3. Summarize Markers
markers <- DE_results_df
summarize_markers <- function(markers) {
num_pval0 <- sum(markers$p_val_adj == 0)
num_pval1 <- sum(markers$p_val_adj == 1)
num_upregulated <- sum(markers$avg_logFC > 1.5)
num_downregulated <- sum(markers$avg_logFC < -1)
num_significant <- sum(markers$p_val_adj < 0.05)
cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
cat("Number of significant genes (p_val_adj < 0.05):", num_significant, "\n")
}
cat("Markers Summary at 0.05:\n")
Markers Summary at 0.05:
summarize_markers(markers)
Number of genes with p_val_adj = 0: 0
Number of genes with p_val_adj = 1: 12
Number of upregulated genes (avg_logFC > 1.5): 350
Number of downregulated genes (avg_logFC < -1): 865
Number of significant genes (p_val_adj < 0.05): 1517
markers2 <- DE_results_df
summarize_markers <- function(markers) {
num_pval0 <- sum(markers$p_val_adj == 0)
num_pval1 <- sum(markers$p_val_adj == 1)
num_upregulated <- sum(markers$avg_logFC > 1.5)
num_downregulated <- sum(markers$avg_logFC < -1)
num_significant <- sum(markers$p_val_adj < 1e-4)
cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
cat("Number of significant genes (p_val_adj < 1e-4):", num_significant, "\n")
}
cat("Markers Summary at 1e-4:\n")
Markers Summary at 1e-4:
summarize_markers(markers2)
Number of genes with p_val_adj = 0: 0
Number of genes with p_val_adj = 1: 12
Number of upregulated genes (avg_logFC > 1.5): 350
Number of downregulated genes (avg_logFC < -1): 865
Number of significant genes (p_val_adj < 1e-4): 520
markers3 <- DE_results_df
summarize_markers <- function(markers) {
num_pval0 <- sum(markers$p_val_adj == 0)
num_pval1 <- sum(markers$p_val_adj == 1)
num_upregulated <- sum(markers$avg_logFC > 1.5)
num_downregulated <- sum(markers$avg_logFC < -1)
num_significant <- sum(markers$p_val_adj < 1e-6)
cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
cat("Number of significant genes (p_val_adj < 1e-6):", num_significant, "\n")
}
cat("Markers Summary at 1e-6:\n")
Markers Summary at 1e-6:
summarize_markers(markers3)
Number of genes with p_val_adj = 0: 0
Number of genes with p_val_adj = 1: 12
Number of upregulated genes (avg_logFC > 1.5): 350
Number of downregulated genes (avg_logFC < -1): 865
Number of significant genes (p_val_adj < 1e-6): 326
markers4 <- DE_results_df
summarize_markers <- function(markers) {
num_pval0 <- sum(markers$p_val_adj == 0)
num_pval1 <- sum(markers$p_val_adj == 1)
num_upregulated <- sum(markers$avg_logFC > 1.5)
num_downregulated <- sum(markers$avg_logFC < -1)
num_significant <- sum(markers$p_val_adj < 1e-10)
cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
cat("Number of significant genes (p_val_adj < 1e-10):", num_significant, "\n")
}
cat("Markers Summary at 1e-10:\n")
Markers Summary at 1e-10:
summarize_markers(markers4)
Number of genes with p_val_adj = 0: 0
Number of genes with p_val_adj = 1: 12
Number of upregulated genes (avg_logFC > 1.5): 350
Number of downregulated genes (avg_logFC < -1): 865
Number of significant genes (p_val_adj < 1e-10): 189
markers5 <- DE_results_df
summarize_markers <- function(markers) {
num_pval0 <- sum(markers$p_val_adj == 0)
num_pval1 <- sum(markers$p_val_adj == 1)
num_upregulated <- sum(markers$avg_logFC > 1.5)
num_downregulated <- sum(markers$avg_logFC < -1)
num_significant <- sum(markers$p_val_adj < 1e-15)
cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
cat("Number of significant genes (p_val_adj < 1e-15):", num_significant, "\n")
}
cat("Markers Summary at 1e-15:\n")
Markers Summary at 1e-15:
summarize_markers(markers5)
Number of genes with p_val_adj = 0: 0
Number of genes with p_val_adj = 1: 12
Number of upregulated genes (avg_logFC > 1.5): 350
Number of downregulated genes (avg_logFC < -1): 865
Number of significant genes (p_val_adj < 1e-15): 108
4. Volcano Plots
library(ggplot2)
library(dplyr)
library(ggrepel)
# Ensure correct column names
colnames(DE_results_df)
[1] "cell_type" "gene" "avg_logFC" "P1.pct" "P2.pct" "P1.exp" "P2.exp" "p_val" "p_val_adj" "de_family" "de_method"
[12] "de_type"
# Define significance categories
volcano_data <- DE_results_df %>%
mutate(
significance = case_when(
p_val_adj < 1e-20 & avg_logFC > 2 ~ "Most Upregulated",
p_val_adj < 1e-20 & avg_logFC < -2 ~ "Most Downregulated",
p_val_adj < 0.05 & avg_logFC > 2 ~ "Upregulated",
p_val_adj < 0.05 & avg_logFC < -2 ~ "Downregulated",
TRUE ~ "Not Significant"
)
)
# Select only very significant genes for labeling
top_genes <- volcano_data %>%
filter(p_val_adj < 0.05 & (avg_logFC > 2 | avg_logFC < -2))
ggplot(volcano_data, aes(x = avg_logFC, y = -log10(p_val_adj), color = significance)) +
# Main points
geom_point(alpha = 0.7, size = 2.5) +
# Highlight highly significant genes with larger points
geom_point(data = top_genes, aes(x = avg_logFC, y = -log10(p_val_adj)),
color = "black", size = 3, shape = 21, fill = "black") +
# Custom color scheme
scale_color_manual(values = c(
"Most Upregulated" = "darkred",
"Most Downregulated" = "darkblue",
"Upregulated" = "red",
"Downregulated" = "blue",
"Not Significant" = "grey"
)) +
# Add gene labels (only for highly significant genes)
geom_text_repel(data = top_genes, aes(label = gene),
size = 4, box.padding = 0.5, max.overlaps = 10, segment.color = NA) +
# Add threshold lines
geom_vline(xintercept = c(-2, 2), linetype = "dashed", color = "black") +
geom_hline(yintercept = -log10(0.05), linetype = "dashed", color = "black") +
# Improve theme
theme_minimal(base_size = 14) +
labs(title = "Volcano Plot: Pseudobulk DESeq2 Analysis",
x = "Log2 Fold Change",
y = "-Log10 Adjusted P-Value",
color = "Significance") +
ylim(0, 50) # Avoid extreme scaling issues

NA
NA
EnhancedVolcano plot
library(dplyr)
library(EnhancedVolcano)
# Assuming you have a data frame named Malignant_CD4Tcells_vs_Normal_CD4Tcells
# Filter genes based on lowest p-values but include all genes
filtered_genes <- markers %>%
arrange(p_val_adj, desc(abs(avg_logFC)))
# Create the EnhancedVolcano plot with the filtered data
EnhancedVolcano(
filtered_genes,
lab = ifelse(filtered_genes$p_val_adj <= 1e-6 & abs(filtered_genes$avg_logFC) >= 1.5, filtered_genes$gene, NA),
x = "avg_logFC",
y = "p_val_adj",
title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
pCutoff = 1e-6,
FCcutoff = 1.0,
legendPosition = 'right',
labCol = 'black',
labFace = 'bold',
boxedLabels = FALSE, # Set to FALSE to remove boxed labels
pointSize = 3.0,
labSize = 5.0,
col = c('grey70', 'black', 'blue', 'red'), # Customize point colors
selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0] # Only label significant genes
)

NA
NA
NA
EnhancedVolcano plot
library(ggplot2)
library(EnhancedVolcano)
library(dplyr)
# Define the output directory
output_dir <- "Volcano_Plot_Malignant_vs_Control"
dir.create(output_dir, showWarnings = FALSE)
Malignant_CD4Tcells_vs_Normal_CD4Tcells <- filtered_genes
# First Volcano Plot
p1 <- EnhancedVolcano(
Malignant_CD4Tcells_vs_Normal_CD4Tcells,
lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
x = "avg_logFC",
y = "p_val_adj",
title = "Malignant_CD4Tcells_vs_Normal_CD4Tcells",
pCutoff = 1e-4,
FCcutoff = 1.0
)
print(p1) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot1.png"), plot = p1, width = 14, height = 10, dpi = 300)
# Second Volcano Plot with selected genes
p2 <- EnhancedVolcano(
Malignant_CD4Tcells_vs_Normal_CD4Tcells,
lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
x = "avg_logFC",
y = "p_val_adj",
selectLab = c('EPCAM', 'BCAT1', 'KIR3DL2', 'FOXM1', 'TWIST1', 'TNFSF9',
'CD80', 'IL1B', 'RPS4Y1', "TOX", "CD52", "TWIST1", "CCR4", "CCR7","PDCD1",
'IL7R', 'TCF7', 'MKI67', 'CD70', "DPP4",
'IL2RA','TRBV6-2', 'TRBV10-3', 'TRBV4-2', 'TRBV9', 'TRBV7-9',
'TRAV12-1', 'CD8B', 'FCGR3A', 'GNLY', 'FOXP3', 'SELL',
'GIMAP1', 'RIPOR2', 'LEF1', 'HOXC9', 'SP5',
'CCL17', 'ETV4', 'THY1', 'FOXA2', 'ITGAD', 'S100P', 'TBX4',
'ID1', 'XCL1', 'SOX2', 'CD27', 'CD28','PLS3','CD70','RAB25' , 'TRBV27', 'TRBV2'),
title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
xlab = bquote(~Log[2]~ 'fold change'),
pCutoff = 0.05,
FCcutoff = 1.5,
pointSize = 3.0,
labSize = 5.0,
boxedLabels = TRUE,
colAlpha = 0.5,
legendPosition = 'right',
legendLabSize = 10,
legendIconSize = 4.0,
drawConnectors = TRUE,
widthConnectors = 0.5,
colConnectors = 'grey50',
arrowheads = FALSE,
max.overlaps = 30
)
print(p2) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot2.png"), plot = p2, width = 14, height = 10, dpi = 300)
# Filtering genes
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
arrange(p_val_adj, desc(abs(avg_logFC)))
# Third Volcano Plot - Filtering by p-value and logFC
p3 <- EnhancedVolcano(
filtered_genes,
lab = ifelse(filtered_genes$p_val_adj <= 1e-4 & abs(filtered_genes$avg_logFC) >= 1.0, filtered_genes$gene, NA),
x = "avg_logFC",
y = "p_val_adj",
title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
pCutoff = 1e-4,
FCcutoff = 1.0,
legendPosition = 'right',
labCol = 'black',
labFace = 'bold',
boxedLabels = FALSE, # Remove boxed labels
pointSize = 3.0,
labSize = 5.0,
col = c('grey70', 'black', 'blue', 'red'), # Customize point colors
selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0]
)
print(p3) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot3.png"), plot = p3, width = 14, height = 10, dpi = 300)
# Fourth Volcano Plot - More refined filtering
p4 <- EnhancedVolcano(
filtered_genes,
lab = ifelse(filtered_genes$p_val_adj <= 1e-4 & abs(filtered_genes$avg_logFC) >= 1.0, filtered_genes$gene, NA),
x = "avg_logFC",
y = "p_val_adj",
title = "Malignant CD4 T cells (cell lines) vs Normal CD4 T cells",
subtitle = "Highlighting differentially expressed genes",
pCutoff = 1e-4,
FCcutoff = 1.0,
legendPosition = 'right',
colAlpha = 0.8, # Slight transparency for non-significant points
col = c('grey70', 'black', 'blue', 'red'), # Custom color scheme
gridlines.major = TRUE,
gridlines.minor = FALSE,
selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0]
)
print(p4) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot4.png"), plot = p4, width = 14, height = 10, dpi = 300)
message("All volcano plots have been displayed and saved successfully in the 'Malignant_vs_Control' folder.")
All volcano plots have been displayed and saved successfully in the 'Malignant_vs_Control' folder.
5. Enrichment Analysis-All_Pathways
# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(ReactomePA)
library(DOSE) # For GSEA analysis
library(ggplot2) # Ensure ggplot2 is available for plotting
library(dplyr)
# Define the output folder where the results will be saved
output_folder <- "P1_vs_P2/"
# Create the output folder if it doesn't exist
if (!dir.exists(output_folder)) {
dir.create(output_folder)
}
# Define the number of upregulated and downregulated genes to select
UP_genes <- 200
Down_genes <- 300
# Define threshold for differential expression selection (modified thresholds)
logFC_up_threshold <- 1.5 # Upregulated logFC threshold
logFC_down_threshold <- -1.5 # Downregulated logFC threshold
# Load your differential expression results (modify based on actual data structure)
# Malignant_CD4Tcells_vs_Normal_CD4Tcells <- read.csv("Your_DE_Results_File.csv")
# Filter the genes based on avg_logFC and arrange by p_val_adj
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
filter(avg_logFC > logFC_up_threshold | avg_logFC < logFC_down_threshold) %>%
arrange(p_val_adj)
# Separate upregulated and downregulated genes
upregulated_genes <- filtered_genes %>%
filter(avg_logFC > logFC_up_threshold)
downregulated_genes <- filtered_genes %>%
filter(avg_logFC < logFC_down_threshold)
# Check if there are fewer than the specified number of upregulated genes
if (nrow(upregulated_genes) < UP_genes) {
top_upregulated_genes <- upregulated_genes
cat("Number of upregulated genes selected:", nrow(top_upregulated_genes), "\n")
cat("p_val_adj value for the last selected upregulated gene:", tail(top_upregulated_genes$p_val_adj, 1), "\n")
} else {
# Select the specified number of upregulated genes
top_upregulated_genes <- upregulated_genes %>%
head(UP_genes)
cat("Number of upregulated genes selected:", nrow(top_upregulated_genes), "\n")
cat("p_val_adj value for the last selected upregulated gene:", tail(top_upregulated_genes$p_val_adj, 1), "\n")
}
Number of upregulated genes selected: 200
p_val_adj value for the last selected upregulated gene: 0.003293049
# Check if there are fewer than the specified number of downregulated genes
if (nrow(downregulated_genes) < Down_genes) {
top_downregulated_genes <- downregulated_genes
cat("Number of downregulated genes selected:", nrow(top_downregulated_genes), "\n")
cat("p_val_adj value for the last selected downregulated gene:", tail(top_downregulated_genes$p_val_adj, 1), "\n")
} else {
# Select the specified number of downregulated genes
top_downregulated_genes <- downregulated_genes %>%
head(Down_genes)
cat("Number of downregulated genes selected:", nrow(top_downregulated_genes), "\n")
cat("p_val_adj value for the last selected downregulated gene:", tail(top_downregulated_genes$p_val_adj, 1), "\n")
}
Number of downregulated genes selected: 300
p_val_adj value for the last selected downregulated gene: 0.0002519858
# Combine the top upregulated and downregulated genes
top_genes <- bind_rows(top_upregulated_genes, top_downregulated_genes)
# Check for missing genes (NAs) in the gene column and remove them
top_genes <- na.omit(top_genes)
# Save upregulated and downregulated gene results to CSV
write.csv(top_upregulated_genes, paste0(output_folder, "upregulated_genes.csv"), row.names = FALSE)
write.csv(top_downregulated_genes, paste0(output_folder, "downregulated_genes.csv"), row.names = FALSE)
# Convert gene symbols to Entrez IDs for enrichment analysis, with checks for missing values
upregulated_entrez <- bitr(top_upregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 3.5% of input gene IDs are fail to map...
downregulated_entrez <- bitr(top_downregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 8% of input gene IDs are fail to map...
# Check for missing Entrez IDs and retain gene names
missing_upregulated <- top_upregulated_genes$gene[!top_upregulated_genes$gene %in% upregulated_entrez$SYMBOL]
missing_downregulated <- top_downregulated_genes$gene[!top_downregulated_genes$gene %in% downregulated_entrez$SYMBOL]
# Print out the missing gene symbols for debugging
cat("Missing upregulated genes:\n", missing_upregulated, "\n")
Missing upregulated genes:
AC136475.3 AC119396.1 HIST1H2BH AL450352.1 CLECL1 FAM102A AC068587.4
cat("Missing downregulated genes:\n", missing_downregulated, "\n")
Missing downregulated genes:
AC246817.2 AC099552.1 AC112770.1 C3orf14 AC005537.1 AL138720.1 ST5 KIAA1211 Z93403.1 AC093010.2 SOGA3 AC008771.1 AL590550.1 AL157912.1 AC053545.1 AL391069.2 AP001057.1 AC068633.1 AC011586.2 AC027031.2 AL606807.1 AC016831.7 TMEM173 AC105446.1
# Merge the Entrez IDs back with the original data frames to retain gene names
top_upregulated_genes <- merge(top_upregulated_genes, upregulated_entrez, by.x = "gene", by.y = "SYMBOL", all.x = TRUE)
top_downregulated_genes <- merge(top_downregulated_genes, downregulated_entrez, by.x = "gene", by.y = "SYMBOL", all.x = TRUE)
# Remove genes that couldn't be mapped to Entrez IDs
top_upregulated_genes <- top_upregulated_genes[!is.na(top_upregulated_genes$ENTREZID), ]
top_downregulated_genes <- top_downregulated_genes[!is.na(top_downregulated_genes$ENTREZID), ]
# Extract Entrez IDs for enrichment analysis
upregulated_entrez <- top_upregulated_genes$ENTREZID
downregulated_entrez <- top_downregulated_genes$ENTREZID
# Define a function to safely run enrichment, plot results, and save them
safe_enrichGO <- function(gene_list, title, filename) {
if (length(gene_list) > 0) {
result <- enrichGO(gene = gene_list, OrgDb = org.Hs.eg.db, keyType = "SYMBOL",
ont = "BP", pAdjustMethod = "BH", pvalueCutoff = 0.05, readable = TRUE)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
} else {
message(paste("No significant enrichment found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
safe_enrichKEGG <- function(entrez_list, title, filename) {
if (length(entrez_list) > 0) {
result <- enrichKEGG(gene = entrez_list, organism = "hsa", pvalueCutoff = 0.05)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
result <- setReadable(result, OrgDb = org.Hs.eg.db, keyType = "ENTREZID")
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
} else {
message(paste("No significant KEGG pathways found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
safe_enrichReactome <- function(entrez_list, title, filename) {
if (length(entrez_list) > 0) {
result <- enrichPathway(gene = entrez_list, organism = "human", pvalueCutoff = 0.05)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
result <- setReadable(result, OrgDb = org.Hs.eg.db, keyType = "ENTREZID")
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
} else {
message(paste("No significant Reactome pathways found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
# Perform enrichment analyses, generate plots, and save results
safe_enrichGO(top_upregulated_genes$gene, "GO Enrichment for Upregulated Genes", "upregulated_GO_results.csv")

safe_enrichGO(top_downregulated_genes$gene, "GO Enrichment for Downregulated Genes", "downregulated_GO_results.csv")

safe_enrichKEGG(upregulated_entrez, "KEGG Pathway Enrichment for Upregulated Genes", "upregulated_KEGG_results.csv")
No significant KEGG pathways found for: KEGG Pathway Enrichment for Upregulated Genes
safe_enrichKEGG(downregulated_entrez, "KEGG Pathway Enrichment for Downregulated Genes", "downregulated_KEGG_results.csv")

safe_enrichReactome(upregulated_entrez, "Reactome Pathway Enrichment for Upregulated Genes", "upregulated_Reactome_results.csv")
No significant Reactome pathways found for: Reactome Pathway Enrichment for Upregulated Genes
safe_enrichReactome(downregulated_entrez, "Reactome Pathway Enrichment for Downregulated Genes", "downregulated_Reactome_results.csv")

Enrichment Analysis_Hallmark
# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)
library(ggplot2)
library(dplyr)
# Define the output folder where the results will be saved
output_folder <- "P1_vs_P2"
# Create the output folder if it doesn't exist
if (!dir.exists(output_folder)) {
dir.create(output_folder)
}
# Load Hallmark gene sets from msigdbr
hallmark_sets <- msigdbr(species = "Homo sapiens", collection = "H") # "H" is for Hallmark gene sets
# Convert gene symbols to uppercase for consistency
top_upregulated_genes$gene <- toupper(top_upregulated_genes$gene)
top_downregulated_genes$gene <- toupper(top_downregulated_genes$gene)
# Check for overlap between your upregulated/downregulated genes and Hallmark gene sets
upregulated_in_hallmark <- intersect(top_upregulated_genes$gene, hallmark_sets$gene_symbol)
downregulated_in_hallmark <- intersect(top_downregulated_genes$gene, hallmark_sets$gene_symbol)
# Print the number of overlapping genes for both upregulated and downregulated genes
cat("Number of upregulated genes in Hallmark gene sets:", length(upregulated_in_hallmark), "\n")
Number of upregulated genes in Hallmark gene sets: 64
cat("Number of downregulated genes in Hallmark gene sets:", length(downregulated_in_hallmark), "\n")
Number of downregulated genes in Hallmark gene sets: 106
# If there are genes to analyze, proceed with enrichment analysis
if (length(upregulated_in_hallmark) > 0) {
# Perform enrichment analysis for upregulated genes using Hallmark gene sets
hallmark_up <- enricher(gene = upregulated_in_hallmark,
TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")], # Ensure TERM2GENE uses correct columns
pvalueCutoff = 0.05)
# Check if results exist
if (!is.null(hallmark_up) && nrow(hallmark_up) > 0) {
# Visualize results if available
up_dotplot <- dotplot(hallmark_up, showCategory = 20, title = "Hallmark Pathway Enrichment for Upregulated Genes")
# Display the plot in the notebook
print(up_dotplot)
# Save the dotplot to a PNG file
ggsave(paste0(output_folder, "hallmark_upregulated_dotplot.png"), plot = up_dotplot, width = 10, height = 8)
# Optionally, save the results as CSV
write.csv(as.data.frame(hallmark_up), file = paste0(output_folder, "hallmark_upregulated_enrichment.csv"), row.names = FALSE)
} else {
cat("No significant enrichment found for upregulated genes.\n")
}
} else {
cat("No upregulated genes overlap with Hallmark gene sets.\n")
}
No significant enrichment found for upregulated genes.
if (length(downregulated_in_hallmark) > 0) {
# Perform enrichment analysis for downregulated genes using Hallmark gene sets
hallmark_down <- enricher(gene = downregulated_in_hallmark,
TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")], # Ensure TERM2GENE uses correct columns
pvalueCutoff = 0.05)
# Check if results exist
if (!is.null(hallmark_down) && nrow(hallmark_down) > 0) {
# Visualize results if available
down_dotplot <- dotplot(hallmark_down, showCategory = 20, title = "Hallmark Pathway Enrichment for Downregulated Genes")
# Display the plot in the notebook
print(down_dotplot)
# Save the dotplot to a PNG file
ggsave(paste0(output_folder, "hallmark_downregulated_dotplot.png"), plot = down_dotplot, width = 10, height = 8)
# Optionally, save the results as CSV
write.csv(as.data.frame(hallmark_down), file = paste0(output_folder, "hallmark_downregulated_enrichment.csv"), row.names = FALSE)
} else {
cat("No significant enrichment found for downregulated genes.\n")
}
} else {
cat("No downregulated genes overlap with Hallmark gene sets.\n")
}

NA
NA
LS0tCnRpdGxlOiAiUHNldWRvQnVsayBBbmFseXNpcyB1c2luZyBMaWJyYSBEZXNlcTItTFJUX29uX2xpc3RfZmlsdHJlZF9vbl9tZWFuIgphdXRob3I6IE5hc2lyIE1haG1vb2QgQWJiYXNpCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OgogICMgcGRmX2RvY3VtZW50OiBkZWZhdWx0CiAgIyB3b3JkX2RvY3VtZW50OiBkZWZhdWx0CiAgIyBodG1sX2RvY3VtZW50OiBkZWZhdWx0CiAgI3JtZGZvcm1hdHM6OnJlYWR0aGVkb3duCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCi0tLQoKIyAxLiBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KCiMgTG9hZCBsaWJyYXJpZXMKbGlicmFyeShTZXVyYXQpCmxpYnJhcnkoTWF0cml4KQpsaWJyYXJ5KFNpbmdsZUNlbGxFeHBlcmltZW50KQpsaWJyYXJ5KERFU2VxMikKbGlicmFyeShMaWJyYSkKCmBgYAoKIyAyLiBMb2FkIHRoZSBmaWx0ZXJlZCBsaXN0IG9uIG1lYW4gZXhwcmVzc2lvbgpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKIyBMb2FkIHRoZSBERSByZXN1bHRzIGZyb20gQ1NWCmRmIDwtIHJlYWQuY3N2KCJQc2Vkb2J1bGtfRGVzZXEyX2ZpbHRlcmVkX29uX21lYW5fUDFfdnNfUDIuY3N2Iiwgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFKQoKCkRFX3Jlc3VsdHNfZGYgPC0gZGYKCmBgYAoKIyAzLiBTdW1tYXJpemUgTWFya2VycwpgYGB7ciAsIGZpZy5oZWlnaHQ9MTIsIGZpZy53aWR0aD0xNH0KbWFya2VycyA8LSBERV9yZXN1bHRzX2RmCgpzdW1tYXJpemVfbWFya2VycyA8LSBmdW5jdGlvbihtYXJrZXJzKSB7CiAgbnVtX3B2YWwwIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAwKQogIG51bV9wdmFsMSA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPT0gMSkKICBudW1fdXByZWd1bGF0ZWQgPC0gc3VtKG1hcmtlcnMkYXZnX2xvZ0ZDID4gMS41KQogIG51bV9kb3ducmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA8IC0xKQogIG51bV9zaWduaWZpY2FudCA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPCAwLjA1KQogIAogIAogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMDoiLCBudW1fcHZhbDAsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZ2VuZXMgd2l0aCBwX3ZhbF9hZGogPSAxOiIsIG51bV9wdmFsMSwgIlxuIikKICBjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDID4gMS41KToiLCBudW1fdXByZWd1bGF0ZWQsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDIDwgLTEpOiIsIG51bV9kb3ducmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIHNpZ25pZmljYW50IGdlbmVzIChwX3ZhbF9hZGogPCAwLjA1KToiLCBudW1fc2lnbmlmaWNhbnQsICJcbiIpCn0KCmNhdCgiTWFya2VycyBTdW1tYXJ5IGF0IDAuMDU6XG4iKQoKc3VtbWFyaXplX21hcmtlcnMobWFya2VycykKCm1hcmtlcnMyIDwtIERFX3Jlc3VsdHNfZGYKc3VtbWFyaXplX21hcmtlcnMgPC0gZnVuY3Rpb24obWFya2VycykgewogIG51bV9wdmFsMCA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPT0gMCkKICBudW1fcHZhbDEgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDEpCiAgbnVtX3VwcmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA+IDEuNSkKICBudW1fZG93bnJlZ3VsYXRlZCA8LSBzdW0obWFya2VycyRhdmdfbG9nRkMgPCAtMSkKICBudW1fc2lnbmlmaWNhbnQgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqIDwgMWUtNCkKICAKICBjYXQoIk51bWJlciBvZiBnZW5lcyB3aXRoIHBfdmFsX2FkaiA9IDA6IiwgbnVtX3B2YWwwLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMToiLCBudW1fcHZhbDEsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgKGF2Z19sb2dGQyA+IDEuNSk6IiwgbnVtX3VwcmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgKGF2Z19sb2dGQyA8IC0xKToiLCBudW1fZG93bnJlZ3VsYXRlZCwgIlxuIikKICBjYXQoIk51bWJlciBvZiBzaWduaWZpY2FudCBnZW5lcyAocF92YWxfYWRqIDwgMWUtNCk6IiwgbnVtX3NpZ25pZmljYW50LCAiXG4iKQp9CgpjYXQoIk1hcmtlcnMgU3VtbWFyeSBhdCAxZS00OlxuIikKCnN1bW1hcml6ZV9tYXJrZXJzKG1hcmtlcnMyKQoKbWFya2VyczMgPC0gREVfcmVzdWx0c19kZgpzdW1tYXJpemVfbWFya2VycyA8LSBmdW5jdGlvbihtYXJrZXJzKSB7CiAgbnVtX3B2YWwwIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAwKQogIG51bV9wdmFsMSA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPT0gMSkKICBudW1fdXByZWd1bGF0ZWQgPC0gc3VtKG1hcmtlcnMkYXZnX2xvZ0ZDID4gMS41KQogIG51bV9kb3ducmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA8IC0xKQogIG51bV9zaWduaWZpY2FudCA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPCAxZS02KQogIAogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMDoiLCBudW1fcHZhbDAsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZ2VuZXMgd2l0aCBwX3ZhbF9hZGogPSAxOiIsIG51bV9wdmFsMSwgIlxuIikKICBjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDID4gMS41KToiLCBudW1fdXByZWd1bGF0ZWQsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDIDwgLTEpOiIsIG51bV9kb3ducmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIHNpZ25pZmljYW50IGdlbmVzIChwX3ZhbF9hZGogPCAxZS02KToiLCBudW1fc2lnbmlmaWNhbnQsICJcbiIpCn0KCmNhdCgiTWFya2VycyBTdW1tYXJ5IGF0IDFlLTY6XG4iKQpzdW1tYXJpemVfbWFya2VycyhtYXJrZXJzMykKCm1hcmtlcnM0IDwtIERFX3Jlc3VsdHNfZGYKc3VtbWFyaXplX21hcmtlcnMgPC0gZnVuY3Rpb24obWFya2VycykgewogIG51bV9wdmFsMCA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPT0gMCkKICBudW1fcHZhbDEgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDEpCiAgbnVtX3VwcmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA+IDEuNSkKICBudW1fZG93bnJlZ3VsYXRlZCA8LSBzdW0obWFya2VycyRhdmdfbG9nRkMgPCAtMSkKICBudW1fc2lnbmlmaWNhbnQgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqIDwgMWUtMTApCiAgCiAgY2F0KCJOdW1iZXIgb2YgZ2VuZXMgd2l0aCBwX3ZhbF9hZGogPSAwOiIsIG51bV9wdmFsMCwgIlxuIikKICBjYXQoIk51bWJlciBvZiBnZW5lcyB3aXRoIHBfdmFsX2FkaiA9IDE6IiwgbnVtX3B2YWwxLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzIChhdmdfbG9nRkMgPiAxLjUpOiIsIG51bV91cHJlZ3VsYXRlZCwgIlxuIikKICBjYXQoIk51bWJlciBvZiBkb3ducmVndWxhdGVkIGdlbmVzIChhdmdfbG9nRkMgPCAtMSk6IiwgbnVtX2Rvd25yZWd1bGF0ZWQsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2Ygc2lnbmlmaWNhbnQgZ2VuZXMgKHBfdmFsX2FkaiA8IDFlLTEwKToiLCBudW1fc2lnbmlmaWNhbnQsICJcbiIpCiAgfQoKY2F0KCJNYXJrZXJzIFN1bW1hcnkgYXQgMWUtMTA6XG4iKQoKc3VtbWFyaXplX21hcmtlcnMobWFya2VyczQpCgptYXJrZXJzNSA8LSBERV9yZXN1bHRzX2RmCnN1bW1hcml6ZV9tYXJrZXJzIDwtIGZ1bmN0aW9uKG1hcmtlcnMpIHsKICBudW1fcHZhbDAgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDApCiAgbnVtX3B2YWwxIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAxKQogIG51bV91cHJlZ3VsYXRlZCA8LSBzdW0obWFya2VycyRhdmdfbG9nRkMgPiAxLjUpCiAgbnVtX2Rvd25yZWd1bGF0ZWQgPC0gc3VtKG1hcmtlcnMkYXZnX2xvZ0ZDIDwgLTEpCiAgbnVtX3NpZ25pZmljYW50IDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA8IDFlLTE1KQogIAogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMDoiLCBudW1fcHZhbDAsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZ2VuZXMgd2l0aCBwX3ZhbF9hZGogPSAxOiIsIG51bV9wdmFsMSwgIlxuIikKICBjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDID4gMS41KToiLCBudW1fdXByZWd1bGF0ZWQsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDIDwgLTEpOiIsIG51bV9kb3ducmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIHNpZ25pZmljYW50IGdlbmVzIChwX3ZhbF9hZGogPCAxZS0xNSk6IiwgbnVtX3NpZ25pZmljYW50LCAiXG4iKQp9CgpjYXQoIk1hcmtlcnMgU3VtbWFyeSBhdCAxZS0xNTpcbiIpCgpzdW1tYXJpemVfbWFya2VycyhtYXJrZXJzNSkKCgoKYGBgCgoKCiMgNC4gVm9sY2FubyBQbG90cwpgYGB7ciAsIGZpZy5oZWlnaHQ9MTQsIGZpZy53aWR0aD0xOH0KbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KGdncmVwZWwpCgoKIyBFbnN1cmUgY29ycmVjdCBjb2x1bW4gbmFtZXMKY29sbmFtZXMoREVfcmVzdWx0c19kZikKCiMgRGVmaW5lIHNpZ25pZmljYW5jZSBjYXRlZ29yaWVzCnZvbGNhbm9fZGF0YSA8LSBERV9yZXN1bHRzX2RmICU+JQogIG11dGF0ZSgKICAgIHNpZ25pZmljYW5jZSA9IGNhc2Vfd2hlbigKICAgICAgcF92YWxfYWRqIDwgMWUtMjAgJiBhdmdfbG9nRkMgPiAyIH4gIk1vc3QgVXByZWd1bGF0ZWQiLAogICAgICBwX3ZhbF9hZGogPCAxZS0yMCAmIGF2Z19sb2dGQyA8IC0yIH4gIk1vc3QgRG93bnJlZ3VsYXRlZCIsCiAgICAgIHBfdmFsX2FkaiA8IDAuMDUgJiBhdmdfbG9nRkMgPiAyIH4gIlVwcmVndWxhdGVkIiwKICAgICAgcF92YWxfYWRqIDwgMC4wNSAmIGF2Z19sb2dGQyA8IC0yIH4gIkRvd25yZWd1bGF0ZWQiLAogICAgICBUUlVFIH4gIk5vdCBTaWduaWZpY2FudCIKICAgICkKICApCgojIFNlbGVjdCBvbmx5IHZlcnkgc2lnbmlmaWNhbnQgZ2VuZXMgZm9yIGxhYmVsaW5nCnRvcF9nZW5lcyA8LSB2b2xjYW5vX2RhdGEgJT4lCiAgZmlsdGVyKHBfdmFsX2FkaiA8IDAuMDUgJiAoYXZnX2xvZ0ZDID4gMiB8IGF2Z19sb2dGQyA8IC0yKSkKCmdncGxvdCh2b2xjYW5vX2RhdGEsIGFlcyh4ID0gYXZnX2xvZ0ZDLCB5ID0gLWxvZzEwKHBfdmFsX2FkaiksIGNvbG9yID0gc2lnbmlmaWNhbmNlKSkgKwogIAogICMgTWFpbiBwb2ludHMKICBnZW9tX3BvaW50KGFscGhhID0gMC43LCBzaXplID0gMi41KSArCiAgCiAgIyBIaWdobGlnaHQgaGlnaGx5IHNpZ25pZmljYW50IGdlbmVzIHdpdGggbGFyZ2VyIHBvaW50cwogIGdlb21fcG9pbnQoZGF0YSA9IHRvcF9nZW5lcywgYWVzKHggPSBhdmdfbG9nRkMsIHkgPSAtbG9nMTAocF92YWxfYWRqKSksIAogICAgICAgICAgICAgY29sb3IgPSAiYmxhY2siLCBzaXplID0gMywgc2hhcGUgPSAyMSwgZmlsbCA9ICJibGFjayIpICsKCiAgIyBDdXN0b20gY29sb3Igc2NoZW1lCiAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcyA9IGMoCiAgICAiTW9zdCBVcHJlZ3VsYXRlZCIgPSAiZGFya3JlZCIsCiAgICAiTW9zdCBEb3ducmVndWxhdGVkIiA9ICJkYXJrYmx1ZSIsCiAgICAiVXByZWd1bGF0ZWQiID0gInJlZCIsCiAgICAiRG93bnJlZ3VsYXRlZCIgPSAiYmx1ZSIsCiAgICAiTm90IFNpZ25pZmljYW50IiA9ICJncmV5IgogICkpICsKCiAgIyBBZGQgZ2VuZSBsYWJlbHMgKG9ubHkgZm9yIGhpZ2hseSBzaWduaWZpY2FudCBnZW5lcykKICBnZW9tX3RleHRfcmVwZWwoZGF0YSA9IHRvcF9nZW5lcywgYWVzKGxhYmVsID0gZ2VuZSksICAKICAgICAgICAgICAgICAgICAgc2l6ZSA9IDQsIGJveC5wYWRkaW5nID0gMC41LCBtYXgub3ZlcmxhcHMgPSAxMCwgc2VnbWVudC5jb2xvciA9IE5BKSArCiAgCiAgIyBBZGQgdGhyZXNob2xkIGxpbmVzCiAgZ2VvbV92bGluZSh4aW50ZXJjZXB0ID0gYygtMiwgMiksIGxpbmV0eXBlID0gImRhc2hlZCIsIGNvbG9yID0gImJsYWNrIikgKyAgCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gLWxvZzEwKDAuMDUpLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJibGFjayIpICsgIAoKICAjIEltcHJvdmUgdGhlbWUKICB0aGVtZV9taW5pbWFsKGJhc2Vfc2l6ZSA9IDE0KSArCiAgbGFicyh0aXRsZSA9ICJWb2xjYW5vIFBsb3Q6IFBzZXVkb2J1bGsgREVTZXEyIEFuYWx5c2lzIiwKICAgICAgIHggPSAiTG9nMiBGb2xkIENoYW5nZSIsCiAgICAgICB5ID0gIi1Mb2cxMCBBZGp1c3RlZCBQLVZhbHVlIiwKICAgICAgIGNvbG9yID0gIlNpZ25pZmljYW5jZSIpICsKCiAgeWxpbSgwLCA1MCkgICMgQXZvaWQgZXh0cmVtZSBzY2FsaW5nIGlzc3VlcwoKCmBgYAoKCiMjIEVuaGFuY2VkVm9sY2FubyBwbG90CmBgYHtyICwgZmlnLmhlaWdodD0xMiwgZmlnLndpZHRoPTE2fQoKbGlicmFyeShkcGx5cikKbGlicmFyeShFbmhhbmNlZFZvbGNhbm8pCgojIEFzc3VtaW5nIHlvdSBoYXZlIGEgZGF0YSBmcmFtZSBuYW1lZCBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMKIyBGaWx0ZXIgZ2VuZXMgYmFzZWQgb24gbG93ZXN0IHAtdmFsdWVzIGJ1dCBpbmNsdWRlIGFsbCBnZW5lcwpmaWx0ZXJlZF9nZW5lcyA8LSBtYXJrZXJzICU+JQogIGFycmFuZ2UocF92YWxfYWRqLCBkZXNjKGFicyhhdmdfbG9nRkMpKSkKCiMgQ3JlYXRlIHRoZSBFbmhhbmNlZFZvbGNhbm8gcGxvdCB3aXRoIHRoZSBmaWx0ZXJlZCBkYXRhCkVuaGFuY2VkVm9sY2FubygKICBmaWx0ZXJlZF9nZW5lcywgCiAgbGFiID0gaWZlbHNlKGZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAxZS02ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2dGQykgPj0gMS41LCBmaWx0ZXJlZF9nZW5lcyRnZW5lLCBOQSksCiAgeCA9ICJhdmdfbG9nRkMiLCAKICB5ID0gInBfdmFsX2FkaiIsCiAgdGl0bGUgPSAiTWFsaWduYW50IENENCBUIGNlbGxzKGNlbGwgbGluZXMpIHZzIG5vcm1hbCBDRDQgVCBjZWxscyIsCiAgcEN1dG9mZiA9IDFlLTYsCiAgRkNjdXRvZmYgPSAxLjAsCiAgbGVnZW5kUG9zaXRpb24gPSAncmlnaHQnLCAKICBsYWJDb2wgPSAnYmxhY2snLAogIGxhYkZhY2UgPSAnYm9sZCcsCiAgYm94ZWRMYWJlbHMgPSBGQUxTRSwgICMgU2V0IHRvIEZBTFNFIHRvIHJlbW92ZSBib3hlZCBsYWJlbHMKICBwb2ludFNpemUgPSAzLjAsCiAgbGFiU2l6ZSA9IDUuMCwKICBjb2wgPSBjKCdncmV5NzAnLCAnYmxhY2snLCAnYmx1ZScsICdyZWQnKSwgICMgQ3VzdG9taXplIHBvaW50IGNvbG9ycwogIHNlbGVjdExhYiA9IGZpbHRlcmVkX2dlbmVzJGdlbmVbZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDAuMDUgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZ0ZDKSA+PSAxLjBdICAjIE9ubHkgbGFiZWwgc2lnbmlmaWNhbnQgZ2VuZXMKKQoKCgpgYGAKCgojIyBFbmhhbmNlZFZvbGNhbm8gcGxvdApgYGB7ciAsIGZpZy5oZWlnaHQ9MTIsIGZpZy53aWR0aD0xNn0KCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShFbmhhbmNlZFZvbGNhbm8pCmxpYnJhcnkoZHBseXIpCgojIERlZmluZSB0aGUgb3V0cHV0IGRpcmVjdG9yeQpvdXRwdXRfZGlyIDwtICJWb2xjYW5vX1Bsb3RfTWFsaWduYW50X3ZzX0NvbnRyb2wiCmRpci5jcmVhdGUob3V0cHV0X2Rpciwgc2hvd1dhcm5pbmdzID0gRkFMU0UpCgogTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzIDwtIGZpbHRlcmVkX2dlbmVzCgojIEZpcnN0IFZvbGNhbm8gUGxvdApwMSA8LSBFbmhhbmNlZFZvbGNhbm8oCiAgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzLAogIGxhYiA9IE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRnZW5lLAogIHggPSAiYXZnX2xvZ0ZDIiwKICB5ID0gInBfdmFsX2FkaiIsCiAgdGl0bGUgPSAiTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzIiwKICBwQ3V0b2ZmID0gMWUtNCwKICBGQ2N1dG9mZiA9IDEuMAopCnByaW50KHAxKSAgIyBEaXNwbGF5IGluIG5vdGVib29rCmdnc2F2ZShmaWxlbmFtZSA9IGZpbGUucGF0aChvdXRwdXRfZGlyLCAiVm9sY2Fub1Bsb3QxLnBuZyIpLCBwbG90ID0gcDEsIHdpZHRoID0gMTQsIGhlaWdodCA9IDEwLCBkcGkgPSAzMDApCgojIFNlY29uZCBWb2xjYW5vIFBsb3Qgd2l0aCBzZWxlY3RlZCBnZW5lcwpwMiA8LSBFbmhhbmNlZFZvbGNhbm8oCiAgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzLCAKICBsYWIgPSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkZ2VuZSwKICB4ID0gImF2Z19sb2dGQyIsIAogIHkgPSAicF92YWxfYWRqIiwKICBzZWxlY3RMYWIgPSBjKCdFUENBTScsICdCQ0FUMScsICdLSVIzREwyJywgJ0ZPWE0xJywgJ1RXSVNUMScsICdUTkZTRjknLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0NEODAnLCAgJ0lMMUInLCAnUlBTNFkxJywgIlRPWCIsICJDRDUyIiwgIlRXSVNUMSIsICJDQ1I0IiwgIkNDUjciLCJQRENEMSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdJTDdSJywgJ1RDRjcnLCAgJ01LSTY3JywgJ0NENzAnLCAiRFBQNCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdJTDJSQScsJ1RSQlY2LTInLCAnVFJCVjEwLTMnLCAnVFJCVjQtMicsICdUUkJWOScsICdUUkJWNy05JywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdUUkFWMTItMScsICdDRDhCJywgJ0ZDR1IzQScsICdHTkxZJywgJ0ZPWFAzJywgJ1NFTEwnLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0dJTUFQMScsICdSSVBPUjInLCAnTEVGMScsICdIT1hDOScsICdTUDUnLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnQ0NMMTcnLCAnRVRWNCcsICdUSFkxJywgJ0ZPWEEyJywgJ0lUR0FEJywgJ1MxMDBQJywgJ1RCWDQnLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0lEMScsICdYQ0wxJywgJ1NPWDInLCAnQ0QyNycsICdDRDI4JywnUExTMycsJ0NENzAnLCdSQUIyNScgLCAnVFJCVjI3JywgJ1RSQlYyJyksCiAgdGl0bGUgPSAiTWFsaWduYW50IENENCBUIGNlbGxzKGNlbGwgbGluZXMpIHZzIG5vcm1hbCBDRDQgVCBjZWxscyIsCiAgeGxhYiA9IGJxdW90ZSh+TG9nWzJdfiAnZm9sZCBjaGFuZ2UnKSwKICBwQ3V0b2ZmID0gMC4wNSwKICBGQ2N1dG9mZiA9IDEuNSwgCiAgcG9pbnRTaXplID0gMy4wLAogIGxhYlNpemUgPSA1LjAsCiAgYm94ZWRMYWJlbHMgPSBUUlVFLAogIGNvbEFscGhhID0gMC41LAogIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywKICBsZWdlbmRMYWJTaXplID0gMTAsCiAgbGVnZW5kSWNvblNpemUgPSA0LjAsCiAgZHJhd0Nvbm5lY3RvcnMgPSBUUlVFLAogIHdpZHRoQ29ubmVjdG9ycyA9IDAuNSwKICBjb2xDb25uZWN0b3JzID0gJ2dyZXk1MCcsCiAgYXJyb3doZWFkcyA9IEZBTFNFLAogIG1heC5vdmVybGFwcyA9IDMwCikKcHJpbnQocDIpICAjIERpc3BsYXkgaW4gbm90ZWJvb2sKZ2dzYXZlKGZpbGVuYW1lID0gZmlsZS5wYXRoKG91dHB1dF9kaXIsICJWb2xjYW5vUGxvdDIucG5nIiksIHBsb3QgPSBwMiwgd2lkdGggPSAxNCwgaGVpZ2h0ID0gMTAsIGRwaSA9IDMwMCkKCiMgRmlsdGVyaW5nIGdlbmVzCmZpbHRlcmVkX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyAlPiUKICBhcnJhbmdlKHBfdmFsX2FkaiwgZGVzYyhhYnMoYXZnX2xvZ0ZDKSkpCgojIFRoaXJkIFZvbGNhbm8gUGxvdCAtIEZpbHRlcmluZyBieSBwLXZhbHVlIGFuZCBsb2dGQwpwMyA8LSBFbmhhbmNlZFZvbGNhbm8oCiAgZmlsdGVyZWRfZ2VuZXMsIAogIGxhYiA9IGlmZWxzZShmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMWUtNCAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nRkMpID49IDEuMCwgZmlsdGVyZWRfZ2VuZXMkZ2VuZSwgTkEpLAogIHggPSAiYXZnX2xvZ0ZDIiwgCiAgeSA9ICJwX3ZhbF9hZGoiLAogIHRpdGxlID0gIk1hbGlnbmFudCBDRDQgVCBjZWxscyhjZWxsIGxpbmVzKSB2cyBub3JtYWwgQ0Q0IFQgY2VsbHMiLAogIHBDdXRvZmYgPSAxZS00LAogIEZDY3V0b2ZmID0gMS4wLAogIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywgCiAgbGFiQ29sID0gJ2JsYWNrJywKICBsYWJGYWNlID0gJ2JvbGQnLAogIGJveGVkTGFiZWxzID0gRkFMU0UsICAjIFJlbW92ZSBib3hlZCBsYWJlbHMKICBwb2ludFNpemUgPSAzLjAsCiAgbGFiU2l6ZSA9IDUuMCwKICBjb2wgPSBjKCdncmV5NzAnLCAnYmxhY2snLCAnYmx1ZScsICdyZWQnKSwgICMgQ3VzdG9taXplIHBvaW50IGNvbG9ycwogIHNlbGVjdExhYiA9IGZpbHRlcmVkX2dlbmVzJGdlbmVbZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDAuMDUgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZ0ZDKSA+PSAxLjBdCikKcHJpbnQocDMpICAjIERpc3BsYXkgaW4gbm90ZWJvb2sKZ2dzYXZlKGZpbGVuYW1lID0gZmlsZS5wYXRoKG91dHB1dF9kaXIsICJWb2xjYW5vUGxvdDMucG5nIiksIHBsb3QgPSBwMywgd2lkdGggPSAxNCwgaGVpZ2h0ID0gMTAsIGRwaSA9IDMwMCkKCiMgRm91cnRoIFZvbGNhbm8gUGxvdCAtIE1vcmUgcmVmaW5lZCBmaWx0ZXJpbmcKcDQgPC0gRW5oYW5jZWRWb2xjYW5vKAogIGZpbHRlcmVkX2dlbmVzLCAKICBsYWIgPSBpZmVsc2UoZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDFlLTQgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZ0ZDKSA+PSAxLjAsIGZpbHRlcmVkX2dlbmVzJGdlbmUsIE5BKSwKICB4ID0gImF2Z19sb2dGQyIsIAogIHkgPSAicF92YWxfYWRqIiwKICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMgKGNlbGwgbGluZXMpIHZzIE5vcm1hbCBDRDQgVCBjZWxscyIsCiAgc3VidGl0bGUgPSAiSGlnaGxpZ2h0aW5nIGRpZmZlcmVudGlhbGx5IGV4cHJlc3NlZCBnZW5lcyIsCiAgcEN1dG9mZiA9IDFlLTQsCiAgRkNjdXRvZmYgPSAxLjAsCiAgbGVnZW5kUG9zaXRpb24gPSAncmlnaHQnLAogIGNvbEFscGhhID0gMC44LCAgIyBTbGlnaHQgdHJhbnNwYXJlbmN5IGZvciBub24tc2lnbmlmaWNhbnQgcG9pbnRzCiAgY29sID0gYygnZ3JleTcwJywgJ2JsYWNrJywgJ2JsdWUnLCAncmVkJyksICAjIEN1c3RvbSBjb2xvciBzY2hlbWUKICBncmlkbGluZXMubWFqb3IgPSBUUlVFLAogIGdyaWRsaW5lcy5taW5vciA9IEZBTFNFLAogIHNlbGVjdExhYiA9IGZpbHRlcmVkX2dlbmVzJGdlbmVbZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDAuMDUgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZ0ZDKSA+PSAxLjBdCikKcHJpbnQocDQpICAjIERpc3BsYXkgaW4gbm90ZWJvb2sKZ2dzYXZlKGZpbGVuYW1lID0gZmlsZS5wYXRoKG91dHB1dF9kaXIsICJWb2xjYW5vUGxvdDQucG5nIiksIHBsb3QgPSBwNCwgd2lkdGggPSAxNCwgaGVpZ2h0ID0gMTAsIGRwaSA9IDMwMCkKCm1lc3NhZ2UoIkFsbCB2b2xjYW5vIHBsb3RzIGhhdmUgYmVlbiBkaXNwbGF5ZWQgYW5kIHNhdmVkIHN1Y2Nlc3NmdWxseSBpbiB0aGUgJ01hbGlnbmFudF92c19Db250cm9sJyBmb2xkZXIuIikKCgoKYGBgCiMgNS4gRW5yaWNobWVudCBBbmFseXNpcy1BbGxfUGF0aHdheXMKYGBge3IgLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMn0KIyBMb2FkIG5lY2Vzc2FyeSBsaWJyYXJpZXMKbGlicmFyeShjbHVzdGVyUHJvZmlsZXIpCmxpYnJhcnkob3JnLkhzLmVnLmRiKQpsaWJyYXJ5KGVucmljaHBsb3QpCmxpYnJhcnkoUmVhY3RvbWVQQSkKbGlicmFyeShET1NFKSAjIEZvciBHU0VBIGFuYWx5c2lzCmxpYnJhcnkoZ2dwbG90MikgIyBFbnN1cmUgZ2dwbG90MiBpcyBhdmFpbGFibGUgZm9yIHBsb3R0aW5nCmxpYnJhcnkoZHBseXIpCgojIERlZmluZSB0aGUgb3V0cHV0IGZvbGRlciB3aGVyZSB0aGUgcmVzdWx0cyB3aWxsIGJlIHNhdmVkCm91dHB1dF9mb2xkZXIgPC0gIlAxX3ZzX1AyLyIKCiMgQ3JlYXRlIHRoZSBvdXRwdXQgZm9sZGVyIGlmIGl0IGRvZXNuJ3QgZXhpc3QKaWYgKCFkaXIuZXhpc3RzKG91dHB1dF9mb2xkZXIpKSB7CiAgZGlyLmNyZWF0ZShvdXRwdXRfZm9sZGVyKQp9CgojIERlZmluZSB0aGUgbnVtYmVyIG9mIHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmVzIHRvIHNlbGVjdApVUF9nZW5lcyA8LSAyMDAKRG93bl9nZW5lcyA8LSAzMDAKCiMgRGVmaW5lIHRocmVzaG9sZCBmb3IgZGlmZmVyZW50aWFsIGV4cHJlc3Npb24gc2VsZWN0aW9uIChtb2RpZmllZCB0aHJlc2hvbGRzKQpsb2dGQ191cF90aHJlc2hvbGQgPC0gMS41ICAgICAgICAgICMgVXByZWd1bGF0ZWQgbG9nRkMgdGhyZXNob2xkCmxvZ0ZDX2Rvd25fdGhyZXNob2xkIDwtIC0xLjUgICAgICAgICAjIERvd25yZWd1bGF0ZWQgbG9nRkMgdGhyZXNob2xkCgojIExvYWQgeW91ciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiByZXN1bHRzIChtb2RpZnkgYmFzZWQgb24gYWN0dWFsIGRhdGEgc3RydWN0dXJlKQojIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyA8LSByZWFkLmNzdigiWW91cl9ERV9SZXN1bHRzX0ZpbGUuY3N2IikKCiMgRmlsdGVyIHRoZSBnZW5lcyBiYXNlZCBvbiBhdmdfbG9nRkMgYW5kIGFycmFuZ2UgYnkgcF92YWxfYWRqCmZpbHRlcmVkX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyAlPiUKICBmaWx0ZXIoYXZnX2xvZ0ZDID4gbG9nRkNfdXBfdGhyZXNob2xkIHwgYXZnX2xvZ0ZDIDwgbG9nRkNfZG93bl90aHJlc2hvbGQpICU+JQogIGFycmFuZ2UocF92YWxfYWRqKQoKIyBTZXBhcmF0ZSB1cHJlZ3VsYXRlZCBhbmQgZG93bnJlZ3VsYXRlZCBnZW5lcwp1cHJlZ3VsYXRlZF9nZW5lcyA8LSBmaWx0ZXJlZF9nZW5lcyAlPiUKICBmaWx0ZXIoYXZnX2xvZ0ZDID4gbG9nRkNfdXBfdGhyZXNob2xkKQoKZG93bnJlZ3VsYXRlZF9nZW5lcyA8LSBmaWx0ZXJlZF9nZW5lcyAlPiUKICBmaWx0ZXIoYXZnX2xvZ0ZDIDwgbG9nRkNfZG93bl90aHJlc2hvbGQpCgojIENoZWNrIGlmIHRoZXJlIGFyZSBmZXdlciB0aGFuIHRoZSBzcGVjaWZpZWQgbnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzCmlmIChucm93KHVwcmVndWxhdGVkX2dlbmVzKSA8IFVQX2dlbmVzKSB7CiAgdG9wX3VwcmVndWxhdGVkX2dlbmVzIDwtIHVwcmVndWxhdGVkX2dlbmVzCiAgY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgc2VsZWN0ZWQ6IiwgbnJvdyh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMpLCAiXG4iKQogIGNhdCgicF92YWxfYWRqIHZhbHVlIGZvciB0aGUgbGFzdCBzZWxlY3RlZCB1cHJlZ3VsYXRlZCBnZW5lOiIsIHRhaWwodG9wX3VwcmVndWxhdGVkX2dlbmVzJHBfdmFsX2FkaiwgMSksICJcbiIpCn0gZWxzZSB7CiAgIyBTZWxlY3QgdGhlIHNwZWNpZmllZCBudW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMKICB0b3BfdXByZWd1bGF0ZWRfZ2VuZXMgPC0gdXByZWd1bGF0ZWRfZ2VuZXMgJT4lCiAgICBoZWFkKFVQX2dlbmVzKQogIGNhdCgiTnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzIHNlbGVjdGVkOiIsIG5yb3codG9wX3VwcmVndWxhdGVkX2dlbmVzKSwgIlxuIikKICBjYXQoInBfdmFsX2FkaiB2YWx1ZSBmb3IgdGhlIGxhc3Qgc2VsZWN0ZWQgdXByZWd1bGF0ZWQgZ2VuZToiLCB0YWlsKHRvcF91cHJlZ3VsYXRlZF9nZW5lcyRwX3ZhbF9hZGosIDEpLCAiXG4iKQp9CgojIENoZWNrIGlmIHRoZXJlIGFyZSBmZXdlciB0aGFuIHRoZSBzcGVjaWZpZWQgbnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMKaWYgKG5yb3coZG93bnJlZ3VsYXRlZF9nZW5lcykgPCBEb3duX2dlbmVzKSB7CiAgdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMgPC0gZG93bnJlZ3VsYXRlZF9nZW5lcwogIGNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgc2VsZWN0ZWQ6IiwgbnJvdyh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyksICJcbiIpCiAgY2F0KCJwX3ZhbF9hZGogdmFsdWUgZm9yIHRoZSBsYXN0IHNlbGVjdGVkIGRvd25yZWd1bGF0ZWQgZ2VuZToiLCB0YWlsKHRvcF9kb3ducmVndWxhdGVkX2dlbmVzJHBfdmFsX2FkaiwgMSksICJcbiIpCn0gZWxzZSB7CiAgIyBTZWxlY3QgdGhlIHNwZWNpZmllZCBudW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcwogIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzIDwtIGRvd25yZWd1bGF0ZWRfZ2VuZXMgJT4lCiAgICBoZWFkKERvd25fZ2VuZXMpCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyBzZWxlY3RlZDoiLCBucm93KHRvcF9kb3ducmVndWxhdGVkX2dlbmVzKSwgIlxuIikKICBjYXQoInBfdmFsX2FkaiB2YWx1ZSBmb3IgdGhlIGxhc3Qgc2VsZWN0ZWQgZG93bnJlZ3VsYXRlZCBnZW5lOiIsIHRhaWwodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkcF92YWxfYWRqLCAxKSwgIlxuIikKfQoKIyBDb21iaW5lIHRoZSB0b3AgdXByZWd1bGF0ZWQgYW5kIGRvd25yZWd1bGF0ZWQgZ2VuZXMKdG9wX2dlbmVzIDwtIGJpbmRfcm93cyh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMsIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzKQoKIyBDaGVjayBmb3IgbWlzc2luZyBnZW5lcyAoTkFzKSBpbiB0aGUgZ2VuZSBjb2x1bW4gYW5kIHJlbW92ZSB0aGVtCnRvcF9nZW5lcyA8LSBuYS5vbWl0KHRvcF9nZW5lcykKCiMgU2F2ZSB1cHJlZ3VsYXRlZCBhbmQgZG93bnJlZ3VsYXRlZCBnZW5lIHJlc3VsdHMgdG8gQ1NWCndyaXRlLmNzdih0b3BfdXByZWd1bGF0ZWRfZ2VuZXMsIHBhc3RlMChvdXRwdXRfZm9sZGVyLCAidXByZWd1bGF0ZWRfZ2VuZXMuY3N2IiksIHJvdy5uYW1lcyA9IEZBTFNFKQp3cml0ZS5jc3YodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMsIHBhc3RlMChvdXRwdXRfZm9sZGVyLCAiZG93bnJlZ3VsYXRlZF9nZW5lcy5jc3YiKSwgcm93Lm5hbWVzID0gRkFMU0UpCgojIENvbnZlcnQgZ2VuZSBzeW1ib2xzIHRvIEVudHJleiBJRHMgZm9yIGVucmljaG1lbnQgYW5hbHlzaXMsIHdpdGggY2hlY2tzIGZvciBtaXNzaW5nIHZhbHVlcwp1cHJlZ3VsYXRlZF9lbnRyZXogPC0gYml0cih0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgZnJvbVR5cGUgPSAiU1lNQk9MIiwgdG9UeXBlID0gIkVOVFJFWklEIiwgT3JnRGIgPSBvcmcuSHMuZWcuZGIpCmRvd25yZWd1bGF0ZWRfZW50cmV6IDwtIGJpdHIodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgZnJvbVR5cGUgPSAiU1lNQk9MIiwgdG9UeXBlID0gIkVOVFJFWklEIiwgT3JnRGIgPSBvcmcuSHMuZWcuZGIpCgojIENoZWNrIGZvciBtaXNzaW5nIEVudHJleiBJRHMgYW5kIHJldGFpbiBnZW5lIG5hbWVzCm1pc3NpbmdfdXByZWd1bGF0ZWQgPC0gdG9wX3VwcmVndWxhdGVkX2dlbmVzJGdlbmVbIXRvcF91cHJlZ3VsYXRlZF9nZW5lcyRnZW5lICVpbiUgdXByZWd1bGF0ZWRfZW50cmV6JFNZTUJPTF0KbWlzc2luZ19kb3ducmVndWxhdGVkIDwtIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzJGdlbmVbIXRvcF9kb3ducmVndWxhdGVkX2dlbmVzJGdlbmUgJWluJSBkb3ducmVndWxhdGVkX2VudHJleiRTWU1CT0xdCgojIFByaW50IG91dCB0aGUgbWlzc2luZyBnZW5lIHN5bWJvbHMgZm9yIGRlYnVnZ2luZwpjYXQoIk1pc3NpbmcgdXByZWd1bGF0ZWQgZ2VuZXM6XG4iLCBtaXNzaW5nX3VwcmVndWxhdGVkLCAiXG4iKQpjYXQoIk1pc3NpbmcgZG93bnJlZ3VsYXRlZCBnZW5lczpcbiIsIG1pc3NpbmdfZG93bnJlZ3VsYXRlZCwgIlxuIikKCiMgTWVyZ2UgdGhlIEVudHJleiBJRHMgYmFjayB3aXRoIHRoZSBvcmlnaW5hbCBkYXRhIGZyYW1lcyB0byByZXRhaW4gZ2VuZSBuYW1lcwp0b3BfdXByZWd1bGF0ZWRfZ2VuZXMgPC0gbWVyZ2UodG9wX3VwcmVndWxhdGVkX2dlbmVzLCB1cHJlZ3VsYXRlZF9lbnRyZXosIGJ5LnggPSAiZ2VuZSIsIGJ5LnkgPSAiU1lNQk9MIiwgYWxsLnggPSBUUlVFKQp0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyA8LSBtZXJnZSh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcywgZG93bnJlZ3VsYXRlZF9lbnRyZXosIGJ5LnggPSAiZ2VuZSIsIGJ5LnkgPSAiU1lNQk9MIiwgYWxsLnggPSBUUlVFKQoKIyBSZW1vdmUgZ2VuZXMgdGhhdCBjb3VsZG4ndCBiZSBtYXBwZWQgdG8gRW50cmV6IElEcwp0b3BfdXByZWd1bGF0ZWRfZ2VuZXMgPC0gdG9wX3VwcmVndWxhdGVkX2dlbmVzWyFpcy5uYSh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkRU5UUkVaSUQpLCBdCnRvcF9kb3ducmVndWxhdGVkX2dlbmVzIDwtIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzWyFpcy5uYSh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRFTlRSRVpJRCksIF0KCiMgRXh0cmFjdCBFbnRyZXogSURzIGZvciBlbnJpY2htZW50IGFuYWx5c2lzCnVwcmVndWxhdGVkX2VudHJleiA8LSB0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkRU5UUkVaSUQKZG93bnJlZ3VsYXRlZF9lbnRyZXogPC0gdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkRU5UUkVaSUQKCiMgRGVmaW5lIGEgZnVuY3Rpb24gdG8gc2FmZWx5IHJ1biBlbnJpY2htZW50LCBwbG90IHJlc3VsdHMsIGFuZCBzYXZlIHRoZW0Kc2FmZV9lbnJpY2hHTyA8LSBmdW5jdGlvbihnZW5lX2xpc3QsIHRpdGxlLCBmaWxlbmFtZSkgewogIGlmIChsZW5ndGgoZ2VuZV9saXN0KSA+IDApIHsKICAgIHJlc3VsdCA8LSBlbnJpY2hHTyhnZW5lID0gZ2VuZV9saXN0LCBPcmdEYiA9IG9yZy5Icy5lZy5kYiwga2V5VHlwZSA9ICJTWU1CT0wiLAogICAgICAgICAgICAgICAgICAgICAgIG9udCA9ICJCUCIsIHBBZGp1c3RNZXRob2QgPSAiQkgiLCBwdmFsdWVDdXRvZmYgPSAwLjA1LCByZWFkYWJsZSA9IFRSVUUpCiAgICBpZiAoIWlzLm51bGwocmVzdWx0KSAmJiBucm93KGFzLmRhdGEuZnJhbWUocmVzdWx0KSkgPiAwKSB7CiAgICAgIHAgPC0gZG90cGxvdChyZXN1bHQsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9IHRpdGxlKQogICAgICBwcmludChwKSAgCiAgICAgIGdnc2F2ZShwYXN0ZTAob3V0cHV0X2ZvbGRlciwgZ3N1YigiLmNzdiIsICJfZG90cGxvdC5wbmciLCBmaWxlbmFtZSkpLCBwbG90ID0gcCwgd2lkdGggPSA4LCBoZWlnaHQgPSA2KQogICAgICB3cml0ZS5jc3YoYXMuZGF0YS5mcmFtZShyZXN1bHQpLCBmaWxlID0gcGFzdGUwKG91dHB1dF9mb2xkZXIsIGZpbGVuYW1lKSwgcm93Lm5hbWVzID0gRkFMU0UpCiAgICB9IGVsc2UgewogICAgICBtZXNzYWdlKHBhc3RlKCJObyBzaWduaWZpY2FudCBlbnJpY2htZW50IGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgICB9CiAgfSBlbHNlIHsKICAgIG1lc3NhZ2UocGFzdGUoIk5vIGdlbmVzIGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgfQp9CgpzYWZlX2VucmljaEtFR0cgPC0gZnVuY3Rpb24oZW50cmV6X2xpc3QsIHRpdGxlLCBmaWxlbmFtZSkgewogIGlmIChsZW5ndGgoZW50cmV6X2xpc3QpID4gMCkgewogICAgcmVzdWx0IDwtIGVucmljaEtFR0coZ2VuZSA9IGVudHJlel9saXN0LCBvcmdhbmlzbSA9ICJoc2EiLCBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICAgaWYgKCFpcy5udWxsKHJlc3VsdCkgJiYgbnJvdyhhcy5kYXRhLmZyYW1lKHJlc3VsdCkpID4gMCkgewogICAgICByZXN1bHQgPC0gc2V0UmVhZGFibGUocmVzdWx0LCBPcmdEYiA9IG9yZy5Icy5lZy5kYiwga2V5VHlwZSA9ICJFTlRSRVpJRCIpCiAgICAgIHAgPC0gZG90cGxvdChyZXN1bHQsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9IHRpdGxlKQogICAgICBwcmludChwKQogICAgICBnZ3NhdmUocGFzdGUwKG91dHB1dF9mb2xkZXIsIGdzdWIoIi5jc3YiLCAiX2RvdHBsb3QucG5nIiwgZmlsZW5hbWUpKSwgcGxvdCA9IHAsIHdpZHRoID0gOCwgaGVpZ2h0ID0gNikKICAgICAgd3JpdGUuY3N2KGFzLmRhdGEuZnJhbWUocmVzdWx0KSwgZmlsZSA9IHBhc3RlMChvdXRwdXRfZm9sZGVyLCBmaWxlbmFtZSksIHJvdy5uYW1lcyA9IEZBTFNFKQogICAgfSBlbHNlIHsKICAgICAgbWVzc2FnZShwYXN0ZSgiTm8gc2lnbmlmaWNhbnQgS0VHRyBwYXRod2F5cyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogICAgfQogIH0gZWxzZSB7CiAgICBtZXNzYWdlKHBhc3RlKCJObyBnZW5lcyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogIH0KfQoKc2FmZV9lbnJpY2hSZWFjdG9tZSA8LSBmdW5jdGlvbihlbnRyZXpfbGlzdCwgdGl0bGUsIGZpbGVuYW1lKSB7CiAgaWYgKGxlbmd0aChlbnRyZXpfbGlzdCkgPiAwKSB7CiAgICByZXN1bHQgPC0gZW5yaWNoUGF0aHdheShnZW5lID0gZW50cmV6X2xpc3QsIG9yZ2FuaXNtID0gImh1bWFuIiwgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAgIGlmICghaXMubnVsbChyZXN1bHQpICYmIG5yb3coYXMuZGF0YS5mcmFtZShyZXN1bHQpKSA+IDApIHsKICAgICAgcmVzdWx0IDwtIHNldFJlYWRhYmxlKHJlc3VsdCwgT3JnRGIgPSBvcmcuSHMuZWcuZGIsIGtleVR5cGUgPSAiRU5UUkVaSUQiKQogICAgICBwIDwtIGRvdHBsb3QocmVzdWx0LCBzaG93Q2F0ZWdvcnkgPSAxMCwgdGl0bGUgPSB0aXRsZSkKICAgICAgcHJpbnQocCkKICAgICAgZ2dzYXZlKHBhc3RlMChvdXRwdXRfZm9sZGVyLCBnc3ViKCIuY3N2IiwgIl9kb3RwbG90LnBuZyIsIGZpbGVuYW1lKSksIHBsb3QgPSBwLCB3aWR0aCA9IDgsIGhlaWdodCA9IDYpCiAgICAgIHdyaXRlLmNzdihhcy5kYXRhLmZyYW1lKHJlc3VsdCksIGZpbGUgPSBwYXN0ZTAob3V0cHV0X2ZvbGRlciwgZmlsZW5hbWUpLCByb3cubmFtZXMgPSBGQUxTRSkKICAgIH0gZWxzZSB7CiAgICAgIG1lc3NhZ2UocGFzdGUoIk5vIHNpZ25pZmljYW50IFJlYWN0b21lIHBhdGh3YXlzIGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgICB9CiAgfSBlbHNlIHsKICAgIG1lc3NhZ2UocGFzdGUoIk5vIGdlbmVzIGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgfQp9CgojIFBlcmZvcm0gZW5yaWNobWVudCBhbmFseXNlcywgZ2VuZXJhdGUgcGxvdHMsIGFuZCBzYXZlIHJlc3VsdHMKc2FmZV9lbnJpY2hHTyh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgIkdPIEVucmljaG1lbnQgZm9yIFVwcmVndWxhdGVkIEdlbmVzIiwgInVwcmVndWxhdGVkX0dPX3Jlc3VsdHMuY3N2IikKc2FmZV9lbnJpY2hHTyh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lLCAiR08gRW5yaWNobWVudCBmb3IgRG93bnJlZ3VsYXRlZCBHZW5lcyIsICJkb3ducmVndWxhdGVkX0dPX3Jlc3VsdHMuY3N2IikKCnNhZmVfZW5yaWNoS0VHRyh1cHJlZ3VsYXRlZF9lbnRyZXosICJLRUdHIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiLCAidXByZWd1bGF0ZWRfS0VHR19yZXN1bHRzLmNzdiIpCnNhZmVfZW5yaWNoS0VHRyhkb3ducmVndWxhdGVkX2VudHJleiwgIktFR0cgUGF0aHdheSBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIiwgImRvd25yZWd1bGF0ZWRfS0VHR19yZXN1bHRzLmNzdiIpCgpzYWZlX2VucmljaFJlYWN0b21lKHVwcmVndWxhdGVkX2VudHJleiwgIlJlYWN0b21lIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiLCAidXByZWd1bGF0ZWRfUmVhY3RvbWVfcmVzdWx0cy5jc3YiKQpzYWZlX2VucmljaFJlYWN0b21lKGRvd25yZWd1bGF0ZWRfZW50cmV6LCAiUmVhY3RvbWUgUGF0aHdheSBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIiwgImRvd25yZWd1bGF0ZWRfUmVhY3RvbWVfcmVzdWx0cy5jc3YiKQoKYGBgCgojIyBFbnJpY2htZW50IEFuYWx5c2lzX0hhbGxtYXJrCmBgYHtyICwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CgojIExvYWQgbmVjZXNzYXJ5IGxpYnJhcmllcwpsaWJyYXJ5KGNsdXN0ZXJQcm9maWxlcikKbGlicmFyeShvcmcuSHMuZWcuZGIpCmxpYnJhcnkobXNpZ2RicikKbGlicmFyeShlbnJpY2hwbG90KQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZHBseXIpCgojIERlZmluZSB0aGUgb3V0cHV0IGZvbGRlciB3aGVyZSB0aGUgcmVzdWx0cyB3aWxsIGJlIHNhdmVkCm91dHB1dF9mb2xkZXIgPC0gIlAxX3ZzX1AyIgoKIyBDcmVhdGUgdGhlIG91dHB1dCBmb2xkZXIgaWYgaXQgZG9lc24ndCBleGlzdAppZiAoIWRpci5leGlzdHMob3V0cHV0X2ZvbGRlcikpIHsKICBkaXIuY3JlYXRlKG91dHB1dF9mb2xkZXIpCn0KCiMgTG9hZCBIYWxsbWFyayBnZW5lIHNldHMgZnJvbSBtc2lnZGJyCmhhbGxtYXJrX3NldHMgPC0gbXNpZ2RicihzcGVjaWVzID0gIkhvbW8gc2FwaWVucyIsIGNvbGxlY3Rpb24gPSAiSCIpICAjICJIIiBpcyBmb3IgSGFsbG1hcmsgZ2VuZSBzZXRzCgojIENvbnZlcnQgZ2VuZSBzeW1ib2xzIHRvIHVwcGVyY2FzZSBmb3IgY29uc2lzdGVuY3kKdG9wX3VwcmVndWxhdGVkX2dlbmVzJGdlbmUgPC0gdG91cHBlcih0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSkKdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSA8LSB0b3VwcGVyKHRvcF9kb3ducmVndWxhdGVkX2dlbmVzJGdlbmUpCgojIENoZWNrIGZvciBvdmVybGFwIGJldHdlZW4geW91ciB1cHJlZ3VsYXRlZC9kb3ducmVndWxhdGVkIGdlbmVzIGFuZCBIYWxsbWFyayBnZW5lIHNldHMKdXByZWd1bGF0ZWRfaW5faGFsbG1hcmsgPC0gaW50ZXJzZWN0KHRvcF91cHJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBoYWxsbWFya19zZXRzJGdlbmVfc3ltYm9sKQpkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrIDwtIGludGVyc2VjdCh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBoYWxsbWFya19zZXRzJGdlbmVfc3ltYm9sKQoKIyBQcmludCB0aGUgbnVtYmVyIG9mIG92ZXJsYXBwaW5nIGdlbmVzIGZvciBib3RoIHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmVzCmNhdCgiTnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzIGluIEhhbGxtYXJrIGdlbmUgc2V0czoiLCBsZW5ndGgodXByZWd1bGF0ZWRfaW5faGFsbG1hcmspLCAiXG4iKQpjYXQoIk51bWJlciBvZiBkb3ducmVndWxhdGVkIGdlbmVzIGluIEhhbGxtYXJrIGdlbmUgc2V0czoiLCBsZW5ndGgoZG93bnJlZ3VsYXRlZF9pbl9oYWxsbWFyayksICJcbiIpCgojIElmIHRoZXJlIGFyZSBnZW5lcyB0byBhbmFseXplLCBwcm9jZWVkIHdpdGggZW5yaWNobWVudCBhbmFseXNpcwppZiAobGVuZ3RoKHVwcmVndWxhdGVkX2luX2hhbGxtYXJrKSA+IDApIHsKICAjIFBlcmZvcm0gZW5yaWNobWVudCBhbmFseXNpcyBmb3IgdXByZWd1bGF0ZWQgZ2VuZXMgdXNpbmcgSGFsbG1hcmsgZ2VuZSBzZXRzCiAgaGFsbG1hcmtfdXAgPC0gZW5yaWNoZXIoZ2VuZSA9IHVwcmVndWxhdGVkX2luX2hhbGxtYXJrLCAKICAgICAgICAgICAgICAgICAgICAgICAgICBURVJNMkdFTkUgPSBoYWxsbWFya19zZXRzWywgYygiZ3NfbmFtZSIsICJnZW5lX3N5bWJvbCIpXSwgICMgRW5zdXJlIFRFUk0yR0VORSB1c2VzIGNvcnJlY3QgY29sdW1ucwogICAgICAgICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCiAgIyBDaGVjayBpZiByZXN1bHRzIGV4aXN0CiAgaWYgKCFpcy5udWxsKGhhbGxtYXJrX3VwKSAmJiBucm93KGhhbGxtYXJrX3VwKSA+IDApIHsKICAgICMgVmlzdWFsaXplIHJlc3VsdHMgaWYgYXZhaWxhYmxlCiAgICB1cF9kb3RwbG90IDwtIGRvdHBsb3QoaGFsbG1hcmtfdXAsIHNob3dDYXRlZ29yeSA9IDIwLCB0aXRsZSA9ICJIYWxsbWFyayBQYXRod2F5IEVucmljaG1lbnQgZm9yIFVwcmVndWxhdGVkIEdlbmVzIikKICAgIAogICAgIyBEaXNwbGF5IHRoZSBwbG90IGluIHRoZSBub3RlYm9vawogICAgcHJpbnQodXBfZG90cGxvdCkKICAgIAogICAgIyBTYXZlIHRoZSBkb3RwbG90IHRvIGEgUE5HIGZpbGUKICAgIGdnc2F2ZShwYXN0ZTAob3V0cHV0X2ZvbGRlciwgImhhbGxtYXJrX3VwcmVndWxhdGVkX2RvdHBsb3QucG5nIiksIHBsb3QgPSB1cF9kb3RwbG90LCB3aWR0aCA9IDEwLCBoZWlnaHQgPSA4KQogICAgCiAgICAjIE9wdGlvbmFsbHksIHNhdmUgdGhlIHJlc3VsdHMgYXMgQ1NWCiAgICB3cml0ZS5jc3YoYXMuZGF0YS5mcmFtZShoYWxsbWFya191cCksIGZpbGUgPSBwYXN0ZTAob3V0cHV0X2ZvbGRlciwgImhhbGxtYXJrX3VwcmVndWxhdGVkX2VucmljaG1lbnQuY3N2IiksIHJvdy5uYW1lcyA9IEZBTFNFKQogIH0gZWxzZSB7CiAgICBjYXQoIk5vIHNpZ25pZmljYW50IGVucmljaG1lbnQgZm91bmQgZm9yIHVwcmVndWxhdGVkIGdlbmVzLlxuIikKICB9Cn0gZWxzZSB7CiAgY2F0KCJObyB1cHJlZ3VsYXRlZCBnZW5lcyBvdmVybGFwIHdpdGggSGFsbG1hcmsgZ2VuZSBzZXRzLlxuIikKfQoKaWYgKGxlbmd0aChkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrKSA+IDApIHsKICAjIFBlcmZvcm0gZW5yaWNobWVudCBhbmFseXNpcyBmb3IgZG93bnJlZ3VsYXRlZCBnZW5lcyB1c2luZyBIYWxsbWFyayBnZW5lIHNldHMKICBoYWxsbWFya19kb3duIDwtIGVucmljaGVyKGdlbmUgPSBkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRFUk0yR0VORSA9IGhhbGxtYXJrX3NldHNbLCBjKCJnc19uYW1lIiwgImdlbmVfc3ltYm9sIildLCAgIyBFbnN1cmUgVEVSTTJHRU5FIHVzZXMgY29ycmVjdCBjb2x1bW5zCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICMgQ2hlY2sgaWYgcmVzdWx0cyBleGlzdAogIGlmICghaXMubnVsbChoYWxsbWFya19kb3duKSAmJiBucm93KGhhbGxtYXJrX2Rvd24pID4gMCkgewogICAgIyBWaXN1YWxpemUgcmVzdWx0cyBpZiBhdmFpbGFibGUKICAgIGRvd25fZG90cGxvdCA8LSBkb3RwbG90KGhhbGxtYXJrX2Rvd24sIHNob3dDYXRlZ29yeSA9IDIwLCB0aXRsZSA9ICJIYWxsbWFyayBQYXRod2F5IEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiKQogICAgCiAgICAjIERpc3BsYXkgdGhlIHBsb3QgaW4gdGhlIG5vdGVib29rCiAgICBwcmludChkb3duX2RvdHBsb3QpCiAgICAKICAgICMgU2F2ZSB0aGUgZG90cGxvdCB0byBhIFBORyBmaWxlCiAgICBnZ3NhdmUocGFzdGUwKG91dHB1dF9mb2xkZXIsICJoYWxsbWFya19kb3ducmVndWxhdGVkX2RvdHBsb3QucG5nIiksIHBsb3QgPSBkb3duX2RvdHBsb3QsIHdpZHRoID0gMTAsIGhlaWdodCA9IDgpCiAgICAKICAgICMgT3B0aW9uYWxseSwgc2F2ZSB0aGUgcmVzdWx0cyBhcyBDU1YKICAgIHdyaXRlLmNzdihhcy5kYXRhLmZyYW1lKGhhbGxtYXJrX2Rvd24pLCBmaWxlID0gcGFzdGUwKG91dHB1dF9mb2xkZXIsICJoYWxsbWFya19kb3ducmVndWxhdGVkX2VucmljaG1lbnQuY3N2IiksIHJvdy5uYW1lcyA9IEZBTFNFKQogIH0gZWxzZSB7CiAgICBjYXQoIk5vIHNpZ25pZmljYW50IGVucmljaG1lbnQgZm91bmQgZm9yIGRvd25yZWd1bGF0ZWQgZ2VuZXMuXG4iKQogIH0KfSBlbHNlIHsKICBjYXQoIk5vIGRvd25yZWd1bGF0ZWQgZ2VuZXMgb3ZlcmxhcCB3aXRoIEhhbGxtYXJrIGdlbmUgc2V0cy5cbiIpCn0KCgpgYGAKCgoK