library(readxl)
Data_CCA <- read_excel("C:/Users/HP/OneDrive/文件/Data_CCA.xlsx")
Data_CCA
## # A tibble: 34 × 8
##    `Prevalensi balita gizi buruk` Prevalensi balita gizi kur…¹ `Balita Obesitas`
##                             <dbl>                        <dbl>             <dbl>
##  1                            5.9                         18.9               3  
##  2                            5.3                         13.1               5.9
##  3                            3.3                         14.2               3  
##  4                            4.2                         14                 5.5
##  5                            3                           10.5               5  
##  6                            2.1                         10.2               4.2
##  7                            2.3                         11.9               4.4
##  8                            3.5                         15                 4.2
##  9                            3.7                         13                 7.8
## 10                            3                           13.4               4.4
## # ℹ 24 more rows
## # ℹ abbreviated name: ¹​`Prevalensi balita gizi kurang`
## # ℹ 5 more variables: `Rata-rata lama sekolah ibu` <dbl>,
## #   `Persentase Penduduk yang Memiliki Jaminan Kesehatan` <dbl>,
## #   Kemiskinan <dbl>, `Imunisasi Dasar Lengkap` <dbl>, `Air Layak` <dbl>
Y1 <- Data_CCA$`Prevalensi balita gizi buruk`
Y2 <- Data_CCA$`Prevalensi balita gizi kurang`
Y3 <- Data_CCA$`Balita Obesitas`
X1 <- Data_CCA$`Rata-rata lama sekolah ibu`
X2 <- Data_CCA$`Persentase Penduduk yang Memiliki Jaminan Kesehatan`
X3 <- Data_CCA$Kemiskinan
X4 <- Data_CCA$`Imunisasi Dasar Lengkap`
X5 <- Data_CCA$`Air Layak`

data <- data.frame(Y1,Y2,Y3,X1,X2,X3,X4,X5)
data
##     Y1   Y2  Y3    X1    X2    X3    X4    X5
## 1  5.9 18.9 3.0  8.62 62.85 15.92 23.19 64.85
## 2  5.3 13.1 5.9  8.96 25.12  9.28 27.10 70.07
## 3  3.3 14.2 3.0  8.60 28.76  6.75 35.59 68.83
## 4  4.2 14.0 5.5  8.49 17.63  7.41 31.73 75.12
## 5  3.0 10.5 5.0  7.70 18.22  7.90 46.99 65.73
## 6  2.1 10.2 4.2  7.67 15.90 13.10 47.40 64.02
## 7  2.3 11.9 4.4  8.16 25.79 15.59 43.48 43.83
## 8  3.5 15.0 4.2  7.49 26.47 13.04 50.92 53.79
## 9  3.7 13.0 7.8  7.48 19.75  5.30 58.33 68.14
## 10 3.0 13.4 4.4  9.57 19.40  6.13 57.40 83.95
## 11 3.0 11.0 6.8 10.61 36.50  3.78 52.43 88.93
## 12 2.9 12.2 3.8  7.69 23.92  7.83 43.01 70.50
## 13 3.0 14.0 4.0  6.78 32.95 12.23 63.64 76.09
## 14 2.4 10.2 5.5  8.73 40.71 12.36 71.28 77.19
## 15 2.9 12.6 5.0  6.78 24.70 11.20 55.51 75.54
## 16 4.0 15.7 4.7  7.98 21.35  5.59 25.46 66.11
## 17 2.0  6.6 8.1  7.75 23.72  4.14 67.60 90.85
## 18 4.3 18.3 3.5  6.27 33.42 15.05 59.73 70.48
## 19 7.4 20.9 3.8  6.87 42.25 21.38 57.96 65.20
## 20 6.5 19.4 5.2  6.49 19.49  7.86 41.02 68.77
## 21 6.0 17.6 5.8  7.91 14.76  5.26 43.16 63.90
## 22 4.6 16.4 6.2  7.52 15.51  4.70 61.89 60.62
## 23 4.4 14.9 4.7  8.93 17.52  6.08 44.84 82.75
## 24 4.5 15.3 5.2  8.44 29.75  6.96 56.13 83.78
## 25 3.3 12.0 9.9  9.19 31.38  7.90 54.07 73.29
## 26 6.2 19.9 3.1  8.00 34.62 14.22 50.21 67.10
## 27 4.9 17.9 3.1  7.63 38.61  9.48 47.68 76.34
## 28 6.5 17.3 4.8  7.95 32.76 11.97 59.10 79.83
## 29 6.0 17.5 4.5  7.56 58.25 17.14 51.32 75.00
## 30 4.9 19.9 2.4  7.08 43.81 11.18 47.65 60.66
## 31 5.8 17.9 3.6  9.17 28.03 18.29 32.66 68.34
## 32 4.1 13.4 2.1  8.17 19.51  6.44 32.09 65.73
## 33 6.6 17.4 5.4  6.90 48.71 23.12 31.06 73.12
## 34 6.8 12.8 5.7  5.44 18.97 27.76 19.72 59.09
#uji linearitas
pairs(Data_CCA, 
      panel = function(x, y) {
        points(x, y, pch = 16, col = "blue")  
        abline(lm(y ~ x), col = "red")  
})

library(lmtest)
## Warning: package 'lmtest' was built under R version 4.4.2
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
model1 <- lm(Y1 ~ X1+X2+X3+X4+X5, data = Data_CCA) 
model2 <- lm(Y2 ~ X1+X2+X3+X4+X5, data = Data_CCA) 
model3 <- lm(Y3 ~ X1+X2+X3+X4+X5, data = Data_CCA) 

resettest(model1) 
## 
##  RESET test
## 
## data:  model1
## RESET = 2.2419, df1 = 2, df2 = 26, p-value = 0.1264
resettest(model2)
## 
##  RESET test
## 
## data:  model2
## RESET = 0.87498, df1 = 2, df2 = 26, p-value = 0.4288
resettest(model3)
## 
##  RESET test
## 
## data:  model3
## RESET = 0.17078, df1 = 2, df2 = 26, p-value = 0.8439
#Uji Normalitas
library(MVN)
## Warning: package 'MVN' was built under R version 4.4.3
mvn(data,mvnTest = "mardia")
## $multivariateNormality
##              Test          Statistic           p value Result
## 1 Mardia Skewness   136.696505090106 0.141401538264125    YES
## 2 Mardia Kurtosis -0.171812983918227   0.8635845576294    YES
## 3             MVN               <NA>              <NA>    YES
## 
## $univariateNormality
##               Test  Variable Statistic   p value Normality
## 1 Anderson-Darling    Y1        0.5910    0.1160    YES   
## 2 Anderson-Darling    Y2        0.3092    0.5401    YES   
## 3 Anderson-Darling    Y3        0.5360    0.1578    YES   
## 4 Anderson-Darling    X1        0.2265    0.8013    YES   
## 5 Anderson-Darling    X2        0.9396    0.0153    NO    
## 6 Anderson-Darling    X3        0.9250    0.0166    NO    
## 7 Anderson-Darling    X4        0.3832    0.3777    YES   
## 8 Anderson-Darling    X5        0.3114    0.5351    YES   
## 
## $Descriptives
##     n      Mean   Std.Dev Median   Min   Max    25th    75th       Skew
## Y1 34  4.391176  1.539061  4.250  2.00  7.40  3.0000  5.8750  0.2289809
## Y2 34 14.861765  3.377198 14.550  6.60 20.90 12.6500 17.5750 -0.1599033
## Y3 34  4.832353  1.640532  4.700  2.10  9.90  3.8000  5.5000  0.9312241
## X1 34  7.899412  1.027893  7.830  5.44 10.61  7.4825  8.5725  0.1361015
## X2 34 29.149706 11.950329 26.130 14.76 62.85 19.4950 34.3200  1.0528769
## X3 34 10.951176  5.787295  9.380  3.78 27.76  6.5175 13.9400  1.0006762
## X4 34 46.804412 13.207991 47.665 19.72 71.28 36.9475 57.0825 -0.2972104
## X5 34 70.515882  9.681519 69.450 43.83 90.85 65.3325 75.9525 -0.1719432
##      Kurtosis
## Y1 -1.2349233
## Y2 -0.6792524
## Y3  1.1123709
## X1  0.2709132
## X2  0.5605395
## X3  0.4425544
## X4 -0.8571337
## X5  0.3936252
#Dengan QQPlot
matriks_data <- as.matrix(data,34,8)
x_bar <- colMeans(matriks_data)
cov_matriks <- cov(matriks_data)

Di<-mahalanobis(matriks_data,x_bar,cov_matriks)
Di
##  [1] 13.503214  6.386890  3.892721  4.428709  4.095138  5.870978 13.386616
##  [8]  4.539456  5.795129  8.062790  8.781778  2.972739  5.531405  8.688437
## [15]  4.763592  7.696798 12.192754  8.436687  8.888807  7.674797  6.950276
## [22]  8.378728  5.056804  2.350529 14.895927  4.240727  3.298606  7.305578
## [29]  7.348938  6.744215 11.597549 10.453701  9.485377 20.303607
hasil <- data.frame(Obs = 1:length(Di), 
                    Mahalanobis_Distance = Di)

hasil<- hasil[order(hasil$Mahalanobis_Distance), ]
hasil$Rank <- c(1:34)

hasil$Probability<-((hasil$Rank-0.5)/34)

hasil
##    Obs Mahalanobis_Distance Rank Probability
## 24  24             2.350529    1  0.01470588
## 12  12             2.972739    2  0.04411765
## 27  27             3.298606    3  0.07352941
## 3    3             3.892721    4  0.10294118
## 5    5             4.095138    5  0.13235294
## 26  26             4.240727    6  0.16176471
## 4    4             4.428709    7  0.19117647
## 8    8             4.539456    8  0.22058824
## 15  15             4.763592    9  0.25000000
## 23  23             5.056804   10  0.27941176
## 13  13             5.531405   11  0.30882353
## 9    9             5.795129   12  0.33823529
## 6    6             5.870978   13  0.36764706
## 2    2             6.386890   14  0.39705882
## 30  30             6.744215   15  0.42647059
## 21  21             6.950276   16  0.45588235
## 28  28             7.305578   17  0.48529412
## 29  29             7.348938   18  0.51470588
## 20  20             7.674797   19  0.54411765
## 16  16             7.696798   20  0.57352941
## 10  10             8.062790   21  0.60294118
## 22  22             8.378728   22  0.63235294
## 18  18             8.436687   23  0.66176471
## 14  14             8.688437   24  0.69117647
## 11  11             8.781778   25  0.72058824
## 19  19             8.888807   26  0.75000000
## 33  33             9.485377   27  0.77941176
## 32  32            10.453701   28  0.80882353
## 31  31            11.597549   29  0.83823529
## 17  17            12.192754   30  0.86764706
## 7    7            13.386616   31  0.89705882
## 1    1            13.503214   32  0.92647059
## 25  25            14.895927   33  0.95588235
## 34  34            20.303607   34  0.98529412
hasil$X2<-qchisq(hasil$Probability,8)
hasil
##    Obs Mahalanobis_Distance Rank Probability        X2
## 24  24             2.350529    1  0.01470588  1.849081
## 12  12             2.972739    2  0.04411765  2.620351
## 27  27             3.298606    3  0.07352941  3.121984
## 3    3             3.892721    4  0.10294118  3.527323
## 5    5             4.095138    5  0.13235294  3.881573
## 26  26             4.240727    6  0.16176471  4.204310
## 4    4             4.428709    7  0.19117647  4.506090
## 8    8             4.539456    8  0.22058824  4.793406
## 15  15             4.763592    9  0.25000000  5.070640
## 23  23             5.056804   10  0.27941176  5.340970
## 13  13             5.531405   11  0.30882353  5.606840
## 9    9             5.795129   12  0.33823529  5.870236
## 6    6             5.870978   13  0.36764706  6.132855
## 2    2             6.386890   14  0.39705882  6.396214
## 30  30             6.744215   15  0.42647059  6.661732
## 21  21             6.950276   16  0.45588235  6.930794
## 28  28             7.305578   17  0.48529412  7.204804
## 29  29             7.348938   18  0.51470588  7.485238
## 20  20             7.674797   19  0.54411765  7.773700
## 16  16             7.696798   20  0.57352941  8.071981
## 10  10             8.062790   21  0.60294118  8.382142
## 22  22             8.378728   22  0.63235294  8.706612
## 18  18             8.436687   23  0.66176471  9.048330
## 14  14             8.688437   24  0.69117647  9.410940
## 11  11             8.781778   25  0.72058824  9.799084
## 19  19             8.888807   26  0.75000000 10.218855
## 33  33             9.485377   27  0.77941176 10.678521
## 32  32            10.453701   28  0.80882353 11.189774
## 31  31            11.597549   29  0.83823529 11.770000
## 17  17            12.192754   30  0.86764706 12.446834
## 7    7            13.386616   31  0.89705882 13.268439
## 1    1            13.503214   32  0.92647059 14.331263
## 25  25            14.895927   33  0.95588235 15.880848
## 34  34            20.303607   34  0.98529412 19.028894
plot(hasil$Mahalanobis_Distance,hasil$X2,
     xlab= "Mahalanobis Distance",ylab="Chi-Square",,col="red",
     main = "QQ plot Normalitas",
     pch=19, cex=0.8)

abline(a=0,b=1,col="blue",lwd=2)

#Menentukan multikolineritas
VIF <- function(x){
  VIF <- diag(solve(cor(x)))
  result <- ifelse(VIF > 10,"multicolinearity","non
                   multicolinearity")
  data1 <- data.frame(VIF,result)
  return(data1)
}
VIF(data)
##         VIF                                   result
## Y1 7.485918 non\n                   multicolinearity
## Y2 7.533326 non\n                   multicolinearity
## Y3 2.132599 non\n                   multicolinearity
## X1 1.751251 non\n                   multicolinearity
## X2 2.125571 non\n                   multicolinearity
## X3 3.262086 non\n                   multicolinearity
## X4 1.975972 non\n                   multicolinearity
## X5 2.016151 non\n                   multicolinearity
#menghitung covarian matriks
cov_matriks<-cov(matriks_data)
cov_matriks
##            Y1         Y2         Y3          X1          X2         X3
## Y1  2.3687077  4.1641979 -0.5266756 -0.49555080   6.1662398   4.574374
## Y2  4.1641979 11.4054635 -2.7544831 -0.93529590  16.9989884   6.591440
## Y3 -0.5266756 -2.7544831  2.6913458  0.29583779  -4.9593841  -2.625676
## X1 -0.4955508 -0.9352959  0.2958378  1.05656328   0.1430604  -2.907599
## X2  6.1662398 16.9989884 -4.9593841  0.14306043 142.8103605  31.962291
## X3  4.5743743  6.5914403 -2.6256756 -2.90759929  31.9622913  33.492786
## X4 -7.6676569 -8.4119171  5.7865499 -0.01339127   4.6124922 -20.415578
## X5 -2.1967950 -7.9253440  4.8536524  3.77421569  11.4857594 -20.797619
##              X4         X5
## Y1  -7.66765686  -2.196795
## Y2  -8.41191711  -7.925344
## Y3   5.78654991   4.853652
## X1  -0.01339127   3.774216
## X2   4.61249225  11.485759
## X3 -20.41557807 -20.797619
## X4 174.45103146  47.823994
## X5  47.82399447  93.731807
P11 <- cov_matriks [1:3,1:3]
P11
##            Y1        Y2         Y3
## Y1  2.3687077  4.164198 -0.5266756
## Y2  4.1641979 11.405463 -2.7544831
## Y3 -0.5266756 -2.754483  2.6913458
P12 <- cov_matriks [1:3,4:8]
P12
##            X1        X2        X3        X4        X5
## Y1 -0.4955508  6.166240  4.574374 -7.667657 -2.196795
## Y2 -0.9352959 16.998988  6.591440 -8.411917 -7.925344
## Y3  0.2958378 -4.959384 -2.625676  5.786550  4.853652
P21 <- cov_matriks [4:8,1:3]
P21
##            Y1         Y2         Y3
## X1 -0.4955508 -0.9352959  0.2958378
## X2  6.1662398 16.9989884 -4.9593841
## X3  4.5743743  6.5914403 -2.6256756
## X4 -7.6676569 -8.4119171  5.7865499
## X5 -2.1967950 -7.9253440  4.8536524
P22<-cov_matriks[4:8,4:8]
P22
##             X1          X2         X3           X4         X5
## X1  1.05656328   0.1430604  -2.907599  -0.01339127   3.774216
## X2  0.14306043 142.8103605  31.962291   4.61249225  11.485759
## X3 -2.90759929  31.9622913  33.492786 -20.41557807 -20.797619
## X4 -0.01339127   4.6124922 -20.415578 174.45103146  47.823994
## X5  3.77421569  11.4857594 -20.797619  47.82399447  93.731807
#mencari nilai sigma 11ˆ-1/2
eig.P11<-eigen(P11)
nilai.eigen.P11<-eig.P11$values
nilai.eigen.P11
## [1] 13.7222108  2.1738365  0.5694696
l1.11<-nilai.eigen.P11[1]
l2.11<-nilai.eigen.P11[2]
l3.11<-nilai.eigen.P11[3]
vektor.eigen.P11<-eig.P11$vectors
vektor.eigen.P11
##            [,1]       [,2]       [,3]
## [1,] -0.3439442 0.38942118  0.8544317
## [2,] -0.9070259 0.09761324 -0.4096043
## [3,]  0.2429124 0.91587270 -0.3196416
v1.11<-matrix(vektor.eigen.P11[,1])
v1.11
##            [,1]
## [1,] -0.3439442
## [2,] -0.9070259
## [3,]  0.2429124
v2.11<-matrix(vektor.eigen.P11[,2])
v2.11
##            [,1]
## [1,] 0.38942118
## [2,] 0.09761324
## [3,] 0.91587270
v3.11<-matrix(vektor.eigen.P11[,3])
v3.11
##            [,1]
## [1,]  0.8544317
## [2,] -0.4096043
## [3,] -0.3196416
sig11<-((v1.11%*%t(v1.11))/sqrt(l1.11))+
  ((v2.11%*%t(v2.11))/sqrt(l2.11))+
  ((v3.11%*%t(v3.11))/sqrt(l3.11))
sig11
##            [,1]       [,2]       [,3]
## [1,]  1.1022196 -0.3537762 -0.1425651
## [2,] -0.3537762  0.4508795  0.1746551
## [3,] -0.1425651  0.1746551  0.7202477
eig.P22<-eigen(P22)
nilai.eigen.P22<-eig.P22$values
nilai.eigen.P22
## [1] 201.4367883 151.7919980  73.9844835  17.6844350   0.6448436
l1.22<-nilai.eigen.P22[1]
l2.22<-nilai.eigen.P22[2]
l3.22<-nilai.eigen.P22[3]
l4.22<-nilai.eigen.P22[4]
l5.22<-nilai.eigen.P22[5]
vektor.eigen.P22<-eig.P22$vectors
vektor.eigen.P22
##             [,1]         [,2]         [,3]        [,4]        [,5]
## [1,] -0.01024253  0.002951847 -0.053517664 -0.10257453  0.99322742
## [2,] -0.07389692 -0.962072702  0.009267111 -0.26129426 -0.02438835
## [3,]  0.14730465 -0.261974153  0.223860199  0.92064151  0.10943811
## [4,] -0.88728066  0.059533797  0.454616643  0.04599661  0.01991928
## [5,] -0.43066078 -0.047251170 -0.860383810  0.26740847 -0.02304408
v1.22<-matrix(vektor.eigen.P22[,1])
v1.22
##             [,1]
## [1,] -0.01024253
## [2,] -0.07389692
## [3,]  0.14730465
## [4,] -0.88728066
## [5,] -0.43066078
v2.22<-matrix(vektor.eigen.P22[,2])
v2.22
##              [,1]
## [1,]  0.002951847
## [2,] -0.962072702
## [3,] -0.261974153
## [4,]  0.059533797
## [5,] -0.047251170
v3.22<-matrix(vektor.eigen.P22[,3])
v3.22
##              [,1]
## [1,] -0.053517664
## [2,]  0.009267111
## [3,]  0.223860199
## [4,]  0.454616643
## [5,] -0.860383810
v4.22<-matrix(vektor.eigen.P22[,4])
v4.22
##             [,1]
## [1,] -0.10257453
## [2,] -0.26129426
## [3,]  0.92064151
## [4,]  0.04599661
## [5,]  0.26740847
v5.22<-matrix(vektor.eigen.P22[,5])
v5.22
##             [,1]
## [1,]  0.99322742
## [2,] -0.02438835
## [3,]  0.10943811
## [4,]  0.01991928
## [5,] -0.02304408
sig22<-((v1.22%*%t(v1.22))/sqrt(l1.22))+
  ((v2.22%*%t(v2.22))/sqrt(l2.22))+
  ((v3.22%*%t(v3.22))/sqrt(l3.22))
sig22
##               [,1]          [,2]         [,3]          [,4]         [,5]
## [1,]  0.0003410834 -0.0002348339 -0.001561920 -0.0021740180  0.005652742
## [2,] -0.0002348339  0.0755209251  0.019931222  0.0004606789  0.005005063
## [3,] -0.0015619196  0.0199312219  0.012925497  0.0013570275 -0.025857322
## [4,] -0.0021740180  0.0004606789  0.001357028  0.0797851194 -0.018779535
## [5,]  0.0056527422  0.0050050633 -0.025857322 -0.0187795348  0.099311516
#mencari nilai eigen dan vektor eigen a untuk sigma 11
M.sig.11<-sig11%*%P12%*%solve(P22)%*%P21%*%sig11
M.sig.11
##             [,1]        [,2]        [,3]
## [1,]  0.53394307 -0.03555622 -0.16331927
## [2,] -0.03555622  0.27625647 -0.09249571
## [3,] -0.16331927 -0.09249571  0.13233604
eigen11<-eigen(M.sig.11)
nilai.eigenM11<-eigen11$values
nilai.eigenM11
## [1] 0.59199558 0.31671524 0.03382475
l1.M11<-nilai.eigenM11[1]
l1.M11
## [1] 0.5919956
l2.M11<-nilai.eigenM11[2]
l2.M11
## [1] 0.3167152
l3.M11<-nilai.eigenM11[3]
l3.M11
## [1] 0.03382475
vektor.eigen.M11<-eigen11$vectors
vektor.eigen.M11
##              [,1]       [,2]       [,3]
## [1,]  0.942795886  0.1186176 -0.3115538
## [2,] -0.008541964 -0.9256548 -0.3782727
## [3,] -0.333261086  0.3592952 -0.8716903
e1<-matrix(vektor.eigen.M11[,1])
e1
##              [,1]
## [1,]  0.942795886
## [2,] -0.008541964
## [3,] -0.333261086
e2<-matrix(vektor.eigen.M11[,2])
e2
##            [,1]
## [1,]  0.1186176
## [2,] -0.9256548
## [3,]  0.3592952
e3<-matrix(vektor.eigen.M11[,3])
e3
##            [,1]
## [1,] -0.3115538
## [2,] -0.3782727
## [3,] -0.8716903
#mencari nilai eigen dan vektor eigen a untuk sigma 22
M.sig.22<-sig22%*%P21%*%solve(P11)%*%P12%*%sig22
M.sig.22
##              [,1]         [,2]         [,3]         [,4]         [,5]
## [1,]  0.000289100 -0.004659921 -0.002448337 -0.001715776  0.004281856
## [2,] -0.004659921  0.171876786  0.080025170 -0.102901427 -0.091653597
## [3,] -0.002448337  0.080025170  0.039673115 -0.055501737 -0.049784679
## [4,] -0.001715776 -0.102901427 -0.055501737  0.307317303  0.037014918
## [5,]  0.004281856 -0.091653597 -0.049784679  0.037014918  0.077117721
eigen22<-eigen(M.sig.22)
nilai.eigenM22<-eigen22$values
nilai.eigenM22
## [1] 4.098485e-01 1.670233e-01 1.940216e-02 3.469447e-17 2.452929e-19
l1.M22<-nilai.eigenM22[1]
l1.M22
## [1] 0.4098485
l2.M22<-nilai.eigenM22[2]
l2.M22
## [1] 0.1670233
l3.M22<-nilai.eigenM22[3]
l3.M22
## [1] 0.01940216
l4.M22<-nilai.eigenM22[4]
l4.M22
## [1] 3.469447e-17
l5.M22<-nilai.eigenM22[5]
l5.M22
## [1] 2.452929e-19
vektor.eigen.M22<-eigen22$vectors
vektor.eigen.M22
##              [,1]       [,2]        [,3]        [,4]         [,5]
## [1,]  0.007133915  0.0378472 -0.03865825  0.00000000  0.998510008
## [2,] -0.522983183 -0.5643698 -0.58232793  0.26241725  0.002582803
## [3,] -0.263881751 -0.2571294  0.06850850 -0.92701320  0.014283837
## [4,]  0.764596600 -0.6359662 -0.09179616 -0.04779952  0.015088774
## [5,]  0.268693427  0.4576961 -0.80391528 -0.26362649 -0.050392392
v1.M22<-matrix(vektor.eigen.M22[,1])
v1.M22
##              [,1]
## [1,]  0.007133915
## [2,] -0.522983183
## [3,] -0.263881751
## [4,]  0.764596600
## [5,]  0.268693427
v2.M22<-matrix(vektor.eigen.M22[,2])
v2.M22
##            [,1]
## [1,]  0.0378472
## [2,] -0.5643698
## [3,] -0.2571294
## [4,] -0.6359662
## [5,]  0.4576961
v3.M22<-matrix(vektor.eigen.M22[,3])
v3.M22
##             [,1]
## [1,] -0.03865825
## [2,] -0.58232793
## [3,]  0.06850850
## [4,] -0.09179616
## [5,] -0.80391528
v4.M22<-matrix(vektor.eigen.M22[,4])
v4.M22
##             [,1]
## [1,]  0.00000000
## [2,]  0.26241725
## [3,] -0.92701320
## [4,] -0.04779952
## [5,] -0.26362649
v5.M22<-matrix(vektor.eigen.M22[,5])
v5.M22
##              [,1]
## [1,]  0.998510008
## [2,]  0.002582803
## [3,]  0.014283837
## [4,]  0.015088774
## [5,] -0.050392392
 #mencari nilai koefisien a dan b
 a1<-sig11%*%e1
 a1
##            [,1]
## [1,]  1.0897015
## [2,] -0.3955958
## [3,] -0.3759322
 a2<-sig11%*%e2
 a2
##             [,1]
## [1,]  0.40699431
## [2,] -0.39657015
## [3,]  0.08020051
 a3<-sig11%*%e3
 a3
##             [,1]
## [1,] -0.08530426
## [2,] -0.21258020
## [3,] -0.64948352
 b1<-sig22%*%v1.M22
 b1
##               [,1]
## [1,]  0.0003940174
## [2,] -0.0430602737
## [3,] -0.0197557532
## [4,]  0.0553429620
## [5,]  0.0165716208
 b2<-sig22%*%v2.M22
 b2
##              [,1]
## [1,]  0.004516898
## [2,] -0.045757699
## [3,] -0.027329039
## [4,] -0.060027167
## [5,]  0.061435557
 b3<-sig22%*%v3.M22
 b3
##              [,1]
## [1,] -0.004328199
## [2,] -0.046669343
## [3,]  0.010001907
## [4,]  0.007681933
## [5,] -0.083018715
 b4<-sig22%*%v4.M22
 b4
##               [,1]
## [1,] -1.192622e-17
## [2,] -1.687019e-16
## [3,]  2.428613e-17
## [4,] -3.469447e-18
## [5,] -2.428613e-16
 b5<-sig22%*%v5.M22
 b5
##               [,1]
## [1,] -1.084202e-19
## [2,] -4.228388e-18
## [3,] -6.505213e-19
## [4,]  3.252607e-19
## [5,] -3.469447e-18
U1V1<-(t(a1)%*%P12%*%b1)/((sqrt(t(a1)%*%P11%*%a1))*(sqrt(t(b1)%*%P22%*%b1)))
U1V1
##            [,1]
## [1,] -0.5632154
U2V2<-(t(a2)%*%P12%*%b2)/((sqrt(t(a2)%*%P11%*%a2))*(sqrt(t(b2)%*%P22%*%b2)))
U2V2
##           [,1]
## [1,] 0.3603139
U3V3<-(t(a3)%*%P12%*%b3)/((sqrt(t(a3)%*%P11%*%a3))*(sqrt(t(b3)%*%P22%*%b3)))
U3V3
##           [,1]
## [1,] 0.1379696
an<-(t(a1)%*%P11%*%a1)
an
##      [,1]
## [1,]    1
X<-data.frame(X1,X2,X3,X4,X5)
Y<-data.frame(Y1,Y2,Y3)
 
#MENGHITUNG ANALISIS KORELASI KANONIK LANGSUNG
cor_XY<-cancor(X,Y)
cor_XY
## $cor
## [1] 0.7694125 0.5627746 0.1839151
## 
## $xcoef
##            [,1]         [,2]          [,3]         [,4]          [,5]
## X1  0.028625700 -0.071063542 -0.0955717491  0.087053752  0.1542592310
## X2  0.002380808  0.015504923  0.0047578227 -0.005471698  0.0056507616
## X3 -0.022223610 -0.019821630  0.0006222929  0.032988038  0.0087915855
## X4  0.008965178 -0.000710117  0.0030260343  0.011637966 -0.0007646028
## X5 -0.008334934 -0.011780295  0.0147869761 -0.006926294  0.0020390523
## 
## $ycoef
##          [,1]        [,2]       [,3]
## Y1 -0.1896927 -0.07084862 0.01484957
## Y2  0.0688644  0.06903400 0.03700546
## Y3  0.0654414 -0.01396112 0.11306057
## 
## $xcenter
##        X1        X2        X3        X4        X5 
##  7.899412 29.149706 10.951176 46.804412 70.515882 
## 
## $ycenter
##        Y1        Y2        Y3 
##  4.391176 14.861765  4.832353
#uji korelasi kanonik secara simultan
simultan.cor<-cancor(data[,c("Y1","Y2")],
                     data[,c("X1","X2","X3","X4")])
simultan.cor$cor
## [1] 0.6190132 0.4368614
#Uji korelasi kanonik secara parsial(antara Y1 dengan X)
parsial.cor_Y1<-cancor(data$Y1, data[,c("X1","X2","X3","X4")])
parsial.cor_Y1$cor
## [1] 0.6179249
parsial.cor_Y2<-cancor(data$Y2, data[,c("X1","X2","X3","X4")])
parsial.cor_Y2$cor
## [1] 0.5463871