1. load libraries
2. Load the filtered list on mean expression
# Load the DE results from CSV
df <- read.csv("Psedobulk_Deseq2_filtered_on_mean_p2_vs_P3.csv", stringsAsFactors = FALSE)
DE_results_df <- df
3. Summarize Markers
markers <- DE_results_df
summarize_markers <- function(markers) {
num_pval0 <- sum(markers$p_val_adj == 0, na.rm = TRUE)
num_pval1 <- sum(markers$p_val_adj == 1, na.rm = TRUE)
num_upregulated <- sum(markers$avg_logFC > 1.5, na.rm = TRUE)
num_downregulated <- sum(markers$avg_logFC < -1, na.rm = TRUE)
num_significant <- sum(markers$p_val_adj < 0.05, na.rm = TRUE)
cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
cat("Number of significant genes (p_val_adj < 0.05):", num_significant, "\n")
}
cat("Markers Summary at 0.05:\n")
Markers Summary at 0.05:
summarize_markers(markers)
Number of genes with p_val_adj = 0: 0
Number of genes with p_val_adj = 1: 22
Number of upregulated genes (avg_logFC > 1.5): 236
Number of downregulated genes (avg_logFC < -1): 334
Number of significant genes (p_val_adj < 0.05): 1708
markers2 <- DE_results_df
summarize_markers <- function(markers) {
num_pval0 <- sum(markers$p_val_adj == 0, na.rm = TRUE)
num_pval1 <- sum(markers$p_val_adj == 1, na.rm = TRUE)
num_upregulated <- sum(markers$avg_logFC > 1.5, na.rm = TRUE)
num_downregulated <- sum(markers$avg_logFC < -1, na.rm = TRUE)
num_significant <- sum(markers$p_val_adj < 1e-4, na.rm = TRUE)
cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
cat("Number of significant genes (p_val_adj < 1e-4):", num_significant, "\n")
}
cat("Markers Summary at 1e-4:\n")
Markers Summary at 1e-4:
summarize_markers(markers2)
Number of genes with p_val_adj = 0: 0
Number of genes with p_val_adj = 1: 22
Number of upregulated genes (avg_logFC > 1.5): 236
Number of downregulated genes (avg_logFC < -1): 334
Number of significant genes (p_val_adj < 1e-4): 539
markers3 <- DE_results_df
summarize_markers <- function(markers) {
num_pval0 <- sum(markers$p_val_adj == 0, na.rm = TRUE)
num_pval1 <- sum(markers$p_val_adj == 1, na.rm = TRUE)
num_upregulated <- sum(markers$avg_logFC > 1.5, na.rm = TRUE)
num_downregulated <- sum(markers$avg_logFC < -1, na.rm = TRUE)
num_significant <- sum(markers$p_val_adj < 1e-6, na.rm = TRUE)
cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
cat("Number of significant genes (p_val_adj < 1e-6):", num_significant, "\n")
}
cat("Markers Summary at 1e-6:\n")
Markers Summary at 1e-6:
summarize_markers(markers3)
Number of genes with p_val_adj = 0: 0
Number of genes with p_val_adj = 1: 22
Number of upregulated genes (avg_logFC > 1.5): 236
Number of downregulated genes (avg_logFC < -1): 334
Number of significant genes (p_val_adj < 1e-6): 311
markers4 <- DE_results_df
summarize_markers <- function(markers) {
num_pval0 <- sum(markers$p_val_adj == 0, na.rm = TRUE)
num_pval1 <- sum(markers$p_val_adj == 1, na.rm = TRUE)
num_upregulated <- sum(markers$avg_logFC > 1.5, na.rm = TRUE)
num_downregulated <- sum(markers$avg_logFC < -1, na.rm = TRUE)
num_significant <- sum(markers$p_val_adj < 1e-10, na.rm = TRUE)
cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
cat("Number of significant genes (p_val_adj < 1e-10):", num_significant, "\n")
}
cat("Markers Summary at 1e-10:\n")
Markers Summary at 1e-10:
summarize_markers(markers4)
Number of genes with p_val_adj = 0: 0
Number of genes with p_val_adj = 1: 22
Number of upregulated genes (avg_logFC > 1.5): 236
Number of downregulated genes (avg_logFC < -1): 334
Number of significant genes (p_val_adj < 1e-10): 157
markers5 <- DE_results_df
summarize_markers <- function(markers) {
num_pval0 <- sum(markers$p_val_adj == 0, na.rm = TRUE)
num_pval1 <- sum(markers$p_val_adj == 1, na.rm = TRUE)
num_upregulated <- sum(markers$avg_logFC > 1.5, na.rm = TRUE)
num_downregulated <- sum(markers$avg_logFC < -1, na.rm = TRUE)
num_significant <- sum(markers$p_val_adj < 1e-15, na.rm = TRUE)
cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
cat("Number of significant genes (p_val_adj < 1e-15):", num_significant, "\n")
}
cat("Markers Summary at 1e-15:\n")
Markers Summary at 1e-15:
summarize_markers(markers5)
Number of genes with p_val_adj = 0: 0
Number of genes with p_val_adj = 1: 22
Number of upregulated genes (avg_logFC > 1.5): 236
Number of downregulated genes (avg_logFC < -1): 334
Number of significant genes (p_val_adj < 1e-15): 92
4. Volcano Plots
library(ggplot2)
library(dplyr)
Attaching package: ‘dplyr’
The following object is masked from ‘package:Biobase’:
combine
The following objects are masked from ‘package:GenomicRanges’:
intersect, setdiff, union
The following object is masked from ‘package:GenomeInfoDb’:
intersect
The following objects are masked from ‘package:IRanges’:
collapse, desc, intersect, setdiff, slice, union
The following objects are masked from ‘package:S4Vectors’:
first, intersect, rename, setdiff, setequal, union
The following objects are masked from ‘package:BiocGenerics’:
combine, intersect, setdiff, union
The following object is masked from ‘package:matrixStats’:
count
The following objects are masked from ‘package:stats’:
filter, lag
The following objects are masked from ‘package:base’:
intersect, setdiff, setequal, union
library(ggrepel)
# Ensure correct column names
colnames(DE_results_df)
[1] "cell_type" "gene" "avg_logFC" "P2.pct" "P3.pct" "P2.exp" "P3.exp" "p_val" "p_val_adj" "de_family" "de_method"
[12] "de_type"
# Define significance categories
volcano_data <- DE_results_df %>%
mutate(
significance = case_when(
p_val_adj < 1e-20 & avg_logFC > 2 ~ "Most Upregulated",
p_val_adj < 1e-20 & avg_logFC < -2 ~ "Most Downregulated",
p_val_adj < 0.05 & avg_logFC > 2 ~ "Upregulated",
p_val_adj < 0.05 & avg_logFC < -2 ~ "Downregulated",
TRUE ~ "Not Significant"
)
)
# Select only very significant genes for labeling
top_genes <- volcano_data %>%
filter(p_val_adj < 0.05 & (avg_logFC > 2 | avg_logFC < -2))
ggplot(volcano_data, aes(x = avg_logFC, y = -log10(p_val_adj), color = significance)) +
# Main points
geom_point(alpha = 0.7, size = 2.5) +
# Highlight highly significant genes with larger points
geom_point(data = top_genes, aes(x = avg_logFC, y = -log10(p_val_adj)),
color = "black", size = 3, shape = 21, fill = "black") +
# Custom color scheme
scale_color_manual(values = c(
"Most Upregulated" = "darkred",
"Most Downregulated" = "darkblue",
"Upregulated" = "red",
"Downregulated" = "blue",
"Not Significant" = "grey"
)) +
# Add gene labels (only for highly significant genes)
geom_text_repel(data = top_genes, aes(label = gene),
size = 4, box.padding = 0.5, max.overlaps = 10, segment.color = NA) +
# Add threshold lines
geom_vline(xintercept = c(-2, 2), linetype = "dashed", color = "black") +
geom_hline(yintercept = -log10(0.05), linetype = "dashed", color = "black") +
# Improve theme
theme_minimal(base_size = 14) +
labs(title = "Volcano Plot: Pseudobulk DESeq2 Analysis",
x = "Log2 Fold Change",
y = "-Log10 Adjusted P-Value",
color = "Significance") +
ylim(0, 50) # Avoid extreme scaling issues

NA
NA
EnhancedVolcano plot
library(dplyr)
library(EnhancedVolcano)
# Assuming you have a data frame named Malignant_CD4Tcells_vs_Normal_CD4Tcells
# Filter genes based on lowest p-values but include all genes
filtered_genes <- markers %>%
arrange(p_val_adj, desc(abs(avg_logFC)))
# Create the EnhancedVolcano plot with the filtered data
EnhancedVolcano(
filtered_genes,
lab = ifelse(filtered_genes$p_val_adj <= 1e-6 & abs(filtered_genes$avg_logFC) >= 1.5, filtered_genes$gene, NA),
x = "avg_logFC",
y = "p_val_adj",
title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
pCutoff = 1e-6,
FCcutoff = 1.0,
legendPosition = 'right',
labCol = 'black',
labFace = 'bold',
boxedLabels = FALSE, # Set to FALSE to remove boxed labels
pointSize = 3.0,
labSize = 5.0,
col = c('grey70', 'black', 'blue', 'red'), # Customize point colors
selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0] # Only label significant genes
)

NA
NA
NA
EnhancedVolcano plot
library(ggplot2)
library(EnhancedVolcano)
library(dplyr)
# Define the output directory
output_dir <- "Volcano_Plot_P1_vs_P3"
dir.create(output_dir, showWarnings = FALSE)
Malignant_CD4Tcells_vs_Normal_CD4Tcells <- filtered_genes
# First Volcano Plot
p1 <- EnhancedVolcano(
Malignant_CD4Tcells_vs_Normal_CD4Tcells,
lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
x = "avg_logFC",
y = "p_val_adj",
title = "Malignant_CD4Tcells_vs_Normal_CD4Tcells",
pCutoff = 1e-4,
FCcutoff = 1.0
)
print(p1) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot1.png"), plot = p1, width = 14, height = 10, dpi = 300)
# Second Volcano Plot with selected genes
p2 <- EnhancedVolcano(
Malignant_CD4Tcells_vs_Normal_CD4Tcells,
lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
x = "avg_logFC",
y = "p_val_adj",
selectLab = c('EPCAM', 'BCAT1', 'KIR3DL2', 'FOXM1', 'TWIST1', 'TNFSF9',
'CD80', 'IL1B', 'RPS4Y1', "TOX", "CD52", "TWIST1", "CCR4", "CCR7","PDCD1",
'IL7R', 'TCF7', 'MKI67', 'CD70', "DPP4",
'IL2RA','TRBV6-2', 'TRBV10-3', 'TRBV4-2', 'TRBV9', 'TRBV7-9',
'TRAV12-1', 'CD8B', 'FCGR3A', 'GNLY', 'FOXP3', 'SELL',
'GIMAP1', 'RIPOR2', 'LEF1', 'HOXC9', 'SP5',
'CCL17', 'ETV4', 'THY1', 'FOXA2', 'ITGAD', 'S100P', 'TBX4',
'ID1', 'XCL1', 'SOX2', 'CD27', 'CD28','PLS3','CD70','RAB25' , 'TRBV27', 'TRBV2'),
title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
xlab = bquote(~Log[2]~ 'fold change'),
pCutoff = 0.05,
FCcutoff = 1.5,
pointSize = 3.0,
labSize = 5.0,
boxedLabels = TRUE,
colAlpha = 0.5,
legendPosition = 'right',
legendLabSize = 10,
legendIconSize = 4.0,
drawConnectors = TRUE,
widthConnectors = 0.5,
colConnectors = 'grey50',
arrowheads = FALSE,
max.overlaps = 30
)
print(p2) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot2.png"), plot = p2, width = 14, height = 10, dpi = 300)
# Filtering genes
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
arrange(p_val_adj, desc(abs(avg_logFC)))
# Third Volcano Plot - Filtering by p-value and logFC
p3 <- EnhancedVolcano(
filtered_genes,
lab = ifelse(filtered_genes$p_val_adj <= 1e-4 & abs(filtered_genes$avg_logFC) >= 1.0, filtered_genes$gene, NA),
x = "avg_logFC",
y = "p_val_adj",
title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
pCutoff = 1e-4,
FCcutoff = 1.0,
legendPosition = 'right',
labCol = 'black',
labFace = 'bold',
boxedLabels = FALSE, # Remove boxed labels
pointSize = 3.0,
labSize = 5.0,
col = c('grey70', 'black', 'blue', 'red'), # Customize point colors
selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0]
)
print(p3) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot3.png"), plot = p3, width = 14, height = 10, dpi = 300)
# Fourth Volcano Plot - More refined filtering
p4 <- EnhancedVolcano(
filtered_genes,
lab = ifelse(filtered_genes$p_val_adj <= 1e-4 & abs(filtered_genes$avg_logFC) >= 1.0, filtered_genes$gene, NA),
x = "avg_logFC",
y = "p_val_adj",
title = "Malignant CD4 T cells (cell lines) vs Normal CD4 T cells",
subtitle = "Highlighting differentially expressed genes",
pCutoff = 1e-4,
FCcutoff = 1.0,
legendPosition = 'right',
colAlpha = 0.8, # Slight transparency for non-significant points
col = c('grey70', 'black', 'blue', 'red'), # Custom color scheme
gridlines.major = TRUE,
gridlines.minor = FALSE,
selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0]
)
print(p4) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot4.png"), plot = p4, width = 14, height = 10, dpi = 300)
message("All volcano plots have been displayed and saved successfully in the 'Malignant_vs_Control' folder.")
All volcano plots have been displayed and saved successfully in the 'Malignant_vs_Control' folder.
5. Enrichment Analysis-All_Pathways
# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(ReactomePA)
library(DOSE) # For GSEA analysis
library(ggplot2) # Ensure ggplot2 is available for plotting
library(dplyr)
# Define the output folder where the results will be saved
output_folder <- "P2_vs_P3/"
# Create the output folder if it doesn't exist
if (!dir.exists(output_folder)) {
dir.create(output_folder)
}
# Define the number of upregulated and downregulated genes to select
UP_genes <- 200
Down_genes <- 150
# Define threshold for differential expression selection (modified thresholds)
logFC_up_threshold <- 1.5 # Upregulated logFC threshold
logFC_down_threshold <- -1.5 # Downregulated logFC threshold
# Load your differential expression results (modify based on actual data structure)
# Malignant_CD4Tcells_vs_Normal_CD4Tcells <- read.csv("Your_DE_Results_File.csv")
# Filter the genes based on avg_logFC and arrange by p_val_adj
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
filter(avg_logFC > logFC_up_threshold | avg_logFC < logFC_down_threshold) %>%
arrange(p_val_adj)
# Separate upregulated and downregulated genes
upregulated_genes <- filtered_genes %>%
filter(avg_logFC > logFC_up_threshold)
downregulated_genes <- filtered_genes %>%
filter(avg_logFC < logFC_down_threshold)
# Check if there are fewer than the specified number of upregulated genes
if (nrow(upregulated_genes) < UP_genes) {
top_upregulated_genes <- upregulated_genes
cat("Number of upregulated genes selected:", nrow(top_upregulated_genes), "\n")
cat("p_val_adj value for the last selected upregulated gene:", tail(top_upregulated_genes$p_val_adj, 1), "\n")
} else {
# Select the specified number of upregulated genes
top_upregulated_genes <- upregulated_genes %>%
head(UP_genes)
cat("Number of upregulated genes selected:", nrow(top_upregulated_genes), "\n")
cat("p_val_adj value for the last selected upregulated gene:", tail(top_upregulated_genes$p_val_adj, 1), "\n")
}
Number of upregulated genes selected: 200
p_val_adj value for the last selected upregulated gene: 0.09943307
# Check if there are fewer than the specified number of downregulated genes
if (nrow(downregulated_genes) < Down_genes) {
top_downregulated_genes <- downregulated_genes
cat("Number of downregulated genes selected:", nrow(top_downregulated_genes), "\n")
cat("p_val_adj value for the last selected downregulated gene:", tail(top_downregulated_genes$p_val_adj, 1), "\n")
} else {
# Select the specified number of downregulated genes
top_downregulated_genes <- downregulated_genes %>%
head(Down_genes)
cat("Number of downregulated genes selected:", nrow(top_downregulated_genes), "\n")
cat("p_val_adj value for the last selected downregulated gene:", tail(top_downregulated_genes$p_val_adj, 1), "\n")
}
Number of downregulated genes selected: 150
p_val_adj value for the last selected downregulated gene: 0.03384516
# Combine the top upregulated and downregulated genes
top_genes <- bind_rows(top_upregulated_genes, top_downregulated_genes)
# Check for missing genes (NAs) in the gene column and remove them
top_genes <- na.omit(top_genes)
# Save upregulated and downregulated gene results to CSV
write.csv(top_upregulated_genes, paste0(output_folder, "upregulated_genes.csv"), row.names = FALSE)
write.csv(top_downregulated_genes, paste0(output_folder, "downregulated_genes.csv"), row.names = FALSE)
# Convert gene symbols to Entrez IDs for enrichment analysis, with checks for missing values
upregulated_entrez <- bitr(top_upregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 8.5% of input gene IDs are fail to map...
downregulated_entrez <- bitr(top_downregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 7.33% of input gene IDs are fail to map...
# Check for missing Entrez IDs and retain gene names
missing_upregulated <- top_upregulated_genes$gene[!top_upregulated_genes$gene %in% upregulated_entrez$SYMBOL]
missing_downregulated <- top_downregulated_genes$gene[!top_downregulated_genes$gene %in% downregulated_entrez$SYMBOL]
# Print out the missing gene symbols for debugging
cat("Missing upregulated genes:\n", missing_upregulated, "\n")
Missing upregulated genes:
HIST1H3G HIST1H3C AP003086.1 HIST1H2AH AC015871.1 AC093010.2 AL022316.1 AL157912.1 AZIN1-AS1 AL138720.1 ST5 AC024901.1 AP001057.1 HIST1H2BK C9orf135 AC112770.1 AL023574.1
cat("Missing downregulated genes:\n", missing_downregulated, "\n")
Missing downregulated genes:
AL162493.1 AC106729.1 AC108865.1 AC022613.1 AC011246.1 AC104365.1 AC097518.2 AL390957.1 AC090015.1 AC114977.1 ARNTL
# Merge the Entrez IDs back with the original data frames to retain gene names
top_upregulated_genes <- merge(top_upregulated_genes, upregulated_entrez, by.x = "gene", by.y = "SYMBOL", all.x = TRUE)
top_downregulated_genes <- merge(top_downregulated_genes, downregulated_entrez, by.x = "gene", by.y = "SYMBOL", all.x = TRUE)
# Remove genes that couldn't be mapped to Entrez IDs
top_upregulated_genes <- top_upregulated_genes[!is.na(top_upregulated_genes$ENTREZID), ]
top_downregulated_genes <- top_downregulated_genes[!is.na(top_downregulated_genes$ENTREZID), ]
# Extract Entrez IDs for enrichment analysis
upregulated_entrez <- top_upregulated_genes$ENTREZID
downregulated_entrez <- top_downregulated_genes$ENTREZID
# Define a function to safely run enrichment, plot results, and save them
safe_enrichGO <- function(gene_list, title, filename) {
if (length(gene_list) > 0) {
result <- enrichGO(gene = gene_list, OrgDb = org.Hs.eg.db, keyType = "SYMBOL",
ont = "BP", pAdjustMethod = "BH", pvalueCutoff = 0.05, readable = TRUE)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
} else {
message(paste("No significant enrichment found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
safe_enrichKEGG <- function(entrez_list, title, filename) {
if (length(entrez_list) > 0) {
result <- enrichKEGG(gene = entrez_list, organism = "hsa", pvalueCutoff = 0.05)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
result <- setReadable(result, OrgDb = org.Hs.eg.db, keyType = "ENTREZID")
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
} else {
message(paste("No significant KEGG pathways found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
safe_enrichReactome <- function(entrez_list, title, filename) {
if (length(entrez_list) > 0) {
result <- enrichPathway(gene = entrez_list, organism = "human", pvalueCutoff = 0.05)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
result <- setReadable(result, OrgDb = org.Hs.eg.db, keyType = "ENTREZID")
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
} else {
message(paste("No significant Reactome pathways found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
# Perform enrichment analyses, generate plots, and save results
safe_enrichGO(top_upregulated_genes$gene, "GO Enrichment for Upregulated Genes", "upregulated_GO_results.csv")
No significant enrichment found for: GO Enrichment for Upregulated Genes
safe_enrichGO(top_downregulated_genes$gene, "GO Enrichment for Downregulated Genes", "downregulated_GO_results.csv")

safe_enrichKEGG(upregulated_entrez, "KEGG Pathway Enrichment for Upregulated Genes", "upregulated_KEGG_results.csv")
No significant KEGG pathways found for: KEGG Pathway Enrichment for Upregulated Genes
safe_enrichKEGG(downregulated_entrez, "KEGG Pathway Enrichment for Downregulated Genes", "downregulated_KEGG_results.csv")

safe_enrichReactome(upregulated_entrez, "Reactome Pathway Enrichment for Upregulated Genes", "upregulated_Reactome_results.csv")
No significant Reactome pathways found for: Reactome Pathway Enrichment for Upregulated Genes
safe_enrichReactome(downregulated_entrez, "Reactome Pathway Enrichment for Downregulated Genes", "downregulated_Reactome_results.csv")

Enrichment Analysis_Hallmark
# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)
library(ggplot2)
library(dplyr)
# Define the output folder where the results will be saved
output_folder <- "P2_vs_P3/"
# Create the output folder if it doesn't exist
if (!dir.exists(output_folder)) {
dir.create(output_folder)
}
# Load Hallmark gene sets from msigdbr
hallmark_sets <- msigdbr(species = "Homo sapiens", collection = "H") # "H" is for Hallmark gene sets
# Convert gene symbols to uppercase for consistency
top_upregulated_genes$gene <- toupper(top_upregulated_genes$gene)
top_downregulated_genes$gene <- toupper(top_downregulated_genes$gene)
# Check for overlap between your upregulated/downregulated genes and Hallmark gene sets
upregulated_in_hallmark <- intersect(top_upregulated_genes$gene, hallmark_sets$gene_symbol)
downregulated_in_hallmark <- intersect(top_downregulated_genes$gene, hallmark_sets$gene_symbol)
# Print the number of overlapping genes for both upregulated and downregulated genes
cat("Number of upregulated genes in Hallmark gene sets:", length(upregulated_in_hallmark), "\n")
Number of upregulated genes in Hallmark gene sets: 58
cat("Number of downregulated genes in Hallmark gene sets:", length(downregulated_in_hallmark), "\n")
Number of downregulated genes in Hallmark gene sets: 47
# If there are genes to analyze, proceed with enrichment analysis
if (length(upregulated_in_hallmark) > 0) {
# Perform enrichment analysis for upregulated genes using Hallmark gene sets
hallmark_up <- enricher(gene = upregulated_in_hallmark,
TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")], # Ensure TERM2GENE uses correct columns
pvalueCutoff = 0.05)
# Check if results exist
if (!is.null(hallmark_up) && nrow(hallmark_up) > 0) {
# Visualize results if available
up_dotplot <- dotplot(hallmark_up, showCategory = 20, title = "Hallmark Pathway Enrichment for Upregulated Genes")
# Display the plot in the notebook
print(up_dotplot)
# Save the dotplot to a PNG file
ggsave(paste0(output_folder, "hallmark_upregulated_dotplot.png"), plot = up_dotplot, width = 10, height = 8)
# Optionally, save the results as CSV
write.csv(as.data.frame(hallmark_up), file = paste0(output_folder, "hallmark_upregulated_enrichment.csv"), row.names = FALSE)
} else {
cat("No significant enrichment found for upregulated genes.\n")
}
} else {
cat("No upregulated genes overlap with Hallmark gene sets.\n")
}

if (length(downregulated_in_hallmark) > 0) {
# Perform enrichment analysis for downregulated genes using Hallmark gene sets
hallmark_down <- enricher(gene = downregulated_in_hallmark,
TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")], # Ensure TERM2GENE uses correct columns
pvalueCutoff = 0.05)
# Check if results exist
if (!is.null(hallmark_down) && nrow(hallmark_down) > 0) {
# Visualize results if available
down_dotplot <- dotplot(hallmark_down, showCategory = 20, title = "Hallmark Pathway Enrichment for Downregulated Genes")
# Display the plot in the notebook
print(down_dotplot)
# Save the dotplot to a PNG file
ggsave(paste0(output_folder, "hallmark_downregulated_dotplot.png"), plot = down_dotplot, width = 10, height = 8)
# Optionally, save the results as CSV
write.csv(as.data.frame(hallmark_down), file = paste0(output_folder, "hallmark_downregulated_enrichment.csv"), row.names = FALSE)
} else {
cat("No significant enrichment found for downregulated genes.\n")
}
} else {
cat("No downregulated genes overlap with Hallmark gene sets.\n")
}

NA
NA
LS0tCnRpdGxlOiAiUHNldWRvQnVsayBBbmFseXNpcyB1c2luZyBMaWJyYSBEZXNlcTItTFJUX29uX2xpc3RfZmlsdHJlZF9vbl9tZWFuIgphdXRob3I6IE5hc2lyIE1haG1vb2QgQWJiYXNpCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OgogICMgcGRmX2RvY3VtZW50OiBkZWZhdWx0CiAgIyB3b3JkX2RvY3VtZW50OiBkZWZhdWx0CiAgIyBodG1sX2RvY3VtZW50OiBkZWZhdWx0CiAgI3JtZGZvcm1hdHM6OnJlYWR0aGVkb3duCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCi0tLQoKIyAxLiBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KCiMgTG9hZCBsaWJyYXJpZXMKbGlicmFyeShTZXVyYXQpCmxpYnJhcnkoTWF0cml4KQpsaWJyYXJ5KFNpbmdsZUNlbGxFeHBlcmltZW50KQpsaWJyYXJ5KERFU2VxMikKbGlicmFyeShMaWJyYSkKCmBgYAoKIyAyLiBMb2FkIHRoZSBmaWx0ZXJlZCBsaXN0IG9uIG1lYW4gZXhwcmVzc2lvbgpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKIyBMb2FkIHRoZSBERSByZXN1bHRzIGZyb20gQ1NWCmRmIDwtIHJlYWQuY3N2KCJQc2Vkb2J1bGtfRGVzZXEyX2ZpbHRlcmVkX29uX21lYW5fcDJfdnNfUDMuY3N2Iiwgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFKQoKCkRFX3Jlc3VsdHNfZGYgPC0gZGYKCmBgYAoKIyAzLiBTdW1tYXJpemUgTWFya2VycwpgYGB7ciAsIGZpZy5oZWlnaHQ9MTIsIGZpZy53aWR0aD0xNH0KbWFya2VycyA8LSBERV9yZXN1bHRzX2RmCgpzdW1tYXJpemVfbWFya2VycyA8LSBmdW5jdGlvbihtYXJrZXJzKSB7CiAgbnVtX3B2YWwwIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAwLCBuYS5ybSA9IFRSVUUpCiAgbnVtX3B2YWwxIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAxLCBuYS5ybSA9IFRSVUUpCiAgbnVtX3VwcmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA+IDEuNSwgbmEucm0gPSBUUlVFKQogIG51bV9kb3ducmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA8IC0xLCBuYS5ybSA9IFRSVUUpCiAgbnVtX3NpZ25pZmljYW50IDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA8IDAuMDUsIG5hLnJtID0gVFJVRSkKICAKICAKICBjYXQoIk51bWJlciBvZiBnZW5lcyB3aXRoIHBfdmFsX2FkaiA9IDA6IiwgbnVtX3B2YWwwLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMToiLCBudW1fcHZhbDEsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgKGF2Z19sb2dGQyA+IDEuNSk6IiwgbnVtX3VwcmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgKGF2Z19sb2dGQyA8IC0xKToiLCBudW1fZG93bnJlZ3VsYXRlZCwgIlxuIikKICBjYXQoIk51bWJlciBvZiBzaWduaWZpY2FudCBnZW5lcyAocF92YWxfYWRqIDwgMC4wNSk6IiwgbnVtX3NpZ25pZmljYW50LCAiXG4iKQp9CgpjYXQoIk1hcmtlcnMgU3VtbWFyeSBhdCAwLjA1OlxuIikKCnN1bW1hcml6ZV9tYXJrZXJzKG1hcmtlcnMpCgptYXJrZXJzMiA8LSBERV9yZXN1bHRzX2RmCnN1bW1hcml6ZV9tYXJrZXJzIDwtIGZ1bmN0aW9uKG1hcmtlcnMpIHsKICBudW1fcHZhbDAgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDAsIG5hLnJtID0gVFJVRSkKICBudW1fcHZhbDEgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDEsIG5hLnJtID0gVFJVRSkKICBudW1fdXByZWd1bGF0ZWQgPC0gc3VtKG1hcmtlcnMkYXZnX2xvZ0ZDID4gMS41LCBuYS5ybSA9IFRSVUUpCiAgbnVtX2Rvd25yZWd1bGF0ZWQgPC0gc3VtKG1hcmtlcnMkYXZnX2xvZ0ZDIDwgLTEsIG5hLnJtID0gVFJVRSkKICBudW1fc2lnbmlmaWNhbnQgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqIDwgMWUtNCwgbmEucm0gPSBUUlVFKQogIAogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMDoiLCBudW1fcHZhbDAsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZ2VuZXMgd2l0aCBwX3ZhbF9hZGogPSAxOiIsIG51bV9wdmFsMSwgIlxuIikKICBjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDID4gMS41KToiLCBudW1fdXByZWd1bGF0ZWQsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDIDwgLTEpOiIsIG51bV9kb3ducmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIHNpZ25pZmljYW50IGdlbmVzIChwX3ZhbF9hZGogPCAxZS00KToiLCBudW1fc2lnbmlmaWNhbnQsICJcbiIpCn0KCmNhdCgiTWFya2VycyBTdW1tYXJ5IGF0IDFlLTQ6XG4iKQoKc3VtbWFyaXplX21hcmtlcnMobWFya2VyczIpCgptYXJrZXJzMyA8LSBERV9yZXN1bHRzX2RmCnN1bW1hcml6ZV9tYXJrZXJzIDwtIGZ1bmN0aW9uKG1hcmtlcnMpIHsKICBudW1fcHZhbDAgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDAsIG5hLnJtID0gVFJVRSkKICBudW1fcHZhbDEgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDEsIG5hLnJtID0gVFJVRSkKICBudW1fdXByZWd1bGF0ZWQgPC0gc3VtKG1hcmtlcnMkYXZnX2xvZ0ZDID4gMS41LCBuYS5ybSA9IFRSVUUpCiAgbnVtX2Rvd25yZWd1bGF0ZWQgPC0gc3VtKG1hcmtlcnMkYXZnX2xvZ0ZDIDwgLTEsIG5hLnJtID0gVFJVRSkKICBudW1fc2lnbmlmaWNhbnQgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqIDwgMWUtNiwgbmEucm0gPSBUUlVFKQogIAogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMDoiLCBudW1fcHZhbDAsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZ2VuZXMgd2l0aCBwX3ZhbF9hZGogPSAxOiIsIG51bV9wdmFsMSwgIlxuIikKICBjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDID4gMS41KToiLCBudW1fdXByZWd1bGF0ZWQsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDIDwgLTEpOiIsIG51bV9kb3ducmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIHNpZ25pZmljYW50IGdlbmVzIChwX3ZhbF9hZGogPCAxZS02KToiLCBudW1fc2lnbmlmaWNhbnQsICJcbiIpCn0KCmNhdCgiTWFya2VycyBTdW1tYXJ5IGF0IDFlLTY6XG4iKQpzdW1tYXJpemVfbWFya2VycyhtYXJrZXJzMykKCm1hcmtlcnM0IDwtIERFX3Jlc3VsdHNfZGYKc3VtbWFyaXplX21hcmtlcnMgPC0gZnVuY3Rpb24obWFya2VycykgewogIG51bV9wdmFsMCA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPT0gMCwgbmEucm0gPSBUUlVFKQogIG51bV9wdmFsMSA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPT0gMSwgbmEucm0gPSBUUlVFKQogIG51bV91cHJlZ3VsYXRlZCA8LSBzdW0obWFya2VycyRhdmdfbG9nRkMgPiAxLjUsIG5hLnJtID0gVFJVRSkKICBudW1fZG93bnJlZ3VsYXRlZCA8LSBzdW0obWFya2VycyRhdmdfbG9nRkMgPCAtMSwgbmEucm0gPSBUUlVFKQogIG51bV9zaWduaWZpY2FudCA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPCAxZS0xMCwgbmEucm0gPSBUUlVFKQogIAogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMDoiLCBudW1fcHZhbDAsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZ2VuZXMgd2l0aCBwX3ZhbF9hZGogPSAxOiIsIG51bV9wdmFsMSwgIlxuIikKICBjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDID4gMS41KToiLCBudW1fdXByZWd1bGF0ZWQsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDIDwgLTEpOiIsIG51bV9kb3ducmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIHNpZ25pZmljYW50IGdlbmVzIChwX3ZhbF9hZGogPCAxZS0xMCk6IiwgbnVtX3NpZ25pZmljYW50LCAiXG4iKQogIH0KCmNhdCgiTWFya2VycyBTdW1tYXJ5IGF0IDFlLTEwOlxuIikKCnN1bW1hcml6ZV9tYXJrZXJzKG1hcmtlcnM0KQoKbWFya2VyczUgPC0gREVfcmVzdWx0c19kZgpzdW1tYXJpemVfbWFya2VycyA8LSBmdW5jdGlvbihtYXJrZXJzKSB7CiAgbnVtX3B2YWwwIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAwLCBuYS5ybSA9IFRSVUUpCiAgbnVtX3B2YWwxIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAxLCBuYS5ybSA9IFRSVUUpCiAgbnVtX3VwcmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA+IDEuNSwgbmEucm0gPSBUUlVFKQogIG51bV9kb3ducmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA8IC0xLCBuYS5ybSA9IFRSVUUpCiAgbnVtX3NpZ25pZmljYW50IDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA8IDFlLTE1LCBuYS5ybSA9IFRSVUUpCiAgCiAgY2F0KCJOdW1iZXIgb2YgZ2VuZXMgd2l0aCBwX3ZhbF9hZGogPSAwOiIsIG51bV9wdmFsMCwgIlxuIikKICBjYXQoIk51bWJlciBvZiBnZW5lcyB3aXRoIHBfdmFsX2FkaiA9IDE6IiwgbnVtX3B2YWwxLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzIChhdmdfbG9nRkMgPiAxLjUpOiIsIG51bV91cHJlZ3VsYXRlZCwgIlxuIikKICBjYXQoIk51bWJlciBvZiBkb3ducmVndWxhdGVkIGdlbmVzIChhdmdfbG9nRkMgPCAtMSk6IiwgbnVtX2Rvd25yZWd1bGF0ZWQsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2Ygc2lnbmlmaWNhbnQgZ2VuZXMgKHBfdmFsX2FkaiA8IDFlLTE1KToiLCBudW1fc2lnbmlmaWNhbnQsICJcbiIpCn0KCmNhdCgiTWFya2VycyBTdW1tYXJ5IGF0IDFlLTE1OlxuIikKCnN1bW1hcml6ZV9tYXJrZXJzKG1hcmtlcnM1KQoKCgpgYGAKCgoKIyA0LiBWb2xjYW5vIFBsb3RzCmBgYHtyICwgZmlnLmhlaWdodD0xNCwgZmlnLndpZHRoPTE4fQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkoZ2dyZXBlbCkKCgojIEVuc3VyZSBjb3JyZWN0IGNvbHVtbiBuYW1lcwpjb2xuYW1lcyhERV9yZXN1bHRzX2RmKQoKIyBEZWZpbmUgc2lnbmlmaWNhbmNlIGNhdGVnb3JpZXMKdm9sY2Fub19kYXRhIDwtIERFX3Jlc3VsdHNfZGYgJT4lCiAgbXV0YXRlKAogICAgc2lnbmlmaWNhbmNlID0gY2FzZV93aGVuKAogICAgICBwX3ZhbF9hZGogPCAxZS0yMCAmIGF2Z19sb2dGQyA+IDIgfiAiTW9zdCBVcHJlZ3VsYXRlZCIsCiAgICAgIHBfdmFsX2FkaiA8IDFlLTIwICYgYXZnX2xvZ0ZDIDwgLTIgfiAiTW9zdCBEb3ducmVndWxhdGVkIiwKICAgICAgcF92YWxfYWRqIDwgMC4wNSAmIGF2Z19sb2dGQyA+IDIgfiAiVXByZWd1bGF0ZWQiLAogICAgICBwX3ZhbF9hZGogPCAwLjA1ICYgYXZnX2xvZ0ZDIDwgLTIgfiAiRG93bnJlZ3VsYXRlZCIsCiAgICAgIFRSVUUgfiAiTm90IFNpZ25pZmljYW50IgogICAgKQogICkKCiMgU2VsZWN0IG9ubHkgdmVyeSBzaWduaWZpY2FudCBnZW5lcyBmb3IgbGFiZWxpbmcKdG9wX2dlbmVzIDwtIHZvbGNhbm9fZGF0YSAlPiUKICBmaWx0ZXIocF92YWxfYWRqIDwgMC4wNSAmIChhdmdfbG9nRkMgPiAyIHwgYXZnX2xvZ0ZDIDwgLTIpKQoKZ2dwbG90KHZvbGNhbm9fZGF0YSwgYWVzKHggPSBhdmdfbG9nRkMsIHkgPSAtbG9nMTAocF92YWxfYWRqKSwgY29sb3IgPSBzaWduaWZpY2FuY2UpKSArCiAgCiAgIyBNYWluIHBvaW50cwogIGdlb21fcG9pbnQoYWxwaGEgPSAwLjcsIHNpemUgPSAyLjUpICsKICAKICAjIEhpZ2hsaWdodCBoaWdobHkgc2lnbmlmaWNhbnQgZ2VuZXMgd2l0aCBsYXJnZXIgcG9pbnRzCiAgZ2VvbV9wb2ludChkYXRhID0gdG9wX2dlbmVzLCBhZXMoeCA9IGF2Z19sb2dGQywgeSA9IC1sb2cxMChwX3ZhbF9hZGopKSwgCiAgICAgICAgICAgICBjb2xvciA9ICJibGFjayIsIHNpemUgPSAzLCBzaGFwZSA9IDIxLCBmaWxsID0gImJsYWNrIikgKwoKICAjIEN1c3RvbSBjb2xvciBzY2hlbWUKICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzID0gYygKICAgICJNb3N0IFVwcmVndWxhdGVkIiA9ICJkYXJrcmVkIiwKICAgICJNb3N0IERvd25yZWd1bGF0ZWQiID0gImRhcmtibHVlIiwKICAgICJVcHJlZ3VsYXRlZCIgPSAicmVkIiwKICAgICJEb3ducmVndWxhdGVkIiA9ICJibHVlIiwKICAgICJOb3QgU2lnbmlmaWNhbnQiID0gImdyZXkiCiAgKSkgKwoKICAjIEFkZCBnZW5lIGxhYmVscyAob25seSBmb3IgaGlnaGx5IHNpZ25pZmljYW50IGdlbmVzKQogIGdlb21fdGV4dF9yZXBlbChkYXRhID0gdG9wX2dlbmVzLCBhZXMobGFiZWwgPSBnZW5lKSwgIAogICAgICAgICAgICAgICAgICBzaXplID0gNCwgYm94LnBhZGRpbmcgPSAwLjUsIG1heC5vdmVybGFwcyA9IDEwLCBzZWdtZW50LmNvbG9yID0gTkEpICsKICAKICAjIEFkZCB0aHJlc2hvbGQgbGluZXMKICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSBjKC0yLCAyKSwgbGluZXR5cGUgPSAiZGFzaGVkIiwgY29sb3IgPSAiYmxhY2siKSArICAKICBnZW9tX2hsaW5lKHlpbnRlcmNlcHQgPSAtbG9nMTAoMC4wNSksIGxpbmV0eXBlID0gImRhc2hlZCIsIGNvbG9yID0gImJsYWNrIikgKyAgCgogICMgSW1wcm92ZSB0aGVtZQogIHRoZW1lX21pbmltYWwoYmFzZV9zaXplID0gMTQpICsKICBsYWJzKHRpdGxlID0gIlZvbGNhbm8gUGxvdDogUHNldWRvYnVsayBERVNlcTIgQW5hbHlzaXMiLAogICAgICAgeCA9ICJMb2cyIEZvbGQgQ2hhbmdlIiwKICAgICAgIHkgPSAiLUxvZzEwIEFkanVzdGVkIFAtVmFsdWUiLAogICAgICAgY29sb3IgPSAiU2lnbmlmaWNhbmNlIikgKwoKICB5bGltKDAsIDUwKSAgIyBBdm9pZCBleHRyZW1lIHNjYWxpbmcgaXNzdWVzCgoKYGBgCgoKIyMgRW5oYW5jZWRWb2xjYW5vIHBsb3QKYGBge3IgLCBmaWcuaGVpZ2h0PTEyLCBmaWcud2lkdGg9MTZ9CgpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KEVuaGFuY2VkVm9sY2FubykKCiMgQXNzdW1pbmcgeW91IGhhdmUgYSBkYXRhIGZyYW1lIG5hbWVkIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscwojIEZpbHRlciBnZW5lcyBiYXNlZCBvbiBsb3dlc3QgcC12YWx1ZXMgYnV0IGluY2x1ZGUgYWxsIGdlbmVzCmZpbHRlcmVkX2dlbmVzIDwtIG1hcmtlcnMgJT4lCiAgYXJyYW5nZShwX3ZhbF9hZGosIGRlc2MoYWJzKGF2Z19sb2dGQykpKQoKIyBDcmVhdGUgdGhlIEVuaGFuY2VkVm9sY2FubyBwbG90IHdpdGggdGhlIGZpbHRlcmVkIGRhdGEKRW5oYW5jZWRWb2xjYW5vKAogIGZpbHRlcmVkX2dlbmVzLCAKICBsYWIgPSBpZmVsc2UoZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDFlLTYgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZ0ZDKSA+PSAxLjUsIGZpbHRlcmVkX2dlbmVzJGdlbmUsIE5BKSwKICB4ID0gImF2Z19sb2dGQyIsIAogIHkgPSAicF92YWxfYWRqIiwKICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMoY2VsbCBsaW5lcykgdnMgbm9ybWFsIENENCBUIGNlbGxzIiwKICBwQ3V0b2ZmID0gMWUtNiwKICBGQ2N1dG9mZiA9IDEuMCwKICBsZWdlbmRQb3NpdGlvbiA9ICdyaWdodCcsIAogIGxhYkNvbCA9ICdibGFjaycsCiAgbGFiRmFjZSA9ICdib2xkJywKICBib3hlZExhYmVscyA9IEZBTFNFLCAgIyBTZXQgdG8gRkFMU0UgdG8gcmVtb3ZlIGJveGVkIGxhYmVscwogIHBvaW50U2l6ZSA9IDMuMCwKICBsYWJTaXplID0gNS4wLAogIGNvbCA9IGMoJ2dyZXk3MCcsICdibGFjaycsICdibHVlJywgJ3JlZCcpLCAgIyBDdXN0b21pemUgcG9pbnQgY29sb3JzCiAgc2VsZWN0TGFiID0gZmlsdGVyZWRfZ2VuZXMkZ2VuZVtmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMC4wNSAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nRkMpID49IDEuMF0gICMgT25seSBsYWJlbCBzaWduaWZpY2FudCBnZW5lcwopCgoKCmBgYAoKCiMjIEVuaGFuY2VkVm9sY2FubyBwbG90CmBgYHtyICwgZmlnLmhlaWdodD0xMiwgZmlnLndpZHRoPTE2fQoKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KEVuaGFuY2VkVm9sY2FubykKbGlicmFyeShkcGx5cikKCiMgRGVmaW5lIHRoZSBvdXRwdXQgZGlyZWN0b3J5Cm91dHB1dF9kaXIgPC0gIlZvbGNhbm9fUGxvdF9QMV92c19QMyIKZGlyLmNyZWF0ZShvdXRwdXRfZGlyLCBzaG93V2FybmluZ3MgPSBGQUxTRSkKCiBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMgPC0gZmlsdGVyZWRfZ2VuZXMKCiMgRmlyc3QgVm9sY2FubyBQbG90CnAxIDwtIEVuaGFuY2VkVm9sY2FubygKICBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMsCiAgbGFiID0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGdlbmUsCiAgeCA9ICJhdmdfbG9nRkMiLAogIHkgPSAicF92YWxfYWRqIiwKICB0aXRsZSA9ICJNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMiLAogIHBDdXRvZmYgPSAxZS00LAogIEZDY3V0b2ZmID0gMS4wCikKcHJpbnQocDEpICAjIERpc3BsYXkgaW4gbm90ZWJvb2sKZ2dzYXZlKGZpbGVuYW1lID0gZmlsZS5wYXRoKG91dHB1dF9kaXIsICJWb2xjYW5vUGxvdDEucG5nIiksIHBsb3QgPSBwMSwgd2lkdGggPSAxNCwgaGVpZ2h0ID0gMTAsIGRwaSA9IDMwMCkKCiMgU2Vjb25kIFZvbGNhbm8gUGxvdCB3aXRoIHNlbGVjdGVkIGdlbmVzCnAyIDwtIEVuaGFuY2VkVm9sY2FubygKICBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMsIAogIGxhYiA9IE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRnZW5lLAogIHggPSAiYXZnX2xvZ0ZDIiwgCiAgeSA9ICJwX3ZhbF9hZGoiLAogIHNlbGVjdExhYiA9IGMoJ0VQQ0FNJywgJ0JDQVQxJywgJ0tJUjNETDInLCAnRk9YTTEnLCAnVFdJU1QxJywgJ1RORlNGOScsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnQ0Q4MCcsICAnSUwxQicsICdSUFM0WTEnLCAiVE9YIiwgIkNENTIiLCAiVFdJU1QxIiwgIkNDUjQiLCAiQ0NSNyIsIlBEQ0QxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0lMN1InLCAnVENGNycsICAnTUtJNjcnLCAnQ0Q3MCcsICJEUFA0IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0lMMlJBJywnVFJCVjYtMicsICdUUkJWMTAtMycsICdUUkJWNC0yJywgJ1RSQlY5JywgJ1RSQlY3LTknLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ1RSQVYxMi0xJywgJ0NEOEInLCAnRkNHUjNBJywgJ0dOTFknLCAnRk9YUDMnLCAnU0VMTCcsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnR0lNQVAxJywgJ1JJUE9SMicsICdMRUYxJywgJ0hPWEM5JywgJ1NQNScsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdDQ0wxNycsICdFVFY0JywgJ1RIWTEnLCAnRk9YQTInLCAnSVRHQUQnLCAnUzEwMFAnLCAnVEJYNCcsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnSUQxJywgJ1hDTDEnLCAnU09YMicsICdDRDI3JywgJ0NEMjgnLCdQTFMzJywnQ0Q3MCcsJ1JBQjI1JyAsICdUUkJWMjcnLCAnVFJCVjInKSwKICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMoY2VsbCBsaW5lcykgdnMgbm9ybWFsIENENCBUIGNlbGxzIiwKICB4bGFiID0gYnF1b3RlKH5Mb2dbMl1+ICdmb2xkIGNoYW5nZScpLAogIHBDdXRvZmYgPSAwLjA1LAogIEZDY3V0b2ZmID0gMS41LCAKICBwb2ludFNpemUgPSAzLjAsCiAgbGFiU2l6ZSA9IDUuMCwKICBib3hlZExhYmVscyA9IFRSVUUsCiAgY29sQWxwaGEgPSAwLjUsCiAgbGVnZW5kUG9zaXRpb24gPSAncmlnaHQnLAogIGxlZ2VuZExhYlNpemUgPSAxMCwKICBsZWdlbmRJY29uU2l6ZSA9IDQuMCwKICBkcmF3Q29ubmVjdG9ycyA9IFRSVUUsCiAgd2lkdGhDb25uZWN0b3JzID0gMC41LAogIGNvbENvbm5lY3RvcnMgPSAnZ3JleTUwJywKICBhcnJvd2hlYWRzID0gRkFMU0UsCiAgbWF4Lm92ZXJsYXBzID0gMzAKKQpwcmludChwMikgICMgRGlzcGxheSBpbiBub3RlYm9vawpnZ3NhdmUoZmlsZW5hbWUgPSBmaWxlLnBhdGgob3V0cHV0X2RpciwgIlZvbGNhbm9QbG90Mi5wbmciKSwgcGxvdCA9IHAyLCB3aWR0aCA9IDE0LCBoZWlnaHQgPSAxMCwgZHBpID0gMzAwKQoKIyBGaWx0ZXJpbmcgZ2VuZXMKZmlsdGVyZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzICU+JQogIGFycmFuZ2UocF92YWxfYWRqLCBkZXNjKGFicyhhdmdfbG9nRkMpKSkKCiMgVGhpcmQgVm9sY2FubyBQbG90IC0gRmlsdGVyaW5nIGJ5IHAtdmFsdWUgYW5kIGxvZ0ZDCnAzIDwtIEVuaGFuY2VkVm9sY2FubygKICBmaWx0ZXJlZF9nZW5lcywgCiAgbGFiID0gaWZlbHNlKGZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAxZS00ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2dGQykgPj0gMS4wLCBmaWx0ZXJlZF9nZW5lcyRnZW5lLCBOQSksCiAgeCA9ICJhdmdfbG9nRkMiLCAKICB5ID0gInBfdmFsX2FkaiIsCiAgdGl0bGUgPSAiTWFsaWduYW50IENENCBUIGNlbGxzKGNlbGwgbGluZXMpIHZzIG5vcm1hbCBDRDQgVCBjZWxscyIsCiAgcEN1dG9mZiA9IDFlLTQsCiAgRkNjdXRvZmYgPSAxLjAsCiAgbGVnZW5kUG9zaXRpb24gPSAncmlnaHQnLCAKICBsYWJDb2wgPSAnYmxhY2snLAogIGxhYkZhY2UgPSAnYm9sZCcsCiAgYm94ZWRMYWJlbHMgPSBGQUxTRSwgICMgUmVtb3ZlIGJveGVkIGxhYmVscwogIHBvaW50U2l6ZSA9IDMuMCwKICBsYWJTaXplID0gNS4wLAogIGNvbCA9IGMoJ2dyZXk3MCcsICdibGFjaycsICdibHVlJywgJ3JlZCcpLCAgIyBDdXN0b21pemUgcG9pbnQgY29sb3JzCiAgc2VsZWN0TGFiID0gZmlsdGVyZWRfZ2VuZXMkZ2VuZVtmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMC4wNSAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nRkMpID49IDEuMF0KKQpwcmludChwMykgICMgRGlzcGxheSBpbiBub3RlYm9vawpnZ3NhdmUoZmlsZW5hbWUgPSBmaWxlLnBhdGgob3V0cHV0X2RpciwgIlZvbGNhbm9QbG90My5wbmciKSwgcGxvdCA9IHAzLCB3aWR0aCA9IDE0LCBoZWlnaHQgPSAxMCwgZHBpID0gMzAwKQoKIyBGb3VydGggVm9sY2FubyBQbG90IC0gTW9yZSByZWZpbmVkIGZpbHRlcmluZwpwNCA8LSBFbmhhbmNlZFZvbGNhbm8oCiAgZmlsdGVyZWRfZ2VuZXMsIAogIGxhYiA9IGlmZWxzZShmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMWUtNCAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nRkMpID49IDEuMCwgZmlsdGVyZWRfZ2VuZXMkZ2VuZSwgTkEpLAogIHggPSAiYXZnX2xvZ0ZDIiwgCiAgeSA9ICJwX3ZhbF9hZGoiLAogIHRpdGxlID0gIk1hbGlnbmFudCBDRDQgVCBjZWxscyAoY2VsbCBsaW5lcykgdnMgTm9ybWFsIENENCBUIGNlbGxzIiwKICBzdWJ0aXRsZSA9ICJIaWdobGlnaHRpbmcgZGlmZmVyZW50aWFsbHkgZXhwcmVzc2VkIGdlbmVzIiwKICBwQ3V0b2ZmID0gMWUtNCwKICBGQ2N1dG9mZiA9IDEuMCwKICBsZWdlbmRQb3NpdGlvbiA9ICdyaWdodCcsCiAgY29sQWxwaGEgPSAwLjgsICAjIFNsaWdodCB0cmFuc3BhcmVuY3kgZm9yIG5vbi1zaWduaWZpY2FudCBwb2ludHMKICBjb2wgPSBjKCdncmV5NzAnLCAnYmxhY2snLCAnYmx1ZScsICdyZWQnKSwgICMgQ3VzdG9tIGNvbG9yIHNjaGVtZQogIGdyaWRsaW5lcy5tYWpvciA9IFRSVUUsCiAgZ3JpZGxpbmVzLm1pbm9yID0gRkFMU0UsCiAgc2VsZWN0TGFiID0gZmlsdGVyZWRfZ2VuZXMkZ2VuZVtmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMC4wNSAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nRkMpID49IDEuMF0KKQpwcmludChwNCkgICMgRGlzcGxheSBpbiBub3RlYm9vawpnZ3NhdmUoZmlsZW5hbWUgPSBmaWxlLnBhdGgob3V0cHV0X2RpciwgIlZvbGNhbm9QbG90NC5wbmciKSwgcGxvdCA9IHA0LCB3aWR0aCA9IDE0LCBoZWlnaHQgPSAxMCwgZHBpID0gMzAwKQoKbWVzc2FnZSgiQWxsIHZvbGNhbm8gcGxvdHMgaGF2ZSBiZWVuIGRpc3BsYXllZCBhbmQgc2F2ZWQgc3VjY2Vzc2Z1bGx5IGluIHRoZSAnTWFsaWduYW50X3ZzX0NvbnRyb2wnIGZvbGRlci4iKQoKCgpgYGAKIyA1LiBFbnJpY2htZW50IEFuYWx5c2lzLUFsbF9QYXRod2F5cwpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQojIExvYWQgbmVjZXNzYXJ5IGxpYnJhcmllcwpsaWJyYXJ5KGNsdXN0ZXJQcm9maWxlcikKbGlicmFyeShvcmcuSHMuZWcuZGIpCmxpYnJhcnkoZW5yaWNocGxvdCkKbGlicmFyeShSZWFjdG9tZVBBKQpsaWJyYXJ5KERPU0UpICMgRm9yIEdTRUEgYW5hbHlzaXMKbGlicmFyeShnZ3Bsb3QyKSAjIEVuc3VyZSBnZ3Bsb3QyIGlzIGF2YWlsYWJsZSBmb3IgcGxvdHRpbmcKbGlicmFyeShkcGx5cikKCiMgRGVmaW5lIHRoZSBvdXRwdXQgZm9sZGVyIHdoZXJlIHRoZSByZXN1bHRzIHdpbGwgYmUgc2F2ZWQKb3V0cHV0X2ZvbGRlciA8LSAiUDJfdnNfUDMvIgoKIyBDcmVhdGUgdGhlIG91dHB1dCBmb2xkZXIgaWYgaXQgZG9lc24ndCBleGlzdAppZiAoIWRpci5leGlzdHMob3V0cHV0X2ZvbGRlcikpIHsKICBkaXIuY3JlYXRlKG91dHB1dF9mb2xkZXIpCn0KCiMgRGVmaW5lIHRoZSBudW1iZXIgb2YgdXByZWd1bGF0ZWQgYW5kIGRvd25yZWd1bGF0ZWQgZ2VuZXMgdG8gc2VsZWN0ClVQX2dlbmVzIDwtIDIwMApEb3duX2dlbmVzIDwtIDE1MAoKIyBEZWZpbmUgdGhyZXNob2xkIGZvciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBzZWxlY3Rpb24gKG1vZGlmaWVkIHRocmVzaG9sZHMpCmxvZ0ZDX3VwX3RocmVzaG9sZCA8LSAxLjUgICAgICAgICAgIyBVcHJlZ3VsYXRlZCBsb2dGQyB0aHJlc2hvbGQKbG9nRkNfZG93bl90aHJlc2hvbGQgPC0gLTEuNSAgICAgICAgICMgRG93bnJlZ3VsYXRlZCBsb2dGQyB0aHJlc2hvbGQKCiMgTG9hZCB5b3VyIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIHJlc3VsdHMgKG1vZGlmeSBiYXNlZCBvbiBhY3R1YWwgZGF0YSBzdHJ1Y3R1cmUpCiMgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzIDwtIHJlYWQuY3N2KCJZb3VyX0RFX1Jlc3VsdHNfRmlsZS5jc3YiKQoKIyBGaWx0ZXIgdGhlIGdlbmVzIGJhc2VkIG9uIGF2Z19sb2dGQyBhbmQgYXJyYW5nZSBieSBwX3ZhbF9hZGoKZmlsdGVyZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzICU+JQogIGZpbHRlcihhdmdfbG9nRkMgPiBsb2dGQ191cF90aHJlc2hvbGQgfCBhdmdfbG9nRkMgPCBsb2dGQ19kb3duX3RocmVzaG9sZCkgJT4lCiAgYXJyYW5nZShwX3ZhbF9hZGopCgojIFNlcGFyYXRlIHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmVzCnVwcmVndWxhdGVkX2dlbmVzIDwtIGZpbHRlcmVkX2dlbmVzICU+JQogIGZpbHRlcihhdmdfbG9nRkMgPiBsb2dGQ191cF90aHJlc2hvbGQpCgpkb3ducmVndWxhdGVkX2dlbmVzIDwtIGZpbHRlcmVkX2dlbmVzICU+JQogIGZpbHRlcihhdmdfbG9nRkMgPCBsb2dGQ19kb3duX3RocmVzaG9sZCkKCiMgQ2hlY2sgaWYgdGhlcmUgYXJlIGZld2VyIHRoYW4gdGhlIHNwZWNpZmllZCBudW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMKaWYgKG5yb3codXByZWd1bGF0ZWRfZ2VuZXMpIDwgVVBfZ2VuZXMpIHsKICB0b3BfdXByZWd1bGF0ZWRfZ2VuZXMgPC0gdXByZWd1bGF0ZWRfZ2VuZXMKICBjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyBzZWxlY3RlZDoiLCBucm93KHRvcF91cHJlZ3VsYXRlZF9nZW5lcyksICJcbiIpCiAgY2F0KCJwX3ZhbF9hZGogdmFsdWUgZm9yIHRoZSBsYXN0IHNlbGVjdGVkIHVwcmVndWxhdGVkIGdlbmU6IiwgdGFpbCh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkcF92YWxfYWRqLCAxKSwgIlxuIikKfSBlbHNlIHsKICAjIFNlbGVjdCB0aGUgc3BlY2lmaWVkIG51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcwogIHRvcF91cHJlZ3VsYXRlZF9nZW5lcyA8LSB1cHJlZ3VsYXRlZF9nZW5lcyAlPiUKICAgIGhlYWQoVVBfZ2VuZXMpCiAgY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgc2VsZWN0ZWQ6IiwgbnJvdyh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMpLCAiXG4iKQogIGNhdCgicF92YWxfYWRqIHZhbHVlIGZvciB0aGUgbGFzdCBzZWxlY3RlZCB1cHJlZ3VsYXRlZCBnZW5lOiIsIHRhaWwodG9wX3VwcmVndWxhdGVkX2dlbmVzJHBfdmFsX2FkaiwgMSksICJcbiIpCn0KCiMgQ2hlY2sgaWYgdGhlcmUgYXJlIGZld2VyIHRoYW4gdGhlIHNwZWNpZmllZCBudW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcwppZiAobnJvdyhkb3ducmVndWxhdGVkX2dlbmVzKSA8IERvd25fZ2VuZXMpIHsKICB0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyA8LSBkb3ducmVndWxhdGVkX2dlbmVzCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyBzZWxlY3RlZDoiLCBucm93KHRvcF9kb3ducmVndWxhdGVkX2dlbmVzKSwgIlxuIikKICBjYXQoInBfdmFsX2FkaiB2YWx1ZSBmb3IgdGhlIGxhc3Qgc2VsZWN0ZWQgZG93bnJlZ3VsYXRlZCBnZW5lOiIsIHRhaWwodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkcF92YWxfYWRqLCAxKSwgIlxuIikKfSBlbHNlIHsKICAjIFNlbGVjdCB0aGUgc3BlY2lmaWVkIG51bWJlciBvZiBkb3ducmVndWxhdGVkIGdlbmVzCiAgdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMgPC0gZG93bnJlZ3VsYXRlZF9nZW5lcyAlPiUKICAgIGhlYWQoRG93bl9nZW5lcykKICBjYXQoIk51bWJlciBvZiBkb3ducmVndWxhdGVkIGdlbmVzIHNlbGVjdGVkOiIsIG5yb3codG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMpLCAiXG4iKQogIGNhdCgicF92YWxfYWRqIHZhbHVlIGZvciB0aGUgbGFzdCBzZWxlY3RlZCBkb3ducmVndWxhdGVkIGdlbmU6IiwgdGFpbCh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRwX3ZhbF9hZGosIDEpLCAiXG4iKQp9CgojIENvbWJpbmUgdGhlIHRvcCB1cHJlZ3VsYXRlZCBhbmQgZG93bnJlZ3VsYXRlZCBnZW5lcwp0b3BfZ2VuZXMgPC0gYmluZF9yb3dzKHRvcF91cHJlZ3VsYXRlZF9nZW5lcywgdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMpCgojIENoZWNrIGZvciBtaXNzaW5nIGdlbmVzIChOQXMpIGluIHRoZSBnZW5lIGNvbHVtbiBhbmQgcmVtb3ZlIHRoZW0KdG9wX2dlbmVzIDwtIG5hLm9taXQodG9wX2dlbmVzKQoKIyBTYXZlIHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmUgcmVzdWx0cyB0byBDU1YKd3JpdGUuY3N2KHRvcF91cHJlZ3VsYXRlZF9nZW5lcywgcGFzdGUwKG91dHB1dF9mb2xkZXIsICJ1cHJlZ3VsYXRlZF9nZW5lcy5jc3YiKSwgcm93Lm5hbWVzID0gRkFMU0UpCndyaXRlLmNzdih0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcywgcGFzdGUwKG91dHB1dF9mb2xkZXIsICJkb3ducmVndWxhdGVkX2dlbmVzLmNzdiIpLCByb3cubmFtZXMgPSBGQUxTRSkKCiMgQ29udmVydCBnZW5lIHN5bWJvbHMgdG8gRW50cmV6IElEcyBmb3IgZW5yaWNobWVudCBhbmFseXNpcywgd2l0aCBjaGVja3MgZm9yIG1pc3NpbmcgdmFsdWVzCnVwcmVndWxhdGVkX2VudHJleiA8LSBiaXRyKHRvcF91cHJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBmcm9tVHlwZSA9ICJTWU1CT0wiLCB0b1R5cGUgPSAiRU5UUkVaSUQiLCBPcmdEYiA9IG9yZy5Icy5lZy5kYikKZG93bnJlZ3VsYXRlZF9lbnRyZXogPC0gYml0cih0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBmcm9tVHlwZSA9ICJTWU1CT0wiLCB0b1R5cGUgPSAiRU5UUkVaSUQiLCBPcmdEYiA9IG9yZy5Icy5lZy5kYikKCiMgQ2hlY2sgZm9yIG1pc3NpbmcgRW50cmV6IElEcyBhbmQgcmV0YWluIGdlbmUgbmFtZXMKbWlzc2luZ191cHJlZ3VsYXRlZCA8LSB0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZVshdG9wX3VwcmVndWxhdGVkX2dlbmVzJGdlbmUgJWluJSB1cHJlZ3VsYXRlZF9lbnRyZXokU1lNQk9MXQptaXNzaW5nX2Rvd25yZWd1bGF0ZWQgPC0gdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZVshdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSAlaW4lIGRvd25yZWd1bGF0ZWRfZW50cmV6JFNZTUJPTF0KCiMgUHJpbnQgb3V0IHRoZSBtaXNzaW5nIGdlbmUgc3ltYm9scyBmb3IgZGVidWdnaW5nCmNhdCgiTWlzc2luZyB1cHJlZ3VsYXRlZCBnZW5lczpcbiIsIG1pc3NpbmdfdXByZWd1bGF0ZWQsICJcbiIpCmNhdCgiTWlzc2luZyBkb3ducmVndWxhdGVkIGdlbmVzOlxuIiwgbWlzc2luZ19kb3ducmVndWxhdGVkLCAiXG4iKQoKIyBNZXJnZSB0aGUgRW50cmV6IElEcyBiYWNrIHdpdGggdGhlIG9yaWdpbmFsIGRhdGEgZnJhbWVzIHRvIHJldGFpbiBnZW5lIG5hbWVzCnRvcF91cHJlZ3VsYXRlZF9nZW5lcyA8LSBtZXJnZSh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMsIHVwcmVndWxhdGVkX2VudHJleiwgYnkueCA9ICJnZW5lIiwgYnkueSA9ICJTWU1CT0wiLCBhbGwueCA9IFRSVUUpCnRvcF9kb3ducmVndWxhdGVkX2dlbmVzIDwtIG1lcmdlKHRvcF9kb3ducmVndWxhdGVkX2dlbmVzLCBkb3ducmVndWxhdGVkX2VudHJleiwgYnkueCA9ICJnZW5lIiwgYnkueSA9ICJTWU1CT0wiLCBhbGwueCA9IFRSVUUpCgojIFJlbW92ZSBnZW5lcyB0aGF0IGNvdWxkbid0IGJlIG1hcHBlZCB0byBFbnRyZXogSURzCnRvcF91cHJlZ3VsYXRlZF9nZW5lcyA8LSB0b3BfdXByZWd1bGF0ZWRfZ2VuZXNbIWlzLm5hKHRvcF91cHJlZ3VsYXRlZF9nZW5lcyRFTlRSRVpJRCksIF0KdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMgPC0gdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXNbIWlzLm5hKHRvcF9kb3ducmVndWxhdGVkX2dlbmVzJEVOVFJFWklEKSwgXQoKIyBFeHRyYWN0IEVudHJleiBJRHMgZm9yIGVucmljaG1lbnQgYW5hbHlzaXMKdXByZWd1bGF0ZWRfZW50cmV6IDwtIHRvcF91cHJlZ3VsYXRlZF9nZW5lcyRFTlRSRVpJRApkb3ducmVndWxhdGVkX2VudHJleiA8LSB0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRFTlRSRVpJRAoKIyBEZWZpbmUgYSBmdW5jdGlvbiB0byBzYWZlbHkgcnVuIGVucmljaG1lbnQsIHBsb3QgcmVzdWx0cywgYW5kIHNhdmUgdGhlbQpzYWZlX2VucmljaEdPIDwtIGZ1bmN0aW9uKGdlbmVfbGlzdCwgdGl0bGUsIGZpbGVuYW1lKSB7CiAgaWYgKGxlbmd0aChnZW5lX2xpc3QpID4gMCkgewogICAgcmVzdWx0IDwtIGVucmljaEdPKGdlbmUgPSBnZW5lX2xpc3QsIE9yZ0RiID0gb3JnLkhzLmVnLmRiLCBrZXlUeXBlID0gIlNZTUJPTCIsCiAgICAgICAgICAgICAgICAgICAgICAgb250ID0gIkJQIiwgcEFkanVzdE1ldGhvZCA9ICJCSCIsIHB2YWx1ZUN1dG9mZiA9IDAuMDUsIHJlYWRhYmxlID0gVFJVRSkKICAgIGlmICghaXMubnVsbChyZXN1bHQpICYmIG5yb3coYXMuZGF0YS5mcmFtZShyZXN1bHQpKSA+IDApIHsKICAgICAgcCA8LSBkb3RwbG90KHJlc3VsdCwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gdGl0bGUpCiAgICAgIHByaW50KHApICAKICAgICAgZ2dzYXZlKHBhc3RlMChvdXRwdXRfZm9sZGVyLCBnc3ViKCIuY3N2IiwgIl9kb3RwbG90LnBuZyIsIGZpbGVuYW1lKSksIHBsb3QgPSBwLCB3aWR0aCA9IDgsIGhlaWdodCA9IDYpCiAgICAgIHdyaXRlLmNzdihhcy5kYXRhLmZyYW1lKHJlc3VsdCksIGZpbGUgPSBwYXN0ZTAob3V0cHV0X2ZvbGRlciwgZmlsZW5hbWUpLCByb3cubmFtZXMgPSBGQUxTRSkKICAgIH0gZWxzZSB7CiAgICAgIG1lc3NhZ2UocGFzdGUoIk5vIHNpZ25pZmljYW50IGVucmljaG1lbnQgZm91bmQgZm9yOiIsIHRpdGxlKSkKICAgIH0KICB9IGVsc2UgewogICAgbWVzc2FnZShwYXN0ZSgiTm8gZ2VuZXMgZm91bmQgZm9yOiIsIHRpdGxlKSkKICB9Cn0KCnNhZmVfZW5yaWNoS0VHRyA8LSBmdW5jdGlvbihlbnRyZXpfbGlzdCwgdGl0bGUsIGZpbGVuYW1lKSB7CiAgaWYgKGxlbmd0aChlbnRyZXpfbGlzdCkgPiAwKSB7CiAgICByZXN1bHQgPC0gZW5yaWNoS0VHRyhnZW5lID0gZW50cmV6X2xpc3QsIG9yZ2FuaXNtID0gImhzYSIsIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCiAgICBpZiAoIWlzLm51bGwocmVzdWx0KSAmJiBucm93KGFzLmRhdGEuZnJhbWUocmVzdWx0KSkgPiAwKSB7CiAgICAgIHJlc3VsdCA8LSBzZXRSZWFkYWJsZShyZXN1bHQsIE9yZ0RiID0gb3JnLkhzLmVnLmRiLCBrZXlUeXBlID0gIkVOVFJFWklEIikKICAgICAgcCA8LSBkb3RwbG90KHJlc3VsdCwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gdGl0bGUpCiAgICAgIHByaW50KHApCiAgICAgIGdnc2F2ZShwYXN0ZTAob3V0cHV0X2ZvbGRlciwgZ3N1YigiLmNzdiIsICJfZG90cGxvdC5wbmciLCBmaWxlbmFtZSkpLCBwbG90ID0gcCwgd2lkdGggPSA4LCBoZWlnaHQgPSA2KQogICAgICB3cml0ZS5jc3YoYXMuZGF0YS5mcmFtZShyZXN1bHQpLCBmaWxlID0gcGFzdGUwKG91dHB1dF9mb2xkZXIsIGZpbGVuYW1lKSwgcm93Lm5hbWVzID0gRkFMU0UpCiAgICB9IGVsc2UgewogICAgICBtZXNzYWdlKHBhc3RlKCJObyBzaWduaWZpY2FudCBLRUdHIHBhdGh3YXlzIGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgICB9CiAgfSBlbHNlIHsKICAgIG1lc3NhZ2UocGFzdGUoIk5vIGdlbmVzIGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgfQp9CgpzYWZlX2VucmljaFJlYWN0b21lIDwtIGZ1bmN0aW9uKGVudHJlel9saXN0LCB0aXRsZSwgZmlsZW5hbWUpIHsKICBpZiAobGVuZ3RoKGVudHJlel9saXN0KSA+IDApIHsKICAgIHJlc3VsdCA8LSBlbnJpY2hQYXRod2F5KGdlbmUgPSBlbnRyZXpfbGlzdCwgb3JnYW5pc20gPSAiaHVtYW4iLCBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICAgaWYgKCFpcy5udWxsKHJlc3VsdCkgJiYgbnJvdyhhcy5kYXRhLmZyYW1lKHJlc3VsdCkpID4gMCkgewogICAgICByZXN1bHQgPC0gc2V0UmVhZGFibGUocmVzdWx0LCBPcmdEYiA9IG9yZy5Icy5lZy5kYiwga2V5VHlwZSA9ICJFTlRSRVpJRCIpCiAgICAgIHAgPC0gZG90cGxvdChyZXN1bHQsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9IHRpdGxlKQogICAgICBwcmludChwKQogICAgICBnZ3NhdmUocGFzdGUwKG91dHB1dF9mb2xkZXIsIGdzdWIoIi5jc3YiLCAiX2RvdHBsb3QucG5nIiwgZmlsZW5hbWUpKSwgcGxvdCA9IHAsIHdpZHRoID0gOCwgaGVpZ2h0ID0gNikKICAgICAgd3JpdGUuY3N2KGFzLmRhdGEuZnJhbWUocmVzdWx0KSwgZmlsZSA9IHBhc3RlMChvdXRwdXRfZm9sZGVyLCBmaWxlbmFtZSksIHJvdy5uYW1lcyA9IEZBTFNFKQogICAgfSBlbHNlIHsKICAgICAgbWVzc2FnZShwYXN0ZSgiTm8gc2lnbmlmaWNhbnQgUmVhY3RvbWUgcGF0aHdheXMgZm91bmQgZm9yOiIsIHRpdGxlKSkKICAgIH0KICB9IGVsc2UgewogICAgbWVzc2FnZShwYXN0ZSgiTm8gZ2VuZXMgZm91bmQgZm9yOiIsIHRpdGxlKSkKICB9Cn0KCiMgUGVyZm9ybSBlbnJpY2htZW50IGFuYWx5c2VzLCBnZW5lcmF0ZSBwbG90cywgYW5kIHNhdmUgcmVzdWx0cwpzYWZlX2VucmljaEdPKHRvcF91cHJlZ3VsYXRlZF9nZW5lcyRnZW5lLCAiR08gRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiLCAidXByZWd1bGF0ZWRfR09fcmVzdWx0cy5jc3YiKQpzYWZlX2VucmljaEdPKHRvcF9kb3ducmVndWxhdGVkX2dlbmVzJGdlbmUsICJHTyBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIiwgImRvd25yZWd1bGF0ZWRfR09fcmVzdWx0cy5jc3YiKQoKc2FmZV9lbnJpY2hLRUdHKHVwcmVndWxhdGVkX2VudHJleiwgIktFR0cgUGF0aHdheSBFbnJpY2htZW50IGZvciBVcHJlZ3VsYXRlZCBHZW5lcyIsICJ1cHJlZ3VsYXRlZF9LRUdHX3Jlc3VsdHMuY3N2IikKc2FmZV9lbnJpY2hLRUdHKGRvd25yZWd1bGF0ZWRfZW50cmV6LCAiS0VHRyBQYXRod2F5IEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiLCAiZG93bnJlZ3VsYXRlZF9LRUdHX3Jlc3VsdHMuY3N2IikKCnNhZmVfZW5yaWNoUmVhY3RvbWUodXByZWd1bGF0ZWRfZW50cmV6LCAiUmVhY3RvbWUgUGF0aHdheSBFbnJpY2htZW50IGZvciBVcHJlZ3VsYXRlZCBHZW5lcyIsICJ1cHJlZ3VsYXRlZF9SZWFjdG9tZV9yZXN1bHRzLmNzdiIpCnNhZmVfZW5yaWNoUmVhY3RvbWUoZG93bnJlZ3VsYXRlZF9lbnRyZXosICJSZWFjdG9tZSBQYXRod2F5IEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiLCAiZG93bnJlZ3VsYXRlZF9SZWFjdG9tZV9yZXN1bHRzLmNzdiIpCgpgYGAKCiMjIEVucmljaG1lbnQgQW5hbHlzaXNfSGFsbG1hcmsKYGBge3IgLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMn0KCiMgTG9hZCBuZWNlc3NhcnkgbGlicmFyaWVzCmxpYnJhcnkoY2x1c3RlclByb2ZpbGVyKQpsaWJyYXJ5KG9yZy5Icy5lZy5kYikKbGlicmFyeShtc2lnZGJyKQpsaWJyYXJ5KGVucmljaHBsb3QpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShkcGx5cikKCiMgRGVmaW5lIHRoZSBvdXRwdXQgZm9sZGVyIHdoZXJlIHRoZSByZXN1bHRzIHdpbGwgYmUgc2F2ZWQKb3V0cHV0X2ZvbGRlciA8LSAiUDJfdnNfUDMvIgoKIyBDcmVhdGUgdGhlIG91dHB1dCBmb2xkZXIgaWYgaXQgZG9lc24ndCBleGlzdAppZiAoIWRpci5leGlzdHMob3V0cHV0X2ZvbGRlcikpIHsKICBkaXIuY3JlYXRlKG91dHB1dF9mb2xkZXIpCn0KCiMgTG9hZCBIYWxsbWFyayBnZW5lIHNldHMgZnJvbSBtc2lnZGJyCmhhbGxtYXJrX3NldHMgPC0gbXNpZ2RicihzcGVjaWVzID0gIkhvbW8gc2FwaWVucyIsIGNvbGxlY3Rpb24gPSAiSCIpICAjICJIIiBpcyBmb3IgSGFsbG1hcmsgZ2VuZSBzZXRzCgojIENvbnZlcnQgZ2VuZSBzeW1ib2xzIHRvIHVwcGVyY2FzZSBmb3IgY29uc2lzdGVuY3kKdG9wX3VwcmVndWxhdGVkX2dlbmVzJGdlbmUgPC0gdG91cHBlcih0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSkKdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSA8LSB0b3VwcGVyKHRvcF9kb3ducmVndWxhdGVkX2dlbmVzJGdlbmUpCgojIENoZWNrIGZvciBvdmVybGFwIGJldHdlZW4geW91ciB1cHJlZ3VsYXRlZC9kb3ducmVndWxhdGVkIGdlbmVzIGFuZCBIYWxsbWFyayBnZW5lIHNldHMKdXByZWd1bGF0ZWRfaW5faGFsbG1hcmsgPC0gaW50ZXJzZWN0KHRvcF91cHJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBoYWxsbWFya19zZXRzJGdlbmVfc3ltYm9sKQpkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrIDwtIGludGVyc2VjdCh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBoYWxsbWFya19zZXRzJGdlbmVfc3ltYm9sKQoKIyBQcmludCB0aGUgbnVtYmVyIG9mIG92ZXJsYXBwaW5nIGdlbmVzIGZvciBib3RoIHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmVzCmNhdCgiTnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzIGluIEhhbGxtYXJrIGdlbmUgc2V0czoiLCBsZW5ndGgodXByZWd1bGF0ZWRfaW5faGFsbG1hcmspLCAiXG4iKQpjYXQoIk51bWJlciBvZiBkb3ducmVndWxhdGVkIGdlbmVzIGluIEhhbGxtYXJrIGdlbmUgc2V0czoiLCBsZW5ndGgoZG93bnJlZ3VsYXRlZF9pbl9oYWxsbWFyayksICJcbiIpCgojIElmIHRoZXJlIGFyZSBnZW5lcyB0byBhbmFseXplLCBwcm9jZWVkIHdpdGggZW5yaWNobWVudCBhbmFseXNpcwppZiAobGVuZ3RoKHVwcmVndWxhdGVkX2luX2hhbGxtYXJrKSA+IDApIHsKICAjIFBlcmZvcm0gZW5yaWNobWVudCBhbmFseXNpcyBmb3IgdXByZWd1bGF0ZWQgZ2VuZXMgdXNpbmcgSGFsbG1hcmsgZ2VuZSBzZXRzCiAgaGFsbG1hcmtfdXAgPC0gZW5yaWNoZXIoZ2VuZSA9IHVwcmVndWxhdGVkX2luX2hhbGxtYXJrLCAKICAgICAgICAgICAgICAgICAgICAgICAgICBURVJNMkdFTkUgPSBoYWxsbWFya19zZXRzWywgYygiZ3NfbmFtZSIsICJnZW5lX3N5bWJvbCIpXSwgICMgRW5zdXJlIFRFUk0yR0VORSB1c2VzIGNvcnJlY3QgY29sdW1ucwogICAgICAgICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCiAgIyBDaGVjayBpZiByZXN1bHRzIGV4aXN0CiAgaWYgKCFpcy5udWxsKGhhbGxtYXJrX3VwKSAmJiBucm93KGhhbGxtYXJrX3VwKSA+IDApIHsKICAgICMgVmlzdWFsaXplIHJlc3VsdHMgaWYgYXZhaWxhYmxlCiAgICB1cF9kb3RwbG90IDwtIGRvdHBsb3QoaGFsbG1hcmtfdXAsIHNob3dDYXRlZ29yeSA9IDIwLCB0aXRsZSA9ICJIYWxsbWFyayBQYXRod2F5IEVucmljaG1lbnQgZm9yIFVwcmVndWxhdGVkIEdlbmVzIikKICAgIAogICAgIyBEaXNwbGF5IHRoZSBwbG90IGluIHRoZSBub3RlYm9vawogICAgcHJpbnQodXBfZG90cGxvdCkKICAgIAogICAgIyBTYXZlIHRoZSBkb3RwbG90IHRvIGEgUE5HIGZpbGUKICAgIGdnc2F2ZShwYXN0ZTAob3V0cHV0X2ZvbGRlciwgImhhbGxtYXJrX3VwcmVndWxhdGVkX2RvdHBsb3QucG5nIiksIHBsb3QgPSB1cF9kb3RwbG90LCB3aWR0aCA9IDEwLCBoZWlnaHQgPSA4KQogICAgCiAgICAjIE9wdGlvbmFsbHksIHNhdmUgdGhlIHJlc3VsdHMgYXMgQ1NWCiAgICB3cml0ZS5jc3YoYXMuZGF0YS5mcmFtZShoYWxsbWFya191cCksIGZpbGUgPSBwYXN0ZTAob3V0cHV0X2ZvbGRlciwgImhhbGxtYXJrX3VwcmVndWxhdGVkX2VucmljaG1lbnQuY3N2IiksIHJvdy5uYW1lcyA9IEZBTFNFKQogIH0gZWxzZSB7CiAgICBjYXQoIk5vIHNpZ25pZmljYW50IGVucmljaG1lbnQgZm91bmQgZm9yIHVwcmVndWxhdGVkIGdlbmVzLlxuIikKICB9Cn0gZWxzZSB7CiAgY2F0KCJObyB1cHJlZ3VsYXRlZCBnZW5lcyBvdmVybGFwIHdpdGggSGFsbG1hcmsgZ2VuZSBzZXRzLlxuIikKfQoKaWYgKGxlbmd0aChkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrKSA+IDApIHsKICAjIFBlcmZvcm0gZW5yaWNobWVudCBhbmFseXNpcyBmb3IgZG93bnJlZ3VsYXRlZCBnZW5lcyB1c2luZyBIYWxsbWFyayBnZW5lIHNldHMKICBoYWxsbWFya19kb3duIDwtIGVucmljaGVyKGdlbmUgPSBkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRFUk0yR0VORSA9IGhhbGxtYXJrX3NldHNbLCBjKCJnc19uYW1lIiwgImdlbmVfc3ltYm9sIildLCAgIyBFbnN1cmUgVEVSTTJHRU5FIHVzZXMgY29ycmVjdCBjb2x1bW5zCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICMgQ2hlY2sgaWYgcmVzdWx0cyBleGlzdAogIGlmICghaXMubnVsbChoYWxsbWFya19kb3duKSAmJiBucm93KGhhbGxtYXJrX2Rvd24pID4gMCkgewogICAgIyBWaXN1YWxpemUgcmVzdWx0cyBpZiBhdmFpbGFibGUKICAgIGRvd25fZG90cGxvdCA8LSBkb3RwbG90KGhhbGxtYXJrX2Rvd24sIHNob3dDYXRlZ29yeSA9IDIwLCB0aXRsZSA9ICJIYWxsbWFyayBQYXRod2F5IEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiKQogICAgCiAgICAjIERpc3BsYXkgdGhlIHBsb3QgaW4gdGhlIG5vdGVib29rCiAgICBwcmludChkb3duX2RvdHBsb3QpCiAgICAKICAgICMgU2F2ZSB0aGUgZG90cGxvdCB0byBhIFBORyBmaWxlCiAgICBnZ3NhdmUocGFzdGUwKG91dHB1dF9mb2xkZXIsICJoYWxsbWFya19kb3ducmVndWxhdGVkX2RvdHBsb3QucG5nIiksIHBsb3QgPSBkb3duX2RvdHBsb3QsIHdpZHRoID0gMTAsIGhlaWdodCA9IDgpCiAgICAKICAgICMgT3B0aW9uYWxseSwgc2F2ZSB0aGUgcmVzdWx0cyBhcyBDU1YKICAgIHdyaXRlLmNzdihhcy5kYXRhLmZyYW1lKGhhbGxtYXJrX2Rvd24pLCBmaWxlID0gcGFzdGUwKG91dHB1dF9mb2xkZXIsICJoYWxsbWFya19kb3ducmVndWxhdGVkX2VucmljaG1lbnQuY3N2IiksIHJvdy5uYW1lcyA9IEZBTFNFKQogIH0gZWxzZSB7CiAgICBjYXQoIk5vIHNpZ25pZmljYW50IGVucmljaG1lbnQgZm91bmQgZm9yIGRvd25yZWd1bGF0ZWQgZ2VuZXMuXG4iKQogIH0KfSBlbHNlIHsKICBjYXQoIk5vIGRvd25yZWd1bGF0ZWQgZ2VuZXMgb3ZlcmxhcCB3aXRoIEhhbGxtYXJrIGdlbmUgc2V0cy5cbiIpCn0KCgpgYGAKCgoK