipo.ubicación Giro Hora.inicio Hora.cierre
## 1 Nuevo León 60 Esquina Abarrotes 08:00 22:00
## 2 Nuevo León 60 Esquina Abarrotes 08:00 22:00
## 3 Nuevo León 60 Esquina Abarrotes 08:00 22:00
## 4 Nuevo León 60 Esquina Abarrotes 08:00 22:00
## 5 Nuevo León 60 Esquina Abarrotes 08:00 22:00
## 6 Nuevo León 60 Esquina Abarrotes 08:00 22:00
## 7 Nuevo León 60 Esquina Abarrotes 08:00 22:00
## 8 Nuevo León 60 Esquina Abarrotes 08:00 22:00
## 9 Nuevo León 60 Esquina Abarrotes 08:00 22:00
## 10 Nuevo León 60 Esquina Abarrotes 08:00 22:00
tail(bd,n=10)
## vcClaveTienda DescGiro Codigo.Barras PLU Fecha Hora
## 200616 MX005 Depósito 7.62221e+12 NA 07/08/2020 19:30:13
## 200617 MX005 Depósito 7.62221e+12 NA 25/07/2020 18:42:24
## 200618 MX005 Depósito 7.62221e+12 NA 18/07/2020 22:45:58
## 200619 MX005 Depósito 7.62221e+12 NA 12/07/2020 00:36:34
## 200620 MX005 Depósito 7.62221e+12 NA 12/07/2020 01:08:25
## 200621 MX005 Depósito 7.62221e+12 NA 23/10/2020 22:17:37
## 200622 MX005 Depósito 7.62221e+12 NA 10/10/2020 20:30:20
## 200623 MX005 Depósito 7.62221e+12 NA 10/10/2020 22:40:43
## 200624 MX005 Depósito 7.62221e+12 NA 27/06/2020 22:30:19
## 200625 MX005 Depósito 7.62221e+12 NA 26/06/2020 23:43:34
## Marca Fabricante Producto Precio
## 200616 TRIDENT XTRA CARE CADBURY ADAMS Trident Xtracare Freshmint 16.32G 9
## 200617 TRIDENT XTRA CARE CADBURY ADAMS Trident Xtracare Freshmint 16.32G 9
## 200618 TRIDENT XTRA CARE CADBURY ADAMS Trident Xtracare Freshmint 16.32G 9
## 200619 TRIDENT XTRA CARE CADBURY ADAMS Trident Xtracare Freshmint 16.32G 9
## 200620 TRIDENT XTRA CARE CADBURY ADAMS Trident Xtracare Freshmint 16.32G 9
## 200621 TRIDENT XTRA CARE CADBURY ADAMS Trident Xtracare Freshmint 16.32G 9
## 200622 TRIDENT XTRA CARE CADBURY ADAMS Trident Xtracare Freshmint 16.32G 9
## 200623 TRIDENT XTRA CARE CADBURY ADAMS Trident Xtracare Freshmint 16.32G 9
## 200624 TRIDENT XTRA CARE CADBURY ADAMS Trident Xtracare Freshmint 16.32G 9
## 200625 TRIDENT XTRA CARE CADBURY ADAMS Trident Xtracare Freshmint 16.32G 9
## Ult.Costo Unidades F.Ticket NombreDepartamento NombreFamilia
## 200616 6.92 1 106411 Abarrotes Dulcería
## 200617 6.92 1 104693 Abarrotes Dulcería
## 200618 6.92 1 103856 Abarrotes Dulcería
## 200619 6.92 1 103087 Abarrotes Dulcería
## 200620 6.92 1 103100 Abarrotes Dulcería
## 200621 6.92 1 116598 Abarrotes Dulcería
## 200622 6.92 1 114886 Abarrotes Dulcería
## 200623 6.92 1 114955 Abarrotes Dulcería
## 200624 6.92 1 101121 Abarrotes Dulcería
## 200625 6.92 1 100879 Abarrotes Dulcería
## NombreCategoria Estado Mts.2 Tipo.ubicación Giro Hora.inicio
## 200616 Gomas de Mazcar Quintana Roo 58 Esquina Mini súper 08:00
## 200617 Gomas de Mazcar Quintana Roo 58 Esquina Mini súper 08:00
## 200618 Gomas de Mazcar Quintana Roo 58 Esquina Mini súper 08:00
## 200619 Gomas de Mazcar Quintana Roo 58 Esquina Mini súper 08:00
## 200620 Gomas de Mazcar Quintana Roo 58 Esquina Mini súper 08:00
## 200621 Gomas de Mazcar Quintana Roo 58 Esquina Mini súper 08:00
## 200622 Gomas de Mazcar Quintana Roo 58 Esquina Mini súper 08:00
## 200623 Gomas de Mazcar Quintana Roo 58 Esquina Mini súper 08:00
## 200624 Gomas de Mazcar Quintana Roo 58 Esquina Mini súper 08:00
## 200625 Gomas de Mazcar Quintana Roo 58 Esquina Mini súper 08:00
## Hora.cierre
## 200616 21:00
## 200617 21:00
## 200618 21:00
## 200619 21:00
## 200620 21:00
## 200621 21:00
## 200622 21:00
## 200623 21:00
## 200624 21:00
## 200625 21:00
# dplyr :: count(bd,vcClaveTienda, sort=TRUE)
# dplyr :: count(bd,DescGiro, sort=TRUE)
# dplyr :: count(bd,Fecha, sort=TRUE)
# dplyr :: count(bd,Hora, sort=TRUE)
# dplyr :: count(bd,Marca, sort=TRUE)
# dplyr :: count(bd,Fabricante, sort=TRUE)
# dplyr :: count(bd,NombreDepartamento, sort=TRUE)
# dplyr :: count(bd,NombreFamilia, sort=TRUE)
# dplyr :: count(bd,NombreCategoria, sort=TRUE)
# dplyr :: count(bd,Estado, sort=TRUE)
# dplyr :: count(bd,Tipo.ubicación, sort=TRUE)
# dplyr :: count(bd,Giro, sort=TRUE)
# dplyr :: count(bd,Hora.inicio, sort=TRUE)
# dplyr :: count(bd,Hora.cierre, sort=TRUE)
##Tecnica 1. Eliminar valores ireelevantes
# Eliminar columnas
bd1 <- bd
bd1 <- subset(bd1, select = -c(PLU, Codigo.Barras))
# Eliminar renglones
bd2 <- bd1
bd2 <- bd2[bd2$Precio > 0, ]
summary (bd1$Precio)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -147.00 11.00 16.00 19.42 25.00 1000.00
summary (bd2$Precio)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.50 11.00 16.00 19.45 25.00 1000.00
##Tecnica 2. Remover valores duplicados
# ¿Cuantos rengoles duplicados tenemos?
sum(duplicated(bd2))
## [1] 5
# ¿Cuales son los rengolnes duplicados?
bd2[duplicated(bd2),]
## vcClaveTienda DescGiro Fecha Hora Marca
## 6 MX001 Abarrotes 19/06/2020 08:16:21 NUTRI LECHE
## 7 MX001 Abarrotes 19/06/2020 08:23:33 DAN UP
## 8 MX001 Abarrotes 19/06/2020 08:24:33 BIMBO
## 9 MX001 Abarrotes 19/06/2020 08:24:33 PEPSI
## 10 MX001 Abarrotes 19/06/2020 08:26:28 BLANCA NIEVES (DETERGENTE)
## Fabricante Producto Precio
## 6 MEXILAC Nutri Leche 1 Litro 16.0
## 7 DANONE DE MEXICO DANUP STRAWBERRY P/BEBER 350GR NAL 14.0
## 8 GRUPO BIMBO Rebanadas Bimbo 2Pz 5.0
## 9 PEPSI-COLA MEXICANA Pepsi N.R. 400Ml 8.0
## 10 FABRICA DE JABON LA CORONA Detergente Blanca Nieves 500G 19.5
## Ult.Costo Unidades F.Ticket NombreDepartamento NombreFamilia
## 6 12.31 1 1 Abarrotes Lacteos y Refrigerados
## 7 14.00 1 2 Abarrotes Lacteos y Refrigerados
## 8 5.00 1 3 Abarrotes Pan y Tortilla
## 9 8.00 1 3 Abarrotes Bebidas
## 10 15.00 1 4 Abarrotes Limpieza del Hogar
## NombreCategoria Estado Mts.2 Tipo.ubicación Giro
## 6 Leche Nuevo León 60 Esquina Abarrotes
## 7 Yogurt Nuevo León 60 Esquina Abarrotes
## 8 Pan Dulce Empaquetado Nuevo León 60 Esquina Abarrotes
## 9 Refrescos Plástico (N.R.) Nuevo León 60 Esquina Abarrotes
## 10 Lavandería Nuevo León 60 Esquina Abarrotes
## Hora.inicio Hora.cierre
## 6 08:00 22:00
## 7 08:00 22:00
## 8 08:00 22:00
## 9 08:00 22:00
## 10 08:00 22:00
# Eliminar renglones duplicados
bd3 <- bd2
bd3 <- distinct (bd3)
##Tecnica 3. Eliminar los errores tipograficos y similares
# Cantidades en enteros
bd4 <- bd3
bd4$Unidades <- ceiling(bd4$Unidades)
##Tecnica 4. Convertir tipos de datos
# Convertir de caracter a fecha
bd5 <- bd4
bd5$Fecha <- as.Date(bd5$Fecha, format="%d/%m/%Y")
# Convertir de caracter a entero
bd6 <- bd5
bd6$Hora <- substr (bd6$Hora, start=1, stop=2)
bd6$Hora <- as.integer(bd6$Hora)
##Tecnica 5. Reemplazar nvalor faltantes
# ¿Cuantos NAs tengo en la base de datos?
sum(is.na(bd6))
## [1] 0
sum(is.na(bd))
## [1] 199188
# ¿Cuantos NAs tengo por variable?
sapply(bd, function(x) sum(is.na(x)))
## vcClaveTienda DescGiro Codigo.Barras PLU
## 0 0 0 199188
## Fecha Hora Marca Fabricante
## 0 0 0 0
## Producto Precio Ult.Costo Unidades
## 0 0 0 0
## F.Ticket NombreDepartamento NombreFamilia NombreCategoria
## 0 0 0 0
## Estado Mts.2 Tipo.ubicación Giro
## 0 0 0 0
## Hora.inicio Hora.cierre
## 0 0
# Opcion 1. Borrar todos los NAs de una tabla
# bd100 <- na.omit(bd)
# Opcion. Reemplazar los NAs con CEROS
# bd101 <- bd
# bd101[is.na(bd101)]<-0
# Opcion 3. Reemplazar NAs con prom
# bd102 <- bd
# bd102$PLU[is.na(bd101$PLU)]<-mean(bd102$PLU, na.rm=TRUE)
##Tecnica 6. Correcciones por metodos estadisticos
boxplot(bd6$Precio, horizontal=TRUE)
boxplot(bd6$Unidades, horizontal=TRUE)
# Agregar columnas
# Agregar dia de la semana
bd6$Dia_Semana <- wday(bd6$Fecha)
#Agregar el subtotal de la venta
bd6$Subtotal <- bd6$Precio * bd6$Unidades
# write.csv(bd6, file="abarrotes_limpia.csv", row.names=FALSE)
# ordenar de menor a mayor la columna ticket
bd7 <- bd6
bd7 <- bd7[order(bd7$F.Ticket),]
# Generar el canasto
basket <- ddply(bd7,c("F.Ticket"), function(bd7)paste(bd7$Marca,collapse =","))
# Eliminar la columna ticket
basket$F.Ticket <- NULL
# Renombrar nombre de columna a Marca
colnames(basket) <- c("Marca")
# Exportar basket
write.csv(basket, file="basket.csv", row.names=FALSE)
# Importar transacciones
# file.choose()
tr <- read.transactions("/Users/maya/basket.csv", format = "basket", sep = ",")
# Generar reglas de asociacion
reglas.asociacion <- apriori(tr,parameter = list(supp=0.001,conf=0.2,maxlen=10))
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.2 0.1 1 none FALSE TRUE 5 0.001 1
## maxlen target ext
## 10 rules TRUE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## Absolute minimum support count: 115
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[28710 item(s), 115031 transaction(s)] done [0.02s].
## sorting and recoding items ... [119 item(s)] done [0.00s].
## creating transaction tree ... done [0.01s].
## checking subsets of size 1 done [0.00s].
## writing ... [0 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
summary(reglas.asociacion)
## set of 0 rules
inspect(reglas.asociacion)
# Ordenar reglas de asociacion
reglas.asociacion <- sort(reglas.asociacion, by="confidence", decreasing=TRUE)
# Graficar TOP10 de Reglas de asociacion
top10reglas <- head(reglas.asociacion, n=10, by="confidence")
# plot(top10reglas, method ="graph", engine ="htmlwidget")
#Conclusiones
En esta actividad lo que mas llama la atencion fueron las fallas de asociacion de reglas y de el count, pues solo fueron pocas personas las que experimentaron fallas con el codigo y se desconoce la razon.
Igual es importante recalcar que tenemos que hacer el trabajo estructurado y correr las lineas mientras se realiza para confirmar que todo este bien.
En esta actividad igual se nos enseño como hacer graficas y como interpretarlas despues de limpiar una base de datos. Tambien, pues se nos enseño a como descargar, limpiar, y exportar una base de datos.
Finalmente, al momento de ver la base de datos, aprendi a identificar y ajustar los datos que tienen que ir de manera numerica.