Getting Started with DspikeIn

Mitra Ghotbi

March 21, 2025

1 Required Packages


# ============================================================================
#                         INSTALL CRAN PACKAGES
# ============================================================================

# Install missing CRAN packages
install.packages(setdiff(c("stats", "dplyr", "ggplot2", "flextable", "ggpubr", 
                           "randomForest", "ggridges", "ggalluvial", "tibble", 
                           "matrixStats", "RColorBrewer", "ape", "rlang", 
                           "scales", "magrittr", "phangorn", "igraph", "tidyr", 
                           "xml2", "data.table", "reshape2","vegan", "patchwork", "officer"), 
                         installed.packages()[,"Package"]))

# Load CRAN packages
lapply(c("stats", "dplyr", "ggplot2", "flextable", "ggpubr", "randomForest", 
         "ggridges", "ggalluvial", "tibble", "matrixStats", "RColorBrewer", 
         "ape", "rlang", "scales", "magrittr", "phangorn", "igraph", "tidyr", 
         "xml2", "data.table", "reshape2","vegan", "patchwork", "officer"), library, character.only = TRUE)

# ============================================================================
#                         INSTALL BIOCONDUCTOR PACKAGES
# ============================================================================

# Install BiocManager if not installed
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")

# Install missing Bioconductor packages
BiocManager::install(setdiff(c("phyloseq", "msa", "DESeq2", "ggtree", "edgeR", 
                               "Biostrings", "DECIPHER", "microbiome", "limma", 
                               "S4Vectors", "SummarizedExperiment", "TreeSummarizedExperiment"), 
                             installed.packages()[,"Package"]))

# Load Bioconductor packages
lapply(c("phyloseq", "msa", "DESeq2", "edgeR", "Biostrings", "ggtree", "DECIPHER", 
         "microbiome", "limma", "S4Vectors", "SummarizedExperiment", "TreeSummarizedExperiment"), 
       library, character.only = TRUE)

# ============================================================================
#                         INSTALL GITHUB PACKAGES
# ============================================================================

# Install remotes if not installed
if (!requireNamespace("remotes", quietly = TRUE)) install.packages("remotes")
library(remotes)

# Install missing GitHub packages
remotes::install_github("mikemc/speedyseq")
remotes::install_github("microsud/microbiomeutilities")
# Optional
#devtools::install_github("briatte/ggnet")
#devtools::install_github("zdk123/SpiecEasi")

# Load GitHub packages
library(speedyseq)
library(microbiomeutilities)
#library(SpiecEasi)
#library(ggnet)

# ============================================================================
#                         INSTALL DspikeIn FROM GITHUB
# ============================================================================

# To access the DspikeIn vignette for a detailed tutorial, use vignette("DspikeIn"), or browse all available vignettes with browseVignettes("DspikeIn").
devtools::install_github("mghotbi/DspikeIn", build_vignettes = TRUE, dependencies = TRUE)
browseVignettes("DspikeIn")
vignette("DspikeIn")

## or

if (!requireNamespace("devtools", quietly = TRUE)) install.packages("devtools")
devtools::install_github("mghotbi/DspikeIn")

# Load DspikeIn only if installed
if ("DspikeIn" %in% installed.packages()[, "Package"]) {
  library(DspikeIn)
} else {
  stop("DspikeIn installation failed. Check errors above.")
}

2 DspikeIn requirements

3 seven taxonomic ranks


# =====================================================================
#             To remove strain from the taxonomic ranks
# =====================================================================

library(phyloseq)
# Function to remove strain information from taxonomy columns
remove_strain_info <- function(tax_table) {
  # Define the regex pattern for common strain identifiers
  pattern <- "Strain.*|strain.*|\\s*\\[.*\\]|\\s*\\(.*\\)"  # Adjust the regex to match specific strain formats
  # Apply the pattern to each column of the taxonomy table
  for (col in colnames(tax_table)) { 
    tax_table[, col] <- gsub(pattern, "", tax_table[, col])  # Remove strain info
    tax_table[, col] <- trimws(tax_table[, col])  # Trim trailing whitespace
  }
    return(tax_table)}
# Step 1: Extract the taxonomy table
taxonomy <- tax_table(ps)
# Step 2: Remove strain information (including the `Strain` column)
cleaned_taxonomy <- remove_strain_info(taxonomy)
# Remove the `Strain` column if it exists
if ("Strain" %in% colnames(cleaned_taxonomy)) {
  cleaned_taxonomy <- cleaned_taxonomy[, colnames(cleaned_taxonomy) != "Strain"]}
# Step 3: Update the taxonomy table in the phyloseq object
tax_table(ps) <- cleaned_taxonomy
# Step 4: Verify the changes
print(head(tax_table(ps)))  # Display the first few rows



# =====================================================================
#             To add species rank to the taxonomic ranks
# =====================================================================

library(phyloseq)
# Step 1: Extract taxonomy table safely
taxonomy <- as.data.frame(as.matrix(tax_table(ps)))
if (!"Genus" %in% colnames(taxonomy)) {
  stop("The 'Genus' column is missing in the taxonomy table")
}
# Step 2: Create a new 'species' column
taxonomy$species <- paste0(taxonomy$Genus, "_OTU", seq_len(nrow(taxonomy)))
# Step 3: Assign back to phyloseq obj
tax_table(ps) <- tax_table(as.matrix(taxonomy))

4 In case there are several OTUs/ASVs resulting from the spiked species, you may want to check the phylogenetic distances.


# In case there are several OTUs/ASVs resulting from the spiked species, you may want to check the phylogenetic distances.
# We first read DNA sequences from a FASTA file, to perform multiple sequence alignment and compute a distance matrix using the maximum likelihood method, then we construct a phylogenetic tree
# Use the Neighbor-Joining method  based on a Jukes-Cantor distance matrix and plot the tree with bootstrap values.
# we compare the Sanger read of Tetragenococcus halophilus with the FASTA sequence of Tetragenococcus halophilus from our phyloseq object.

library(Biostrings)
library(phyloseq)

# Get path to external data folder
extdata_path <- system.file("extdata", package = "DspikeIn")
data("physeq_ITSOTU",package = "DspikeIn")

list.files(extdata_path)

# Subset the phyloseq object to include only Tetragenococcus species first
Dekkera <- subset_taxa(physeq_ITSOTU, Genus=="Dekkera")
Dekkera <- subset_taxa(Dekkera, !is.na(taxa_names(Dekkera)) & taxa_names(Dekkera) != "")

plot_tree_nj(Dekkera, output_file = "neighbor_joining_tree_with_bootstrap.png")

5 Validation


# Plot phylogenetic tree
plot_tree_custom(Dekkera, output_prefix = "p0", width = 18, height = 18, layout = "circular")


# Plot the phylogenetic tree with multiple sequence alignment
# you may use the highlighted #-codes to find relevant OTUs with more than ~0.2 branch length
plot_tree_with_alignment(Dekkera, output_prefix = "tree_alignment", width = 15, height = 15)

# Plot phylogenetic tree with bootstrap values and cophenetic distances
Bootstrap_phy_tree_with_cophenetic(Dekkera, output_file = "tree_with_bootstrap_and_cophenetic.png", bootstrap_replicates = 500)

# Plot the tree with glommed OTUs at 0.3 resolution/ or modify it
plot_glommed_tree(Dekkera, resolution = 0.3, output_prefix = "top", width = 18, height = 18)

6 Pre_processing

# merges ASVs/OTUs**

#The function Pre_processing_species() merges ASVs of a species using "sum" or "max" methods, preserving #taxonomic, phylogenetic, and sequencing data.

# =====================================================================
#                      Load the phyloseq objs/ TSE obj
# =====================================================================

library(phyloseq)
library(DspikeIn)
library(TreeSummarizedExperiment)
library(SummarizedExperiment)

data("physeq_ITSOTU", package = "DspikeIn")

# tse_ITSOTU <- convert_phyloseq_to_tse(physeq_ITSOTU)
# physeq_ITSOTU <- convert_tse_to_phyloseq(tse_ITSOTU)

physeq_ITSOTU <- DspikeIn::tidy_phyloseq_tse(physeq_ITSOTU)  # make it tidy 

# Check if metadata contains spiked volumes 
physeq_ITSOTU@sam_data$spiked.volume
#>   [1] 0 0 0 2 2 2 1 2 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2
#>  [38] 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#>  [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 2 0 0 0 2 2 2 2 2 2 2 2
#> [149] 2 2 2 2 2 2 2 0 0 0 2 2 2 2 2 2 2 0 0 0 2 0 0 0 2 2 2 0 0 0 2 2 2 2 2 2 2
#> [186] 0 0 0 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 2 0 0 0 2 2 2 0 0 0 2 2 2 2 0 0 0 2 2
#> [223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1

8 Calculating Scaling Factors

#
# =====================================================================
#                      CALCULATE SCALING FACTORS 
# =====================================================================
# Calculate scaling factors
  
result <- calculate_spikeIn_factors(Spiked_ITS_sum_scaled, spiked_cells, merged_spiked_species)
#> Extracting taxonomy and sample data...
#> Removing spiked species...
#> 🧮 Calculating total reads per sample...
#> âž– Extracting spiked species...
#> âž• Merging spiked species...
#> 🧮 Calculating scaling factors...
result$spiked_species_merged
#> phyloseq-class experiment-level object
#> otu_table()   OTU Table:          [ 1 taxa and 240 samples ]:
#> sample_data() Sample Data:        [ 240 samples by 32 sample variables ]:
#> tax_table()   Taxonomy Table:     [ 1 taxa by 7 taxonomic ranks ]:
#> refseq()      DNAStringSet:       [ 1 reference sequences ]
#> taxa are rows
result$spiked_species_reads
#> # A tibble: 240 × 2
#>    Sample                  Total_Reads
#>    <chr>                         <dbl>
#>  1 spiked.blank.20529_S180       51352
#>  2 spiked.blank.20913_S180       48471
#>  3 Std2uL.20721_S180             66229
#>  4 StdSwab1uL.20720_S168         53977
#>  5 STP1719.20518_S143            18165
#>  6 STP213.20519_S155              2547
#>  7 STP268.20520_S167              1332
#>  8 STP544.20515_S107             28061
#>  9 STP570.20516_S119             13722
#> 10 STP579.20517_S131             30845
#> # ℹ 230 more rows
scaling_factors <- result$scaling_factors
scaling_factors
#> spiked.blank.20529_S180 spiked.blank.20913_S180       Std2uL.20721_S180 
#>             0.014274030             0.015122444             0.011067659 
#>   StdSwab1uL.20720_S168      STP1719.20518_S143       STP213.20519_S155 
#>             0.006789929             0.040352326             0.287789556 
#>       STP268.20520_S167       STP544.20515_S107       STP570.20516_S119 
#>             0.550300300             0.026121664             0.053417869 
#>       STP579.20517_S131       STP614.20514_S190      UHM1000.20700_S118 
#>             0.023763981             0.690857681             1.559574468 
#>      UHM1001.20705_S178      UHM1007.20718_S144      UHM1009.20710_S143 
#>             0.110291905             0.640734266             0.339037928 
#>      UHM1010.20717_S132      UHM1011.20702_S142      UHM1024.20716_S120 
#>             0.060850075             0.057662052             0.028369069 
#>      UHM1026.20703_S154      UHM1028.20709_S131      UHM1032.20701_S130 
#>             0.073653537             0.348384030             0.060468570 
#>      UHM1033.20715_S108      UHM1034.20712_S167      UHM1035.20707_S107 
#>             0.096219480            18.325000000             0.087616543 
#>      UHM1036.20708_S119      UHM1052.20711_S155       UHM1060.20819_S97 
#>             0.294377510             0.083238701             0.028247717 
#>      UHM1065.20820_S109      UHM1068.20828_S110      UHM1069.20838_S135 
#>             0.047147360             0.242474363             0.211239193 
#>      UHM1070.20821_S121      UHM1071.20829_S122      UHM1072.20830_S134 
#>             0.061820022             0.331074977             0.096257387 
#>      UHM1073.20831_S146      UHM1075.20822_S133      UHM1077.20832_S158 
#>             3.683417085             0.280091708             0.049580628 
#>      UHM1078.20823_S145      UHM1080.20833_S170      UHM1081.20824_S157 
#>             1.199672668             0.955671447             0.540959410 
#>      UHM1088.20834_S182       UHM1090.20835_S99      UHM1093.20825_S169 
#>             0.460138104             0.183021223             0.453308596 
#>      UHM1095.20826_S181      UHM1097.20719_S156      UHM1099.20704_S166 
#>             0.200163845             0.027154182             0.034924719 
#>      UHM1100.20884_S117      UHM1102.20885_S129      UHM1104.20886_S141 
#>            12.423728814             2.655797101             1.692840647 
#>      UHM1105.20887_S153       UHM1109.20627_S97      UHM1110.20664_S161 
#>             1.337591241             0.179612840            28.192307692 
#>      UHM1113.20888_S165      UHM1114.20889_S177      UHM1115.20890_S189 
#>             0.495605139             0.614417435             6.787037037 
#>      UHM1117.20891_S106      UHM1118.20892_S118      UHM1120.20893_S130 
#>             5.682170543             1.385633270             1.732860520 
#>      UHM1124.20894_S142      UHM1126.20895_S154      UHM1128.20896_S166 
#>             1.846347607             1.981081081             9.644736842 
#>      UHM1140.20651_S100      UHM1145.20897_S178      UHM1163.20501_S129 
#>             1.138198758             2.188059701             0.617523168 
#>      UHM1164.20498_S188      UHM1169.20648_S159      UHM1171.20675_S103 
#>             0.079251811             0.049440173            12.216666667 
#>      UHM1176.20500_S117      UHM1177.20642_S182      UHM1182.20672_S162 
#>             1.272569444             0.028440616             1.150706436 
#>      UHM1210.20898_S190      UHM1212.20899_S107      UHM1217.20900_S119 
#>             3.646766169             1.213576159             0.667577413 
#>      UHM1218.20901_S131      UHM1219.20902_S143      UHM1220.20903_S155 
#>             1.315978456            10.471428571             3.665000000 
#>      UHM1221.20904_S167      UHM1222.20905_S179      UHM1223.20906_S191 
#>             1.918848168             0.102661064             4.639240506 
#>      UHM1225.20907_S108      UHM1227.20908_S120      UHM1228.20909_S132 
#>             2.262345679             1.227805695             6.429824561 
#>      UHM1237.20910_S144      UHM1240.20662_S137      UHM1246.20911_S156 
#>             1.240270728             0.111516811             0.530390738 
#>      UHM1247.20912_S168      UHM1248.20671_S150      UHM1256.20666_S185 
#>             1.147104851             0.025198529             0.063683753 
#>      UHM1260.20692_S117      UHM1270.20673_S174      UHM1271.20493_S128 
#>             0.771578947             0.087900228             0.538179148 
#>      UHM1272.20494_S140      UHM1274.20650_S183      UHM1275.20693_S129 
#>             0.272998138             0.255757153             1.274782609 
#>      UHM1282.20695_S153      UHM1287.20639_S146      UHM1291.20512_S166 
#>             1.074780059             0.207179197             0.289837881 
#>      UHM1296.20646_S135      UHM1319.20657_S172      UHM1324.20509_S130 
#>            11.453125000             1.586580087             0.371703854 
#>      UHM1327.20641_S170      UHM1328.20668_S114      UHM1334.20513_S178 
#>            12.016393443             0.021200289             0.925505051 
#>      UHM1338.20495_S152      UHM1341.20698_S189      UHM1356.20637_S122 
#>             0.104894104             0.014220860             0.020272139 
#>      UHM1380.20676_S115      UHM1383.20690_S188      UHM1385.20659_S101 
#>             2.863281250             1.480808081             0.048424391 
#>      UHM1399.20852_S113      UHM1400.20853_S125      UHM1401.20854_S137 
#>             0.204863052             0.090628091             0.085301990 
#>      UHM1402.20855_S149      UHM1403.20856_S161      UHM1405.20857_S173 
#>             1.000000000             0.153926921             0.603292181 
#>      UHM1406.20858_S185      UHM1414.20859_S102      UHM1419.20860_S114 
#>             0.060284563             1.440078585             0.319389978 
#>      UHM1427.20485_S127      UHM1428.20486_S139      UHM1429.20487_S151 
#>             0.536996337            22.212121212            13.830188679 
#>      UHM1430.20488_S163      UHM1432.20489_S175      UHM1435.20484_S115 
#>             5.682170543             4.524691358             1.514462810 
#>       UHM162.20656_S160       UHM198.20681_S175       UHM200.20670_S138 
#>             0.480655738             0.395148248             1.283712785 
#>       UHM203.20685_S128       UHM204.20505_S177       UHM206.20506_S189 
#>             0.607794362             0.275667544             0.053519276 
#>       UHM207.20689_S176       UHM208.20507_S106       UHM211.20502_S141 
#>             0.903822441             0.830124575             0.064913213 
#>       UHM215.20504_S165       UHM216.20525_S132       UHM219.20526_S144 
#>             0.218479881             0.044916968             0.015032814 
#>       UHM236.20527_S156       UHM238.20503_S153       UHM245.20634_S181 
#>             0.036143984             0.103239437             0.373788883 
#>       UHM252.20654_S136       UHM267.20496_S164       UHM274.20677_S127 
#>             0.859320047             0.478772044             0.393029491 
#>       UHM276.20682_S187       UHM280.20497_S176       UHM286.20521_S179 
#>             0.287450980             0.161063503             0.640734266 
#>       UHM289.20522_S191       UHM294.20523_S108       UHM298.20696_S165 
#>             0.249829584             0.408584169             5.020547945 
#>       UHM325.20644_S111       UHM337.20508_S118       UHM354.20631_S145 
#>             1.217607973             0.881009615            23.645161290 
#>       UHM356.20511_S154       UHM369.20869_S127       UHM370.20870_S139 
#>             0.213391557             1.000000000             1.377819549 
#>       UHM372.20871_S151       UHM373.20872_S163       UHM374.20873_S175 
#>             0.609310058             1.313620072             7.186274510 
#>       UHM375.20874_S187       UHM377.20875_S104       UHM382.20876_S116 
#>             0.527338129             1.539915966            10.180555556 
#>       UHM386.20877_S128       UHM387.20878_S140       UHM414.20679_S151 
#>             2.599290780             3.919786096             5.161971831 
#>       UHM418.20861_S126       UHM422.20862_S138       UHM425.20863_S150 
#>             3.739795918             0.109142347             1.163492063 
#>       UHM426.20630_S133       UHM428.20640_S158       UHM429.20655_S148 
#>             0.032558966             6.373913043             0.068755276 
#>        UHM435.20643_S99       UHM437.20864_S162       UHM439.20660_S113 
#>             0.186942107             2.227963526             1.141744548 
#>       UHM443.20524_S120       UHM445.20665_S173       UHM447.20879_S152 
#>             1.000000000            73.300000000            14.959183673 
#>       UHM448.20865_S174       UHM452.20880_S164       UHM454.20866_S186 
#>             0.330477908             0.840596330             1.665909091 
#>       UHM455.20881_S176       UHM458.20882_S188       UHM459.20883_S105 
#>             2.118497110            14.372549020             5.470149254 
#>       UHM461.20867_S103       UHM467.20868_S115       UHM470.20629_S121 
#>             0.187756148             2.341853035             0.645814978 
#>       UHM476.20510_S142       UHM478.20645_S123       UHM479.20647_S147 
#>             0.554882665             0.047244602             0.015253990 
#>       UHM481.20499_S105       UHM482.20686_S140       UHM483.20699_S106 
#>             0.085084156             0.029153243             3.646766169 
#>       UHM519.20678_S139       UHM520.20669_S126       UHM836.20481_S174 
#>             0.468969930            16.659090909             0.410414334 
#>       UHM837.20482_S186       UHM838.20483_S103       UHM891.20480_S162 
#>             0.146688013            12.216666667             7.715789474 
#>       UHM892.20628_S109       UHM893.20691_S105       UHM894.20636_S110 
#>             2.714814815            28.192307692            15.270833333 
#>       UHM895.20632_S157       UHM896.20697_S177       UHM897.20687_S152 
#>             1.800982801            15.934782609             3.898936170 
#>       UHM898.20490_S187       UHM899.20684_S116       UHM900.20491_S104 
#>             2.704797048             1.000000000            22.212121212 
#>       UHM901.20638_S134       UHM902.20680_S163       UHM903.20683_S104 
#>             1.658371041             0.371515459             0.273609556 
#>       UHM904.20663_S149       UHM905.20694_S141       UHM906.20661_S125 
#>             3.041493776             3.092827004            29.320000000 
#>       UHM907.20688_S164       UHM908.20492_S116       UHM909.20653_S124 
#>             0.241914191             0.468670077             0.047974344 
#>       UHM910.20658_S184       UHM965.20633_S169       UHM966.20839_S147 
#>             0.495270270             0.165127281             0.089412052 
#>       UHM967.20840_S159       UHM968.20667_S102       UHM969.20841_S171 
#>             1.255136986             0.012972533             5.429629630 
#>       UHM971.20842_S183       UHM973.20674_S186       UHM974.20528_S168 
#>             2.070621469             0.168235024             0.015603380 
#>       UHM975.20843_S100       UHM977.20844_S112       UHM978.20845_S124 
#>             2.468013468             0.420298165             7.479591837 
#>       UHM979.20846_S136        UHM980.20827_S98        UHM981.20635_S98 
#>             1.749403341             0.049925078             0.109305100 
#>       UHM982.20836_S111       UHM983.20652_S112       UHM984.20847_S148 
#>             4.759740260             0.442632850             5.682170543 
#>       UHM985.20848_S160       UHM988.20849_S172       UHM989.20850_S184 
#>             0.421022401             0.110474755             3.646766169 
#>       UHM991.20851_S101       UHM993.20837_S123       UHM996.20706_S190 
#>             0.174192015             3.159482759             0.025157880 
#>       UHM997.20649_S171       UHM998.20714_S191       UHM999.20713_S179 
#>             0.383970665             0.024668506             1.138198758
str(scaling_factors)
#>  Named num [1:240] 0.01427 0.01512 0.01107 0.00679 0.04035 ...
#>  - attr(*, "names")= chr [1:240] "spiked.blank.20529_S180" "spiked.blank.20913_S180" "Std2uL.20721_S180" "StdSwab1uL.20720_S168" ...

9 Convert relative counts to absolute counts

# =====================================================================
#             Convert relative counts to absolute counts
# =====================================================================
#**Absolute Read Count=Relative Read Count×Scaling Factor**

# Convert to absolute counts
absolute <- convert_to_absolute_counts(Spiked_ITS_sum_scaled, scaling_factors)

# Extract processed data
absolute_counts <- absolute$absolute_counts
physeq_absolute <- absolute$obj_adj

physeq_absolute <- tidy_phyloseq_tse(physeq_absolute)
# View absolute count data
head(absolute_counts)
#> # A tibble: 6 × 240
#>   spiked.blank.20529_S180 spiked.blank.20913_S180 Std2uL.20721_S180
#>                     <dbl>                   <dbl>             <dbl>
#> 1                       0                       0                 0
#> 2                       0                       0                 0
#> 3                       0                       0                 0
#> 4                       0                       0                 0
#> 5                       0                       0                 0
#> 6                       0                       0                 0
#> # ℹ 237 more variables: StdSwab1uL.20720_S168 <dbl>, STP1719.20518_S143 <dbl>,
#> #   STP213.20519_S155 <dbl>, STP268.20520_S167 <dbl>, STP544.20515_S107 <dbl>,
#> #   STP570.20516_S119 <dbl>, STP579.20517_S131 <dbl>, STP614.20514_S190 <dbl>,
#> #   UHM1000.20700_S118 <dbl>, UHM1001.20705_S178 <dbl>,
#> #   UHM1007.20718_S144 <dbl>, UHM1009.20710_S143 <dbl>,
#> #   UHM1010.20717_S132 <dbl>, UHM1011.20702_S142 <dbl>,
#> #   UHM1024.20716_S120 <dbl>, UHM1026.20703_S154 <dbl>, …

10 Summary Stat


# =====================================================================
#                      CALCULATE SPIKE PERCENTAGE & summary stat
# =====================================================================

#**Calculate spike percentage & Generate summary statistics for absolute counts**

# Generate summary statistics for absolute counts
post_eval_summary <- calculate_summary_stats_table(absolute_counts)
#> 💾    Table saved in docx format: post_eval_summary.docx 
#> 💾    Summary statistics saved as CSV: post_eval_summary.csv
print(post_eval_summary)
#> a flextable object.
#> col_keys: `spiked.blank.20529_S180_mean`, `spiked.blank.20913_S180_mean`, `Std2uL.20721_S180_mean`, `StdSwab1uL.20720_S168_mean`, `STP1719.20518_S143_mean`, `STP213.20519_S155_mean`, `STP268.20520_S167_mean`, `STP544.20515_S107_mean`, `STP570.20516_S119_mean`, `STP579.20517_S131_mean`, `STP614.20514_S190_mean`, `UHM1000.20700_S118_mean`, `UHM1001.20705_S178_mean`, `UHM1007.20718_S144_mean`, `UHM1009.20710_S143_mean`, `UHM1010.20717_S132_mean`, `UHM1011.20702_S142_mean`, `UHM1024.20716_S120_mean`, `UHM1026.20703_S154_mean`, `UHM1028.20709_S131_mean`, `UHM1032.20701_S130_mean`, `UHM1033.20715_S108_mean`, `UHM1034.20712_S167_mean`, `UHM1035.20707_S107_mean`, `UHM1036.20708_S119_mean`, `UHM1052.20711_S155_mean`, `UHM1060.20819_S97_mean`, `UHM1065.20820_S109_mean`, `UHM1068.20828_S110_mean`, `UHM1069.20838_S135_mean`, `UHM1070.20821_S121_mean`, `UHM1071.20829_S122_mean`, `UHM1072.20830_S134_mean`, `UHM1073.20831_S146_mean`, `UHM1075.20822_S133_mean`, `UHM1077.20832_S158_mean`, `UHM1078.20823_S145_mean`, `UHM1080.20833_S170_mean`, `UHM1081.20824_S157_mean`, `UHM1088.20834_S182_mean`, `UHM1090.20835_S99_mean`, `UHM1093.20825_S169_mean`, `UHM1095.20826_S181_mean`, `UHM1097.20719_S156_mean`, `UHM1099.20704_S166_mean`, `UHM1100.20884_S117_mean`, `UHM1102.20885_S129_mean`, `UHM1104.20886_S141_mean`, `UHM1105.20887_S153_mean`, `UHM1109.20627_S97_mean`, `UHM1110.20664_S161_mean`, `UHM1113.20888_S165_mean`, `UHM1114.20889_S177_mean`, `UHM1115.20890_S189_mean`, `UHM1117.20891_S106_mean`, `UHM1118.20892_S118_mean`, `UHM1120.20893_S130_mean`, `UHM1124.20894_S142_mean`, `UHM1126.20895_S154_mean`, `UHM1128.20896_S166_mean`, `UHM1140.20651_S100_mean`, `UHM1145.20897_S178_mean`, `UHM1163.20501_S129_mean`, `UHM1164.20498_S188_mean`, `UHM1169.20648_S159_mean`, `UHM1171.20675_S103_mean`, `UHM1176.20500_S117_mean`, `UHM1177.20642_S182_mean`, `UHM1182.20672_S162_mean`, `UHM1210.20898_S190_mean`, `UHM1212.20899_S107_mean`, `UHM1217.20900_S119_mean`, `UHM1218.20901_S131_mean`, `UHM1219.20902_S143_mean`, `UHM1220.20903_S155_mean`, `UHM1221.20904_S167_mean`, `UHM1222.20905_S179_mean`, `UHM1223.20906_S191_mean`, `UHM1225.20907_S108_mean`, `UHM1227.20908_S120_mean`, `UHM1228.20909_S132_mean`, `UHM1237.20910_S144_mean`, `UHM1240.20662_S137_mean`, `UHM1246.20911_S156_mean`, `UHM1247.20912_S168_mean`, `UHM1248.20671_S150_mean`, `UHM1256.20666_S185_mean`, `UHM1260.20692_S117_mean`, `UHM1270.20673_S174_mean`, `UHM1271.20493_S128_mean`, `UHM1272.20494_S140_mean`, `UHM1274.20650_S183_mean`, `UHM1275.20693_S129_mean`, `UHM1282.20695_S153_mean`, `UHM1287.20639_S146_mean`, `UHM1291.20512_S166_mean`, `UHM1296.20646_S135_mean`, `UHM1319.20657_S172_mean`, `UHM1324.20509_S130_mean`, `UHM1327.20641_S170_mean`, `UHM1328.20668_S114_mean`, `UHM1334.20513_S178_mean`, `UHM1338.20495_S152_mean`, `UHM1341.20698_S189_mean`, `UHM1356.20637_S122_mean`, `UHM1380.20676_S115_mean`, `UHM1383.20690_S188_mean`, `UHM1385.20659_S101_mean`, `UHM1399.20852_S113_mean`, `UHM1400.20853_S125_mean`, `UHM1401.20854_S137_mean`, `UHM1402.20855_S149_mean`, `UHM1403.20856_S161_mean`, `UHM1405.20857_S173_mean`, `UHM1406.20858_S185_mean`, `UHM1414.20859_S102_mean`, `UHM1419.20860_S114_mean`, `UHM1427.20485_S127_mean`, `UHM1428.20486_S139_mean`, `UHM1429.20487_S151_mean`, `UHM1430.20488_S163_mean`, `UHM1432.20489_S175_mean`, `UHM1435.20484_S115_mean`, `UHM162.20656_S160_mean`, `UHM198.20681_S175_mean`, `UHM200.20670_S138_mean`, `UHM203.20685_S128_mean`, `UHM204.20505_S177_mean`, `UHM206.20506_S189_mean`, `UHM207.20689_S176_mean`, `UHM208.20507_S106_mean`, `UHM211.20502_S141_mean`, `UHM215.20504_S165_mean`, `UHM216.20525_S132_mean`, `UHM219.20526_S144_mean`, `UHM236.20527_S156_mean`, `UHM238.20503_S153_mean`, `UHM245.20634_S181_mean`, `UHM252.20654_S136_mean`, `UHM267.20496_S164_mean`, `UHM274.20677_S127_mean`, `UHM276.20682_S187_mean`, `UHM280.20497_S176_mean`, `UHM286.20521_S179_mean`, `UHM289.20522_S191_mean`, `UHM294.20523_S108_mean`, `UHM298.20696_S165_mean`, `UHM325.20644_S111_mean`, `UHM337.20508_S118_mean`, `UHM354.20631_S145_mean`, `UHM356.20511_S154_mean`, `UHM369.20869_S127_mean`, `UHM370.20870_S139_mean`, `UHM372.20871_S151_mean`, `UHM373.20872_S163_mean`, `UHM374.20873_S175_mean`, `UHM375.20874_S187_mean`, `UHM377.20875_S104_mean`, `UHM382.20876_S116_mean`, `UHM386.20877_S128_mean`, `UHM387.20878_S140_mean`, `UHM414.20679_S151_mean`, `UHM418.20861_S126_mean`, `UHM422.20862_S138_mean`, `UHM425.20863_S150_mean`, `UHM426.20630_S133_mean`, `UHM428.20640_S158_mean`, `UHM429.20655_S148_mean`, `UHM435.20643_S99_mean`, `UHM437.20864_S162_mean`, `UHM439.20660_S113_mean`, `UHM443.20524_S120_mean`, `UHM445.20665_S173_mean`, `UHM447.20879_S152_mean`, `UHM448.20865_S174_mean`, `UHM452.20880_S164_mean`, `UHM454.20866_S186_mean`, `UHM455.20881_S176_mean`, `UHM458.20882_S188_mean`, `UHM459.20883_S105_mean`, `UHM461.20867_S103_mean`, `UHM467.20868_S115_mean`, `UHM470.20629_S121_mean`, `UHM476.20510_S142_mean`, `UHM478.20645_S123_mean`, `UHM479.20647_S147_mean`, `UHM481.20499_S105_mean`, `UHM482.20686_S140_mean`, `UHM483.20699_S106_mean`, `UHM519.20678_S139_mean`, `UHM520.20669_S126_mean`, `UHM836.20481_S174_mean`, `UHM837.20482_S186_mean`, `UHM838.20483_S103_mean`, `UHM891.20480_S162_mean`, `UHM892.20628_S109_mean`, `UHM893.20691_S105_mean`, `UHM894.20636_S110_mean`, `UHM895.20632_S157_mean`, `UHM896.20697_S177_mean`, `UHM897.20687_S152_mean`, `UHM898.20490_S187_mean`, `UHM899.20684_S116_mean`, `UHM900.20491_S104_mean`, `UHM901.20638_S134_mean`, `UHM902.20680_S163_mean`, `UHM903.20683_S104_mean`, `UHM904.20663_S149_mean`, `UHM905.20694_S141_mean`, `UHM906.20661_S125_mean`, `UHM907.20688_S164_mean`, `UHM908.20492_S116_mean`, `UHM909.20653_S124_mean`, `UHM910.20658_S184_mean`, `UHM965.20633_S169_mean`, `UHM966.20839_S147_mean`, `UHM967.20840_S159_mean`, `UHM968.20667_S102_mean`, `UHM969.20841_S171_mean`, `UHM971.20842_S183_mean`, `UHM973.20674_S186_mean`, `UHM974.20528_S168_mean`, `UHM975.20843_S100_mean`, `UHM977.20844_S112_mean`, `UHM978.20845_S124_mean`, `UHM979.20846_S136_mean`, `UHM980.20827_S98_mean`, `UHM981.20635_S98_mean`, `UHM982.20836_S111_mean`, `UHM983.20652_S112_mean`, `UHM984.20847_S148_mean`, `UHM985.20848_S160_mean`, `UHM988.20849_S172_mean`, `UHM989.20850_S184_mean`, `UHM991.20851_S101_mean`, `UHM993.20837_S123_mean`, `UHM996.20706_S190_mean`, `UHM997.20649_S171_mean`, `UHM998.20714_S191_mean`, `UHM999.20713_S179_mean`, `spiked.blank.20529_S180_sd`, `spiked.blank.20913_S180_sd`, `Std2uL.20721_S180_sd`, `StdSwab1uL.20720_S168_sd`, `STP1719.20518_S143_sd`, `STP213.20519_S155_sd`, `STP268.20520_S167_sd`, `STP544.20515_S107_sd`, `STP570.20516_S119_sd`, `STP579.20517_S131_sd`, `STP614.20514_S190_sd`, `UHM1000.20700_S118_sd`, `UHM1001.20705_S178_sd`, `UHM1007.20718_S144_sd`, `UHM1009.20710_S143_sd`, `UHM1010.20717_S132_sd`, `UHM1011.20702_S142_sd`, `UHM1024.20716_S120_sd`, `UHM1026.20703_S154_sd`, `UHM1028.20709_S131_sd`, `UHM1032.20701_S130_sd`, `UHM1033.20715_S108_sd`, `UHM1034.20712_S167_sd`, `UHM1035.20707_S107_sd`, `UHM1036.20708_S119_sd`, `UHM1052.20711_S155_sd`, `UHM1060.20819_S97_sd`, `UHM1065.20820_S109_sd`, `UHM1068.20828_S110_sd`, `UHM1069.20838_S135_sd`, `UHM1070.20821_S121_sd`, `UHM1071.20829_S122_sd`, `UHM1072.20830_S134_sd`, `UHM1073.20831_S146_sd`, `UHM1075.20822_S133_sd`, `UHM1077.20832_S158_sd`, `UHM1078.20823_S145_sd`, `UHM1080.20833_S170_sd`, `UHM1081.20824_S157_sd`, `UHM1088.20834_S182_sd`, `UHM1090.20835_S99_sd`, `UHM1093.20825_S169_sd`, `UHM1095.20826_S181_sd`, `UHM1097.20719_S156_sd`, `UHM1099.20704_S166_sd`, `UHM1100.20884_S117_sd`, `UHM1102.20885_S129_sd`, `UHM1104.20886_S141_sd`, `UHM1105.20887_S153_sd`, `UHM1109.20627_S97_sd`, `UHM1110.20664_S161_sd`, `UHM1113.20888_S165_sd`, `UHM1114.20889_S177_sd`, `UHM1115.20890_S189_sd`, `UHM1117.20891_S106_sd`, `UHM1118.20892_S118_sd`, `UHM1120.20893_S130_sd`, `UHM1124.20894_S142_sd`, `UHM1126.20895_S154_sd`, `UHM1128.20896_S166_sd`, `UHM1140.20651_S100_sd`, `UHM1145.20897_S178_sd`, `UHM1163.20501_S129_sd`, `UHM1164.20498_S188_sd`, `UHM1169.20648_S159_sd`, `UHM1171.20675_S103_sd`, `UHM1176.20500_S117_sd`, `UHM1177.20642_S182_sd`, `UHM1182.20672_S162_sd`, `UHM1210.20898_S190_sd`, `UHM1212.20899_S107_sd`, `UHM1217.20900_S119_sd`, `UHM1218.20901_S131_sd`, `UHM1219.20902_S143_sd`, `UHM1220.20903_S155_sd`, `UHM1221.20904_S167_sd`, `UHM1222.20905_S179_sd`, `UHM1223.20906_S191_sd`, `UHM1225.20907_S108_sd`, `UHM1227.20908_S120_sd`, `UHM1228.20909_S132_sd`, `UHM1237.20910_S144_sd`, `UHM1240.20662_S137_sd`, `UHM1246.20911_S156_sd`, `UHM1247.20912_S168_sd`, `UHM1248.20671_S150_sd`, `UHM1256.20666_S185_sd`, `UHM1260.20692_S117_sd`, `UHM1270.20673_S174_sd`, `UHM1271.20493_S128_sd`, `UHM1272.20494_S140_sd`, `UHM1274.20650_S183_sd`, `UHM1275.20693_S129_sd`, `UHM1282.20695_S153_sd`, `UHM1287.20639_S146_sd`, `UHM1291.20512_S166_sd`, `UHM1296.20646_S135_sd`, `UHM1319.20657_S172_sd`, `UHM1324.20509_S130_sd`, `UHM1327.20641_S170_sd`, `UHM1328.20668_S114_sd`, `UHM1334.20513_S178_sd`, `UHM1338.20495_S152_sd`, `UHM1341.20698_S189_sd`, `UHM1356.20637_S122_sd`, `UHM1380.20676_S115_sd`, `UHM1383.20690_S188_sd`, `UHM1385.20659_S101_sd`, `UHM1399.20852_S113_sd`, `UHM1400.20853_S125_sd`, `UHM1401.20854_S137_sd`, `UHM1402.20855_S149_sd`, `UHM1403.20856_S161_sd`, `UHM1405.20857_S173_sd`, `UHM1406.20858_S185_sd`, `UHM1414.20859_S102_sd`, `UHM1419.20860_S114_sd`, `UHM1427.20485_S127_sd`, `UHM1428.20486_S139_sd`, `UHM1429.20487_S151_sd`, `UHM1430.20488_S163_sd`, `UHM1432.20489_S175_sd`, `UHM1435.20484_S115_sd`, `UHM162.20656_S160_sd`, `UHM198.20681_S175_sd`, `UHM200.20670_S138_sd`, `UHM203.20685_S128_sd`, `UHM204.20505_S177_sd`, `UHM206.20506_S189_sd`, `UHM207.20689_S176_sd`, `UHM208.20507_S106_sd`, `UHM211.20502_S141_sd`, `UHM215.20504_S165_sd`, `UHM216.20525_S132_sd`, `UHM219.20526_S144_sd`, `UHM236.20527_S156_sd`, `UHM238.20503_S153_sd`, `UHM245.20634_S181_sd`, `UHM252.20654_S136_sd`, `UHM267.20496_S164_sd`, `UHM274.20677_S127_sd`, `UHM276.20682_S187_sd`, `UHM280.20497_S176_sd`, `UHM286.20521_S179_sd`, `UHM289.20522_S191_sd`, `UHM294.20523_S108_sd`, `UHM298.20696_S165_sd`, `UHM325.20644_S111_sd`, `UHM337.20508_S118_sd`, `UHM354.20631_S145_sd`, `UHM356.20511_S154_sd`, `UHM369.20869_S127_sd`, `UHM370.20870_S139_sd`, `UHM372.20871_S151_sd`, `UHM373.20872_S163_sd`, `UHM374.20873_S175_sd`, `UHM375.20874_S187_sd`, `UHM377.20875_S104_sd`, `UHM382.20876_S116_sd`, `UHM386.20877_S128_sd`, `UHM387.20878_S140_sd`, `UHM414.20679_S151_sd`, `UHM418.20861_S126_sd`, `UHM422.20862_S138_sd`, `UHM425.20863_S150_sd`, `UHM426.20630_S133_sd`, `UHM428.20640_S158_sd`, `UHM429.20655_S148_sd`, `UHM435.20643_S99_sd`, `UHM437.20864_S162_sd`, `UHM439.20660_S113_sd`, `UHM443.20524_S120_sd`, `UHM445.20665_S173_sd`, `UHM447.20879_S152_sd`, `UHM448.20865_S174_sd`, `UHM452.20880_S164_sd`, `UHM454.20866_S186_sd`, `UHM455.20881_S176_sd`, `UHM458.20882_S188_sd`, `UHM459.20883_S105_sd`, `UHM461.20867_S103_sd`, `UHM467.20868_S115_sd`, `UHM470.20629_S121_sd`, `UHM476.20510_S142_sd`, `UHM478.20645_S123_sd`, `UHM479.20647_S147_sd`, `UHM481.20499_S105_sd`, `UHM482.20686_S140_sd`, `UHM483.20699_S106_sd`, `UHM519.20678_S139_sd`, `UHM520.20669_S126_sd`, `UHM836.20481_S174_sd`, `UHM837.20482_S186_sd`, `UHM838.20483_S103_sd`, `UHM891.20480_S162_sd`, `UHM892.20628_S109_sd`, `UHM893.20691_S105_sd`, `UHM894.20636_S110_sd`, `UHM895.20632_S157_sd`, `UHM896.20697_S177_sd`, `UHM897.20687_S152_sd`, `UHM898.20490_S187_sd`, `UHM899.20684_S116_sd`, `UHM900.20491_S104_sd`, `UHM901.20638_S134_sd`, `UHM902.20680_S163_sd`, `UHM903.20683_S104_sd`, `UHM904.20663_S149_sd`, `UHM905.20694_S141_sd`, `UHM906.20661_S125_sd`, `UHM907.20688_S164_sd`, `UHM908.20492_S116_sd`, `UHM909.20653_S124_sd`, `UHM910.20658_S184_sd`, `UHM965.20633_S169_sd`, `UHM966.20839_S147_sd`, `UHM967.20840_S159_sd`, `UHM968.20667_S102_sd`, `UHM969.20841_S171_sd`, `UHM971.20842_S183_sd`, `UHM973.20674_S186_sd`, `UHM974.20528_S168_sd`, `UHM975.20843_S100_sd`, `UHM977.20844_S112_sd`, `UHM978.20845_S124_sd`, `UHM979.20846_S136_sd`, `UHM980.20827_S98_sd`, `UHM981.20635_S98_sd`, `UHM982.20836_S111_sd`, `UHM983.20652_S112_sd`, `UHM984.20847_S148_sd`, `UHM985.20848_S160_sd`, `UHM988.20849_S172_sd`, `UHM989.20850_S184_sd`, `UHM991.20851_S101_sd`, `UHM993.20837_S123_sd`, `UHM996.20706_S190_sd`, `UHM997.20649_S171_sd`, `UHM998.20714_S191_sd`, `UHM999.20713_S179_sd`, `spiked.blank.20529_S180_se`, `spiked.blank.20913_S180_se`, `Std2uL.20721_S180_se`, `StdSwab1uL.20720_S168_se`, `STP1719.20518_S143_se`, `STP213.20519_S155_se`, `STP268.20520_S167_se`, `STP544.20515_S107_se`, `STP570.20516_S119_se`, `STP579.20517_S131_se`, `STP614.20514_S190_se`, `UHM1000.20700_S118_se`, `UHM1001.20705_S178_se`, `UHM1007.20718_S144_se`, `UHM1009.20710_S143_se`, `UHM1010.20717_S132_se`, `UHM1011.20702_S142_se`, `UHM1024.20716_S120_se`, `UHM1026.20703_S154_se`, `UHM1028.20709_S131_se`, `UHM1032.20701_S130_se`, `UHM1033.20715_S108_se`, `UHM1034.20712_S167_se`, `UHM1035.20707_S107_se`, `UHM1036.20708_S119_se`, `UHM1052.20711_S155_se`, `UHM1060.20819_S97_se`, `UHM1065.20820_S109_se`, `UHM1068.20828_S110_se`, `UHM1069.20838_S135_se`, `UHM1070.20821_S121_se`, `UHM1071.20829_S122_se`, `UHM1072.20830_S134_se`, `UHM1073.20831_S146_se`, `UHM1075.20822_S133_se`, `UHM1077.20832_S158_se`, `UHM1078.20823_S145_se`, `UHM1080.20833_S170_se`, `UHM1081.20824_S157_se`, `UHM1088.20834_S182_se`, `UHM1090.20835_S99_se`, `UHM1093.20825_S169_se`, `UHM1095.20826_S181_se`, `UHM1097.20719_S156_se`, `UHM1099.20704_S166_se`, `UHM1100.20884_S117_se`, `UHM1102.20885_S129_se`, `UHM1104.20886_S141_se`, `UHM1105.20887_S153_se`, `UHM1109.20627_S97_se`, `UHM1110.20664_S161_se`, `UHM1113.20888_S165_se`, `UHM1114.20889_S177_se`, `UHM1115.20890_S189_se`, `UHM1117.20891_S106_se`, `UHM1118.20892_S118_se`, `UHM1120.20893_S130_se`, `UHM1124.20894_S142_se`, `UHM1126.20895_S154_se`, `UHM1128.20896_S166_se`, `UHM1140.20651_S100_se`, `UHM1145.20897_S178_se`, `UHM1163.20501_S129_se`, `UHM1164.20498_S188_se`, `UHM1169.20648_S159_se`, `UHM1171.20675_S103_se`, `UHM1176.20500_S117_se`, `UHM1177.20642_S182_se`, `UHM1182.20672_S162_se`, `UHM1210.20898_S190_se`, `UHM1212.20899_S107_se`, `UHM1217.20900_S119_se`, `UHM1218.20901_S131_se`, `UHM1219.20902_S143_se`, `UHM1220.20903_S155_se`, `UHM1221.20904_S167_se`, `UHM1222.20905_S179_se`, `UHM1223.20906_S191_se`, `UHM1225.20907_S108_se`, `UHM1227.20908_S120_se`, `UHM1228.20909_S132_se`, `UHM1237.20910_S144_se`, `UHM1240.20662_S137_se`, `UHM1246.20911_S156_se`, `UHM1247.20912_S168_se`, `UHM1248.20671_S150_se`, `UHM1256.20666_S185_se`, `UHM1260.20692_S117_se`, `UHM1270.20673_S174_se`, `UHM1271.20493_S128_se`, `UHM1272.20494_S140_se`, `UHM1274.20650_S183_se`, `UHM1275.20693_S129_se`, `UHM1282.20695_S153_se`, `UHM1287.20639_S146_se`, `UHM1291.20512_S166_se`, `UHM1296.20646_S135_se`, `UHM1319.20657_S172_se`, `UHM1324.20509_S130_se`, `UHM1327.20641_S170_se`, `UHM1328.20668_S114_se`, `UHM1334.20513_S178_se`, `UHM1338.20495_S152_se`, `UHM1341.20698_S189_se`, `UHM1356.20637_S122_se`, `UHM1380.20676_S115_se`, `UHM1383.20690_S188_se`, `UHM1385.20659_S101_se`, `UHM1399.20852_S113_se`, `UHM1400.20853_S125_se`, `UHM1401.20854_S137_se`, `UHM1402.20855_S149_se`, `UHM1403.20856_S161_se`, `UHM1405.20857_S173_se`, `UHM1406.20858_S185_se`, `UHM1414.20859_S102_se`, `UHM1419.20860_S114_se`, `UHM1427.20485_S127_se`, `UHM1428.20486_S139_se`, `UHM1429.20487_S151_se`, `UHM1430.20488_S163_se`, `UHM1432.20489_S175_se`, `UHM1435.20484_S115_se`, `UHM162.20656_S160_se`, `UHM198.20681_S175_se`, `UHM200.20670_S138_se`, `UHM203.20685_S128_se`, `UHM204.20505_S177_se`, `UHM206.20506_S189_se`, `UHM207.20689_S176_se`, `UHM208.20507_S106_se`, `UHM211.20502_S141_se`, `UHM215.20504_S165_se`, `UHM216.20525_S132_se`, `UHM219.20526_S144_se`, `UHM236.20527_S156_se`, `UHM238.20503_S153_se`, `UHM245.20634_S181_se`, `UHM252.20654_S136_se`, `UHM267.20496_S164_se`, `UHM274.20677_S127_se`, `UHM276.20682_S187_se`, `UHM280.20497_S176_se`, `UHM286.20521_S179_se`, `UHM289.20522_S191_se`, `UHM294.20523_S108_se`, `UHM298.20696_S165_se`, `UHM325.20644_S111_se`, `UHM337.20508_S118_se`, `UHM354.20631_S145_se`, `UHM356.20511_S154_se`, `UHM369.20869_S127_se`, `UHM370.20870_S139_se`, `UHM372.20871_S151_se`, `UHM373.20872_S163_se`, `UHM374.20873_S175_se`, `UHM375.20874_S187_se`, `UHM377.20875_S104_se`, `UHM382.20876_S116_se`, `UHM386.20877_S128_se`, `UHM387.20878_S140_se`, `UHM414.20679_S151_se`, `UHM418.20861_S126_se`, `UHM422.20862_S138_se`, `UHM425.20863_S150_se`, `UHM426.20630_S133_se`, `UHM428.20640_S158_se`, `UHM429.20655_S148_se`, `UHM435.20643_S99_se`, `UHM437.20864_S162_se`, `UHM439.20660_S113_se`, `UHM443.20524_S120_se`, `UHM445.20665_S173_se`, `UHM447.20879_S152_se`, `UHM448.20865_S174_se`, `UHM452.20880_S164_se`, `UHM454.20866_S186_se`, `UHM455.20881_S176_se`, `UHM458.20882_S188_se`, `UHM459.20883_S105_se`, `UHM461.20867_S103_se`, `UHM467.20868_S115_se`, `UHM470.20629_S121_se`, `UHM476.20510_S142_se`, `UHM478.20645_S123_se`, `UHM479.20647_S147_se`, `UHM481.20499_S105_se`, `UHM482.20686_S140_se`, `UHM483.20699_S106_se`, `UHM519.20678_S139_se`, `UHM520.20669_S126_se`, `UHM836.20481_S174_se`, `UHM837.20482_S186_se`, `UHM838.20483_S103_se`, `UHM891.20480_S162_se`, `UHM892.20628_S109_se`, `UHM893.20691_S105_se`, `UHM894.20636_S110_se`, `UHM895.20632_S157_se`, `UHM896.20697_S177_se`, `UHM897.20687_S152_se`, `UHM898.20490_S187_se`, `UHM899.20684_S116_se`, `UHM900.20491_S104_se`, `UHM901.20638_S134_se`, `UHM902.20680_S163_se`, `UHM903.20683_S104_se`, `UHM904.20663_S149_se`, `UHM905.20694_S141_se`, `UHM906.20661_S125_se`, `UHM907.20688_S164_se`, `UHM908.20492_S116_se`, `UHM909.20653_S124_se`, `UHM910.20658_S184_se`, `UHM965.20633_S169_se`, `UHM966.20839_S147_se`, `UHM967.20840_S159_se`, `UHM968.20667_S102_se`, `UHM969.20841_S171_se`, `UHM971.20842_S183_se`, `UHM973.20674_S186_se`, `UHM974.20528_S168_se`, `UHM975.20843_S100_se`, `UHM977.20844_S112_se`, `UHM978.20845_S124_se`, `UHM979.20846_S136_se`, `UHM980.20827_S98_se`, `UHM981.20635_S98_se`, `UHM982.20836_S111_se`, `UHM983.20652_S112_se`, `UHM984.20847_S148_se`, `UHM985.20848_S160_se`, `UHM988.20849_S172_se`, `UHM989.20850_S184_se`, `UHM991.20851_S101_se`, `UHM993.20837_S123_se`, `UHM996.20706_S190_se`, `UHM997.20649_S171_se`, `UHM998.20714_S191_se`, `UHM999.20713_S179_se`, `spiked.blank.20529_S180_q25`, `spiked.blank.20913_S180_q25`, `Std2uL.20721_S180_q25`, `StdSwab1uL.20720_S168_q25`, `STP1719.20518_S143_q25`, `STP213.20519_S155_q25`, `STP268.20520_S167_q25`, `STP544.20515_S107_q25`, `STP570.20516_S119_q25`, `STP579.20517_S131_q25`, `STP614.20514_S190_q25`, `UHM1000.20700_S118_q25`, `UHM1001.20705_S178_q25`, `UHM1007.20718_S144_q25`, `UHM1009.20710_S143_q25`, `UHM1010.20717_S132_q25`, `UHM1011.20702_S142_q25`, `UHM1024.20716_S120_q25`, `UHM1026.20703_S154_q25`, `UHM1028.20709_S131_q25`, `UHM1032.20701_S130_q25`, `UHM1033.20715_S108_q25`, `UHM1034.20712_S167_q25`, `UHM1035.20707_S107_q25`, `UHM1036.20708_S119_q25`, `UHM1052.20711_S155_q25`, `UHM1060.20819_S97_q25`, `UHM1065.20820_S109_q25`, `UHM1068.20828_S110_q25`, `UHM1069.20838_S135_q25`, `UHM1070.20821_S121_q25`, `UHM1071.20829_S122_q25`, `UHM1072.20830_S134_q25`, `UHM1073.20831_S146_q25`, `UHM1075.20822_S133_q25`, `UHM1077.20832_S158_q25`, `UHM1078.20823_S145_q25`, `UHM1080.20833_S170_q25`, `UHM1081.20824_S157_q25`, `UHM1088.20834_S182_q25`, `UHM1090.20835_S99_q25`, `UHM1093.20825_S169_q25`, `UHM1095.20826_S181_q25`, `UHM1097.20719_S156_q25`, `UHM1099.20704_S166_q25`, `UHM1100.20884_S117_q25`, `UHM1102.20885_S129_q25`, `UHM1104.20886_S141_q25`, `UHM1105.20887_S153_q25`, `UHM1109.20627_S97_q25`, `UHM1110.20664_S161_q25`, `UHM1113.20888_S165_q25`, `UHM1114.20889_S177_q25`, `UHM1115.20890_S189_q25`, `UHM1117.20891_S106_q25`, `UHM1118.20892_S118_q25`, `UHM1120.20893_S130_q25`, `UHM1124.20894_S142_q25`, `UHM1126.20895_S154_q25`, `UHM1128.20896_S166_q25`, `UHM1140.20651_S100_q25`, `UHM1145.20897_S178_q25`, `UHM1163.20501_S129_q25`, `UHM1164.20498_S188_q25`, `UHM1169.20648_S159_q25`, `UHM1171.20675_S103_q25`, `UHM1176.20500_S117_q25`, `UHM1177.20642_S182_q25`, `UHM1182.20672_S162_q25`, `UHM1210.20898_S190_q25`, `UHM1212.20899_S107_q25`, `UHM1217.20900_S119_q25`, `UHM1218.20901_S131_q25`, `UHM1219.20902_S143_q25`, `UHM1220.20903_S155_q25`, `UHM1221.20904_S167_q25`, `UHM1222.20905_S179_q25`, `UHM1223.20906_S191_q25`, `UHM1225.20907_S108_q25`, `UHM1227.20908_S120_q25`, `UHM1228.20909_S132_q25`, `UHM1237.20910_S144_q25`, `UHM1240.20662_S137_q25`, `UHM1246.20911_S156_q25`, `UHM1247.20912_S168_q25`, `UHM1248.20671_S150_q25`, `UHM1256.20666_S185_q25`, `UHM1260.20692_S117_q25`, `UHM1270.20673_S174_q25`, `UHM1271.20493_S128_q25`, `UHM1272.20494_S140_q25`, `UHM1274.20650_S183_q25`, `UHM1275.20693_S129_q25`, `UHM1282.20695_S153_q25`, `UHM1287.20639_S146_q25`, `UHM1291.20512_S166_q25`, `UHM1296.20646_S135_q25`, `UHM1319.20657_S172_q25`, `UHM1324.20509_S130_q25`, `UHM1327.20641_S170_q25`, `UHM1328.20668_S114_q25`, `UHM1334.20513_S178_q25`, `UHM1338.20495_S152_q25`, `UHM1341.20698_S189_q25`, `UHM1356.20637_S122_q25`, `UHM1380.20676_S115_q25`, `UHM1383.20690_S188_q25`, `UHM1385.20659_S101_q25`, `UHM1399.20852_S113_q25`, `UHM1400.20853_S125_q25`, `UHM1401.20854_S137_q25`, `UHM1402.20855_S149_q25`, `UHM1403.20856_S161_q25`, `UHM1405.20857_S173_q25`, `UHM1406.20858_S185_q25`, `UHM1414.20859_S102_q25`, `UHM1419.20860_S114_q25`, `UHM1427.20485_S127_q25`, `UHM1428.20486_S139_q25`, `UHM1429.20487_S151_q25`, `UHM1430.20488_S163_q25`, `UHM1432.20489_S175_q25`, `UHM1435.20484_S115_q25`, `UHM162.20656_S160_q25`, `UHM198.20681_S175_q25`, `UHM200.20670_S138_q25`, `UHM203.20685_S128_q25`, `UHM204.20505_S177_q25`, `UHM206.20506_S189_q25`, `UHM207.20689_S176_q25`, `UHM208.20507_S106_q25`, `UHM211.20502_S141_q25`, `UHM215.20504_S165_q25`, `UHM216.20525_S132_q25`, `UHM219.20526_S144_q25`, `UHM236.20527_S156_q25`, `UHM238.20503_S153_q25`, `UHM245.20634_S181_q25`, `UHM252.20654_S136_q25`, `UHM267.20496_S164_q25`, `UHM274.20677_S127_q25`, `UHM276.20682_S187_q25`, `UHM280.20497_S176_q25`, `UHM286.20521_S179_q25`, `UHM289.20522_S191_q25`, `UHM294.20523_S108_q25`, `UHM298.20696_S165_q25`, `UHM325.20644_S111_q25`, `UHM337.20508_S118_q25`, `UHM354.20631_S145_q25`, `UHM356.20511_S154_q25`, `UHM369.20869_S127_q25`, `UHM370.20870_S139_q25`, `UHM372.20871_S151_q25`, `UHM373.20872_S163_q25`, `UHM374.20873_S175_q25`, `UHM375.20874_S187_q25`, `UHM377.20875_S104_q25`, `UHM382.20876_S116_q25`, `UHM386.20877_S128_q25`, `UHM387.20878_S140_q25`, `UHM414.20679_S151_q25`, `UHM418.20861_S126_q25`, `UHM422.20862_S138_q25`, `UHM425.20863_S150_q25`, `UHM426.20630_S133_q25`, `UHM428.20640_S158_q25`, `UHM429.20655_S148_q25`, `UHM435.20643_S99_q25`, `UHM437.20864_S162_q25`, `UHM439.20660_S113_q25`, `UHM443.20524_S120_q25`, `UHM445.20665_S173_q25`, `UHM447.20879_S152_q25`, `UHM448.20865_S174_q25`, `UHM452.20880_S164_q25`, `UHM454.20866_S186_q25`, `UHM455.20881_S176_q25`, `UHM458.20882_S188_q25`, `UHM459.20883_S105_q25`, `UHM461.20867_S103_q25`, `UHM467.20868_S115_q25`, `UHM470.20629_S121_q25`, `UHM476.20510_S142_q25`, `UHM478.20645_S123_q25`, `UHM479.20647_S147_q25`, `UHM481.20499_S105_q25`, `UHM482.20686_S140_q25`, `UHM483.20699_S106_q25`, `UHM519.20678_S139_q25`, `UHM520.20669_S126_q25`, `UHM836.20481_S174_q25`, `UHM837.20482_S186_q25`, `UHM838.20483_S103_q25`, `UHM891.20480_S162_q25`, `UHM892.20628_S109_q25`, `UHM893.20691_S105_q25`, `UHM894.20636_S110_q25`, `UHM895.20632_S157_q25`, `UHM896.20697_S177_q25`, `UHM897.20687_S152_q25`, `UHM898.20490_S187_q25`, `UHM899.20684_S116_q25`, `UHM900.20491_S104_q25`, `UHM901.20638_S134_q25`, `UHM902.20680_S163_q25`, `UHM903.20683_S104_q25`, `UHM904.20663_S149_q25`, `UHM905.20694_S141_q25`, `UHM906.20661_S125_q25`, `UHM907.20688_S164_q25`, `UHM908.20492_S116_q25`, `UHM909.20653_S124_q25`, `UHM910.20658_S184_q25`, `UHM965.20633_S169_q25`, `UHM966.20839_S147_q25`, `UHM967.20840_S159_q25`, `UHM968.20667_S102_q25`, `UHM969.20841_S171_q25`, `UHM971.20842_S183_q25`, `UHM973.20674_S186_q25`, `UHM974.20528_S168_q25`, `UHM975.20843_S100_q25`, `UHM977.20844_S112_q25`, `UHM978.20845_S124_q25`, `UHM979.20846_S136_q25`, `UHM980.20827_S98_q25`, `UHM981.20635_S98_q25`, `UHM982.20836_S111_q25`, `UHM983.20652_S112_q25`, `UHM984.20847_S148_q25`, `UHM985.20848_S160_q25`, `UHM988.20849_S172_q25`, `UHM989.20850_S184_q25`, `UHM991.20851_S101_q25`, `UHM993.20837_S123_q25`, `UHM996.20706_S190_q25`, `UHM997.20649_S171_q25`, `UHM998.20714_S191_q25`, `UHM999.20713_S179_q25`, `spiked.blank.20529_S180_median`, `spiked.blank.20913_S180_median`, `Std2uL.20721_S180_median`, `StdSwab1uL.20720_S168_median`, `STP1719.20518_S143_median`, `STP213.20519_S155_median`, `STP268.20520_S167_median`, `STP544.20515_S107_median`, `STP570.20516_S119_median`, `STP579.20517_S131_median`, `STP614.20514_S190_median`, `UHM1000.20700_S118_median`, `UHM1001.20705_S178_median`, `UHM1007.20718_S144_median`, `UHM1009.20710_S143_median`, `UHM1010.20717_S132_median`, `UHM1011.20702_S142_median`, `UHM1024.20716_S120_median`, `UHM1026.20703_S154_median`, `UHM1028.20709_S131_median`, `UHM1032.20701_S130_median`, `UHM1033.20715_S108_median`, `UHM1034.20712_S167_median`, `UHM1035.20707_S107_median`, `UHM1036.20708_S119_median`, `UHM1052.20711_S155_median`, `UHM1060.20819_S97_median`, `UHM1065.20820_S109_median`, `UHM1068.20828_S110_median`, `UHM1069.20838_S135_median`, `UHM1070.20821_S121_median`, `UHM1071.20829_S122_median`, `UHM1072.20830_S134_median`, `UHM1073.20831_S146_median`, `UHM1075.20822_S133_median`, `UHM1077.20832_S158_median`, `UHM1078.20823_S145_median`, `UHM1080.20833_S170_median`, `UHM1081.20824_S157_median`, `UHM1088.20834_S182_median`, `UHM1090.20835_S99_median`, `UHM1093.20825_S169_median`, `UHM1095.20826_S181_median`, `UHM1097.20719_S156_median`, `UHM1099.20704_S166_median`, `UHM1100.20884_S117_median`, `UHM1102.20885_S129_median`, `UHM1104.20886_S141_median`, `UHM1105.20887_S153_median`, `UHM1109.20627_S97_median`, `UHM1110.20664_S161_median`, `UHM1113.20888_S165_median`, `UHM1114.20889_S177_median`, `UHM1115.20890_S189_median`, `UHM1117.20891_S106_median`, `UHM1118.20892_S118_median`, `UHM1120.20893_S130_median`, `UHM1124.20894_S142_median`, `UHM1126.20895_S154_median`, `UHM1128.20896_S166_median`, `UHM1140.20651_S100_median`, `UHM1145.20897_S178_median`, `UHM1163.20501_S129_median`, `UHM1164.20498_S188_median`, `UHM1169.20648_S159_median`, `UHM1171.20675_S103_median`, `UHM1176.20500_S117_median`, `UHM1177.20642_S182_median`, `UHM1182.20672_S162_median`, `UHM1210.20898_S190_median`, `UHM1212.20899_S107_median`, `UHM1217.20900_S119_median`, `UHM1218.20901_S131_median`, `UHM1219.20902_S143_median`, `UHM1220.20903_S155_median`, `UHM1221.20904_S167_median`, `UHM1222.20905_S179_median`, `UHM1223.20906_S191_median`, `UHM1225.20907_S108_median`, `UHM1227.20908_S120_median`, `UHM1228.20909_S132_median`, `UHM1237.20910_S144_median`, `UHM1240.20662_S137_median`, `UHM1246.20911_S156_median`, `UHM1247.20912_S168_median`, `UHM1248.20671_S150_median`, `UHM1256.20666_S185_median`, `UHM1260.20692_S117_median`, `UHM1270.20673_S174_median`, `UHM1271.20493_S128_median`, `UHM1272.20494_S140_median`, `UHM1274.20650_S183_median`, `UHM1275.20693_S129_median`, `UHM1282.20695_S153_median`, `UHM1287.20639_S146_median`, `UHM1291.20512_S166_median`, `UHM1296.20646_S135_median`, `UHM1319.20657_S172_median`, `UHM1324.20509_S130_median`, `UHM1327.20641_S170_median`, `UHM1328.20668_S114_median`, `UHM1334.20513_S178_median`, `UHM1338.20495_S152_median`, `UHM1341.20698_S189_median`, `UHM1356.20637_S122_median`, `UHM1380.20676_S115_median`, `UHM1383.20690_S188_median`, `UHM1385.20659_S101_median`, `UHM1399.20852_S113_median`, `UHM1400.20853_S125_median`, `UHM1401.20854_S137_median`, `UHM1402.20855_S149_median`, `UHM1403.20856_S161_median`, `UHM1405.20857_S173_median`, `UHM1406.20858_S185_median`, `UHM1414.20859_S102_median`, `UHM1419.20860_S114_median`, `UHM1427.20485_S127_median`, `UHM1428.20486_S139_median`, `UHM1429.20487_S151_median`, `UHM1430.20488_S163_median`, `UHM1432.20489_S175_median`, `UHM1435.20484_S115_median`, `UHM162.20656_S160_median`, `UHM198.20681_S175_median`, `UHM200.20670_S138_median`, `UHM203.20685_S128_median`, `UHM204.20505_S177_median`, `UHM206.20506_S189_median`, `UHM207.20689_S176_median`, `UHM208.20507_S106_median`, `UHM211.20502_S141_median`, `UHM215.20504_S165_median`, `UHM216.20525_S132_median`, `UHM219.20526_S144_median`, `UHM236.20527_S156_median`, `UHM238.20503_S153_median`, `UHM245.20634_S181_median`, `UHM252.20654_S136_median`, `UHM267.20496_S164_median`, `UHM274.20677_S127_median`, `UHM276.20682_S187_median`, `UHM280.20497_S176_median`, `UHM286.20521_S179_median`, `UHM289.20522_S191_median`, `UHM294.20523_S108_median`, `UHM298.20696_S165_median`, `UHM325.20644_S111_median`, `UHM337.20508_S118_median`, `UHM354.20631_S145_median`, `UHM356.20511_S154_median`, `UHM369.20869_S127_median`, `UHM370.20870_S139_median`, `UHM372.20871_S151_median`, `UHM373.20872_S163_median`, `UHM374.20873_S175_median`, `UHM375.20874_S187_median`, `UHM377.20875_S104_median`, `UHM382.20876_S116_median`, `UHM386.20877_S128_median`, `UHM387.20878_S140_median`, `UHM414.20679_S151_median`, `UHM418.20861_S126_median`, `UHM422.20862_S138_median`, `UHM425.20863_S150_median`, `UHM426.20630_S133_median`, `UHM428.20640_S158_median`, `UHM429.20655_S148_median`, `UHM435.20643_S99_median`, `UHM437.20864_S162_median`, `UHM439.20660_S113_median`, `UHM443.20524_S120_median`, `UHM445.20665_S173_median`, `UHM447.20879_S152_median`, `UHM448.20865_S174_median`, `UHM452.20880_S164_median`, `UHM454.20866_S186_median`, `UHM455.20881_S176_median`, `UHM458.20882_S188_median`, `UHM459.20883_S105_median`, `UHM461.20867_S103_median`, `UHM467.20868_S115_median`, `UHM470.20629_S121_median`, `UHM476.20510_S142_median`, `UHM478.20645_S123_median`, `UHM479.20647_S147_median`, `UHM481.20499_S105_median`, `UHM482.20686_S140_median`, `UHM483.20699_S106_median`, `UHM519.20678_S139_median`, `UHM520.20669_S126_median`, `UHM836.20481_S174_median`, `UHM837.20482_S186_median`, `UHM838.20483_S103_median`, `UHM891.20480_S162_median`, `UHM892.20628_S109_median`, `UHM893.20691_S105_median`, `UHM894.20636_S110_median`, `UHM895.20632_S157_median`, `UHM896.20697_S177_median`, `UHM897.20687_S152_median`, `UHM898.20490_S187_median`, `UHM899.20684_S116_median`, `UHM900.20491_S104_median`, `UHM901.20638_S134_median`, `UHM902.20680_S163_median`, `UHM903.20683_S104_median`, `UHM904.20663_S149_median`, `UHM905.20694_S141_median`, `UHM906.20661_S125_median`, `UHM907.20688_S164_median`, `UHM908.20492_S116_median`, `UHM909.20653_S124_median`, `UHM910.20658_S184_median`, `UHM965.20633_S169_median`, `UHM966.20839_S147_median`, `UHM967.20840_S159_median`, `UHM968.20667_S102_median`, `UHM969.20841_S171_median`, `UHM971.20842_S183_median`, `UHM973.20674_S186_median`, `UHM974.20528_S168_median`, `UHM975.20843_S100_median`, `UHM977.20844_S112_median`, `UHM978.20845_S124_median`, `UHM979.20846_S136_median`, `UHM980.20827_S98_median`, `UHM981.20635_S98_median`, `UHM982.20836_S111_median`, `UHM983.20652_S112_median`, `UHM984.20847_S148_median`, `UHM985.20848_S160_median`, `UHM988.20849_S172_median`, `UHM989.20850_S184_median`, `UHM991.20851_S101_median`, `UHM993.20837_S123_median`, `UHM996.20706_S190_median`, `UHM997.20649_S171_median`, `UHM998.20714_S191_median`, `UHM999.20713_S179_median`, `spiked.blank.20529_S180_q75`, `spiked.blank.20913_S180_q75`, `Std2uL.20721_S180_q75`, `StdSwab1uL.20720_S168_q75`, `STP1719.20518_S143_q75`, `STP213.20519_S155_q75`, `STP268.20520_S167_q75`, `STP544.20515_S107_q75`, `STP570.20516_S119_q75`, `STP579.20517_S131_q75`, `STP614.20514_S190_q75`, `UHM1000.20700_S118_q75`, `UHM1001.20705_S178_q75`, `UHM1007.20718_S144_q75`, `UHM1009.20710_S143_q75`, `UHM1010.20717_S132_q75`, `UHM1011.20702_S142_q75`, `UHM1024.20716_S120_q75`, `UHM1026.20703_S154_q75`, `UHM1028.20709_S131_q75`, `UHM1032.20701_S130_q75`, `UHM1033.20715_S108_q75`, `UHM1034.20712_S167_q75`, `UHM1035.20707_S107_q75`, `UHM1036.20708_S119_q75`, `UHM1052.20711_S155_q75`, `UHM1060.20819_S97_q75`, `UHM1065.20820_S109_q75`, `UHM1068.20828_S110_q75`, `UHM1069.20838_S135_q75`, `UHM1070.20821_S121_q75`, `UHM1071.20829_S122_q75`, `UHM1072.20830_S134_q75`, `UHM1073.20831_S146_q75`, `UHM1075.20822_S133_q75`, `UHM1077.20832_S158_q75`, `UHM1078.20823_S145_q75`, `UHM1080.20833_S170_q75`, `UHM1081.20824_S157_q75`, `UHM1088.20834_S182_q75`, `UHM1090.20835_S99_q75`, `UHM1093.20825_S169_q75`, `UHM1095.20826_S181_q75`, `UHM1097.20719_S156_q75`, `UHM1099.20704_S166_q75`, `UHM1100.20884_S117_q75`, `UHM1102.20885_S129_q75`, `UHM1104.20886_S141_q75`, `UHM1105.20887_S153_q75`, `UHM1109.20627_S97_q75`, `UHM1110.20664_S161_q75`, `UHM1113.20888_S165_q75`, `UHM1114.20889_S177_q75`, `UHM1115.20890_S189_q75`, `UHM1117.20891_S106_q75`, `UHM1118.20892_S118_q75`, `UHM1120.20893_S130_q75`, `UHM1124.20894_S142_q75`, `UHM1126.20895_S154_q75`, `UHM1128.20896_S166_q75`, `UHM1140.20651_S100_q75`, `UHM1145.20897_S178_q75`, `UHM1163.20501_S129_q75`, `UHM1164.20498_S188_q75`, `UHM1169.20648_S159_q75`, `UHM1171.20675_S103_q75`, `UHM1176.20500_S117_q75`, `UHM1177.20642_S182_q75`, `UHM1182.20672_S162_q75`, `UHM1210.20898_S190_q75`, `UHM1212.20899_S107_q75`, `UHM1217.20900_S119_q75`, `UHM1218.20901_S131_q75`, `UHM1219.20902_S143_q75`, `UHM1220.20903_S155_q75`, `UHM1221.20904_S167_q75`, `UHM1222.20905_S179_q75`, `UHM1223.20906_S191_q75`, `UHM1225.20907_S108_q75`, `UHM1227.20908_S120_q75`, `UHM1228.20909_S132_q75`, `UHM1237.20910_S144_q75`, `UHM1240.20662_S137_q75`, `UHM1246.20911_S156_q75`, `UHM1247.20912_S168_q75`, `UHM1248.20671_S150_q75`, `UHM1256.20666_S185_q75`, `UHM1260.20692_S117_q75`, `UHM1270.20673_S174_q75`, `UHM1271.20493_S128_q75`, `UHM1272.20494_S140_q75`, `UHM1274.20650_S183_q75`, `UHM1275.20693_S129_q75`, `UHM1282.20695_S153_q75`, `UHM1287.20639_S146_q75`, `UHM1291.20512_S166_q75`, `UHM1296.20646_S135_q75`, `UHM1319.20657_S172_q75`, `UHM1324.20509_S130_q75`, `UHM1327.20641_S170_q75`, `UHM1328.20668_S114_q75`, `UHM1334.20513_S178_q75`, `UHM1338.20495_S152_q75`, `UHM1341.20698_S189_q75`, `UHM1356.20637_S122_q75`, `UHM1380.20676_S115_q75`, `UHM1383.20690_S188_q75`, `UHM1385.20659_S101_q75`, `UHM1399.20852_S113_q75`, `UHM1400.20853_S125_q75`, `UHM1401.20854_S137_q75`, `UHM1402.20855_S149_q75`, `UHM1403.20856_S161_q75`, `UHM1405.20857_S173_q75`, `UHM1406.20858_S185_q75`, `UHM1414.20859_S102_q75`, `UHM1419.20860_S114_q75`, `UHM1427.20485_S127_q75`, `UHM1428.20486_S139_q75`, `UHM1429.20487_S151_q75`, `UHM1430.20488_S163_q75`, `UHM1432.20489_S175_q75`, `UHM1435.20484_S115_q75`, `UHM162.20656_S160_q75`, `UHM198.20681_S175_q75`, `UHM200.20670_S138_q75`, `UHM203.20685_S128_q75`, `UHM204.20505_S177_q75`, `UHM206.20506_S189_q75`, `UHM207.20689_S176_q75`, `UHM208.20507_S106_q75`, `UHM211.20502_S141_q75`, `UHM215.20504_S165_q75`, `UHM216.20525_S132_q75`, `UHM219.20526_S144_q75`, `UHM236.20527_S156_q75`, `UHM238.20503_S153_q75`, `UHM245.20634_S181_q75`, `UHM252.20654_S136_q75`, `UHM267.20496_S164_q75`, `UHM274.20677_S127_q75`, `UHM276.20682_S187_q75`, `UHM280.20497_S176_q75`, `UHM286.20521_S179_q75`, `UHM289.20522_S191_q75`, `UHM294.20523_S108_q75`, `UHM298.20696_S165_q75`, `UHM325.20644_S111_q75`, `UHM337.20508_S118_q75`, `UHM354.20631_S145_q75`, `UHM356.20511_S154_q75`, `UHM369.20869_S127_q75`, `UHM370.20870_S139_q75`, `UHM372.20871_S151_q75`, `UHM373.20872_S163_q75`, `UHM374.20873_S175_q75`, `UHM375.20874_S187_q75`, `UHM377.20875_S104_q75`, `UHM382.20876_S116_q75`, `UHM386.20877_S128_q75`, `UHM387.20878_S140_q75`, `UHM414.20679_S151_q75`, `UHM418.20861_S126_q75`, `UHM422.20862_S138_q75`, `UHM425.20863_S150_q75`, `UHM426.20630_S133_q75`, `UHM428.20640_S158_q75`, `UHM429.20655_S148_q75`, `UHM435.20643_S99_q75`, `UHM437.20864_S162_q75`, `UHM439.20660_S113_q75`, `UHM443.20524_S120_q75`, `UHM445.20665_S173_q75`, `UHM447.20879_S152_q75`, `UHM448.20865_S174_q75`, `UHM452.20880_S164_q75`, `UHM454.20866_S186_q75`, `UHM455.20881_S176_q75`, `UHM458.20882_S188_q75`, `UHM459.20883_S105_q75`, `UHM461.20867_S103_q75`, `UHM467.20868_S115_q75`, `UHM470.20629_S121_q75`, `UHM476.20510_S142_q75`, `UHM478.20645_S123_q75`, `UHM479.20647_S147_q75`, `UHM481.20499_S105_q75`, `UHM482.20686_S140_q75`, `UHM483.20699_S106_q75`, `UHM519.20678_S139_q75`, `UHM520.20669_S126_q75`, `UHM836.20481_S174_q75`, `UHM837.20482_S186_q75`, `UHM838.20483_S103_q75`, `UHM891.20480_S162_q75`, `UHM892.20628_S109_q75`, `UHM893.20691_S105_q75`, `UHM894.20636_S110_q75`, `UHM895.20632_S157_q75`, `UHM896.20697_S177_q75`, `UHM897.20687_S152_q75`, `UHM898.20490_S187_q75`, `UHM899.20684_S116_q75`, `UHM900.20491_S104_q75`, `UHM901.20638_S134_q75`, `UHM902.20680_S163_q75`, `UHM903.20683_S104_q75`, `UHM904.20663_S149_q75`, `UHM905.20694_S141_q75`, `UHM906.20661_S125_q75`, `UHM907.20688_S164_q75`, `UHM908.20492_S116_q75`, `UHM909.20653_S124_q75`, `UHM910.20658_S184_q75`, `UHM965.20633_S169_q75`, `UHM966.20839_S147_q75`, `UHM967.20840_S159_q75`, `UHM968.20667_S102_q75`, `UHM969.20841_S171_q75`, `UHM971.20842_S183_q75`, `UHM973.20674_S186_q75`, `UHM974.20528_S168_q75`, `UHM975.20843_S100_q75`, `UHM977.20844_S112_q75`, `UHM978.20845_S124_q75`, `UHM979.20846_S136_q75`, `UHM980.20827_S98_q75`, `UHM981.20635_S98_q75`, `UHM982.20836_S111_q75`, `UHM983.20652_S112_q75`, `UHM984.20847_S148_q75`, `UHM985.20848_S160_q75`, `UHM988.20849_S172_q75`, `UHM989.20850_S184_q75`, `UHM991.20851_S101_q75`, `UHM993.20837_S123_q75`, `UHM996.20706_S190_q75`, `UHM997.20649_S171_q75`, `UHM998.20714_S191_q75`, `UHM999.20713_S179_q75` 
#> header has 1 row(s) 
#> body has 1 row(s) 
#> original dataset sample: 
#>   spiked.blank.20529_S180_mean spiked.blank.20913_S180_mean
#> 1                   0.06339572                   0.06533468
#>   Std2uL.20721_S180_mean StdSwab1uL.20720_S168_mean STP1719.20518_S143_mean
#> 1              0.0629742                 0.03641882               0.1014163
#>   STP213.20519_S155_mean STP268.20520_S167_mean STP544.20515_S107_mean
#> 1              0.5571573               1.997049             0.07368066
#>   STP570.20516_S119_mean STP579.20517_S131_mean STP614.20514_S190_mean
#> 1              0.1730737             0.07730568               1.322627
#>   UHM1000.20700_S118_mean UHM1001.20705_S178_mean UHM1007.20718_S144_mean
#> 1                5.905665               0.2322543                2.600826
#>   UHM1009.20710_S143_mean UHM1010.20717_S132_mean UHM1011.20702_S142_mean
#> 1               0.5016861               0.1240094               0.1852976
#>   UHM1024.20716_S120_mean UHM1026.20703_S154_mean UHM1028.20709_S131_mean
#> 1              0.06457596                0.174844               0.6007419
#>   UHM1032.20701_S130_mean UHM1033.20715_S108_mean UHM1034.20712_S167_mean
#> 1               0.1490474              0.04265722                3.595178
#>   UHM1035.20707_S107_mean UHM1036.20708_S119_mean UHM1052.20711_S155_mean
#> 1               0.1572248                0.716321               0.2679987
#>   UHM1060.20819_S97_mean UHM1065.20820_S109_mean UHM1068.20828_S110_mean
#> 1              0.1106896               0.1276345               0.4419154
#>   UHM1069.20838_S135_mean UHM1070.20821_S121_mean UHM1071.20829_S122_mean
#> 1               0.4006913               0.1433148               0.6381723
#>   UHM1072.20830_S134_mean UHM1073.20831_S146_mean UHM1075.20822_S133_mean
#> 1               0.1969314                5.171978               0.6046198
#>   UHM1077.20832_S158_mean UHM1078.20823_S145_mean UHM1080.20833_S170_mean
#> 1               0.1395212                1.251644               0.9415781
#>   UHM1081.20824_S157_mean UHM1088.20834_S182_mean UHM1090.20835_S99_mean
#> 1                2.869668               0.7102512              0.2729725
#>   UHM1093.20825_S169_mean UHM1095.20826_S181_mean UHM1097.20719_S156_mean
#> 1               0.7830889               0.3325746              0.07030855
#>   UHM1099.20704_S166_mean UHM1100.20884_S117_mean UHM1102.20885_S129_mean
#> 1               0.1063902                  20.413                6.947311
#>   UHM1104.20886_S141_mean UHM1105.20887_S153_mean UHM1109.20627_S97_mean
#> 1                1.515512                2.984404               0.885011
#>   UHM1110.20664_S161_mean UHM1113.20888_S165_mean UHM1114.20889_S177_mean
#> 1                125.6893                 1.42809                1.227449
#>   UHM1115.20890_S189_mean UHM1117.20891_S106_mean UHM1118.20892_S118_mean
#> 1                13.43222                14.44099                2.121143
#>   UHM1120.20893_S130_mean UHM1124.20894_S142_mean UHM1126.20895_S154_mean
#> 1                3.313691                2.836031                 4.92438
#>   UHM1128.20896_S166_mean UHM1140.20651_S100_mean UHM1145.20897_S178_mean
#> 1                 51.5032                3.412831                5.742876
#>   UHM1163.20501_S129_mean UHM1164.20498_S188_mean UHM1169.20648_S159_mean
#> 1                1.240516               0.2037599               0.1800708
#>   UHM1171.20675_S103_mean UHM1176.20500_S117_mean UHM1177.20642_S182_mean
#> 1                27.05201                2.594503               0.1380037
#>   UHM1182.20672_S162_mean UHM1210.20898_S190_mean UHM1212.20899_S107_mean
#> 1                3.562131                5.773731                1.677036
#>   UHM1217.20900_S119_mean UHM1218.20901_S131_mean UHM1219.20902_S143_mean
#> 1                1.293795                2.708649                16.98879
#>   UHM1220.20903_S155_mean UHM1221.20904_S167_mean UHM1222.20905_S179_mean
#> 1                6.901956                2.450683               0.2677457
#>   UHM1223.20906_S191_mean UHM1225.20907_S108_mean UHM1227.20908_S120_mean
#> 1                7.764879                4.842438                2.391249
#>   UHM1228.20909_S132_mean UHM1237.20910_S144_mean UHM1240.20662_S137_mean
#> 1                9.221632                2.196678               0.2035913
#>   UHM1246.20911_S156_mean UHM1247.20912_S168_mean UHM1248.20671_S150_mean
#> 1               0.9382903                2.550919              0.09256449
#>   UHM1256.20666_S185_mean UHM1260.20692_S117_mean UHM1270.20673_S174_mean
#> 1               0.4490811                1.792362               0.2389985
#>   UHM1271.20493_S128_mean UHM1272.20494_S140_mean UHM1274.20650_S183_mean
#> 1                1.124009               0.4468892               0.6890912
#>   UHM1275.20693_S129_mean UHM1282.20695_S153_mean UHM1287.20639_S146_mean
#> 1                3.120637                3.156045               0.6135559
#>   UHM1291.20512_S166_mean UHM1296.20646_S135_mean UHM1319.20657_S172_mean
#> 1                1.185972                16.92497                4.285702
#>   UHM1324.20509_S130_mean UHM1327.20641_S170_mean UHM1328.20668_S114_mean
#> 1               0.5759568                42.77854              0.06710504
#>   UHM1334.20513_S178_mean UHM1338.20495_S152_mean UHM1341.20698_S189_mean
#> 1                 1.64812               0.2091553              0.06769516
#>   UHM1356.20637_S122_mean UHM1380.20676_S115_mean UHM1383.20690_S188_mean
#> 1              0.09113134                7.024954                3.608245
#>   UHM1385.20659_S101_mean UHM1399.20852_S113_mean UHM1400.20853_S125_mean
#> 1               0.1153263               0.3829034               0.1930534
#>   UHM1401.20854_S137_mean UHM1402.20855_S149_mean UHM1403.20856_S161_mean
#> 1               0.2014837             0.001686056               0.3522172
#>   UHM1405.20857_S173_mean UHM1406.20858_S185_mean UHM1414.20859_S102_mean
#> 1                1.180408               0.1734952                3.018041
#>   UHM1419.20860_S114_mean UHM1427.20485_S127_mean UHM1428.20486_S139_mean
#> 1               0.5883494               0.1264542                44.70722
#>   UHM1429.20487_S151_mean UHM1430.20488_S163_mean UHM1432.20489_S175_mean
#> 1                19.70637                14.34463                12.30568
#>   UHM1435.20484_S115_mean UHM162.20656_S160_mean UHM198.20681_S175_mean
#> 1                3.182937               1.424718               1.483982
#>   UHM200.20670_S138_mean UHM203.20685_S128_mean UHM204.20505_S177_mean
#> 1               3.086326               1.723993              0.3915023
#>   UHM206.20506_S189_mean UHM207.20689_S176_mean UHM208.20507_S106_mean
#> 1              0.1339572               3.116759               1.065588
#>   UHM211.20502_S141_mean UHM215.20504_S165_mean UHM216.20525_S132_mean
#> 1              0.1450851              0.2771877              0.1197943
#>   UHM219.20526_S144_mean UHM236.20527_S156_mean UHM238.20503_S153_mean
#> 1              0.0629742             0.09720115              0.2713708
#>   UHM245.20634_S181_mean UHM252.20654_S136_mean UHM267.20496_S164_mean
#> 1              0.4771539               2.573681               1.194908
#>   UHM274.20677_S127_mean UHM276.20682_S187_mean UHM280.20497_S176_mean
#> 1              0.8753161              0.6560445               0.379447
#>   UHM286.20521_S179_mean UHM289.20522_S191_mean UHM294.20523_S108_mean
#> 1               1.536925              0.4086157              0.3598044
#>   UHM298.20696_S165_mean UHM325.20644_S111_mean UHM337.20508_S118_mean
#> 1               14.45212               3.652672              0.4859214
#>   UHM354.20631_S145_mean UHM356.20511_S154_mean UHM369.20869_S127_mean
#> 1              0.1056314              0.3179902                      0
#>   UHM370.20870_S139_mean UHM372.20871_S151_mean UHM373.20872_S163_mean
#> 1               2.854072               1.383241               3.346147
#>   UHM374.20873_S175_mean UHM375.20874_S187_mean UHM377.20875_S104_mean
#> 1               14.54401               1.130585               2.368403
#>   UHM382.20876_S116_mean UHM386.20877_S128_mean UHM387.20878_S140_mean
#> 1               18.54257               6.394369               7.392092
#>   UHM414.20679_S151_mean UHM418.20861_S126_mean UHM422.20862_S138_mean
#> 1               13.20123               5.422357              0.2735626
#>   UHM425.20863_S150_mean UHM426.20630_S133_mean UHM428.20640_S158_mean
#> 1               2.641797              0.1076547                12.1294
#>   UHM429.20655_S148_mean UHM435.20643_S99_mean UHM437.20864_S162_mean
#> 1              0.1997977             0.5454392               3.985669
#>   UHM439.20660_S113_mean UHM443.20524_S120_mean UHM445.20665_S173_mean
#> 1               3.094588               1.302647               134.5565
#>   UHM447.20879_S152_mean UHM448.20865_S174_mean UHM452.20880_S164_mean
#> 1               26.25131              0.6271286               1.370258
#>   UHM454.20866_S186_mean UHM455.20881_S176_mean UHM458.20882_S188_mean
#> 1               2.675181                3.07191               17.72762
#>   UHM459.20883_S105_mean UHM461.20867_S103_mean UHM467.20868_S115_mean
#> 1               11.12789              0.5046367               4.456753
#>   UHM470.20629_S121_mean UHM476.20510_S142_mean UHM478.20645_S123_mean
#> 1               1.755016              0.8051762              0.1305851
#>   UHM479.20647_S147_mean UHM481.20499_S105_mean UHM482.20686_S140_mean
#> 1             0.06702074              0.1553701             0.08303827
#>   UHM483.20699_S106_mean UHM519.20678_S139_mean UHM520.20669_S126_mean
#> 1               15.94369               1.503372                52.4871
#>   UHM836.20481_S174_mean UHM837.20482_S186_mean UHM838.20483_S103_mean
#> 1              0.2128646             0.06870679               34.07747
#>   UHM891.20480_S162_mean UHM892.20628_S109_mean UHM893.20691_S105_mean
#> 1               16.27457                6.28115               89.09509
#>   UHM894.20636_S110_mean UHM895.20632_S157_mean UHM896.20697_S177_mean
#> 1               34.33949               3.915191               47.02816
#>   UHM897.20687_S152_mean UHM898.20490_S187_mean UHM899.20684_S116_mean
#> 1               16.51222               7.331141               2.261929
#>   UHM900.20491_S104_mean UHM901.20638_S134_mean UHM902.20680_S163_mean
#> 1               35.91544               5.474962               1.348676
#>   UHM903.20683_S104_mean UHM904.20663_S149_mean UHM905.20694_S141_mean
#> 1              0.5947564               7.609425               15.95802
#>   UHM906.20661_S125_mean UHM907.20688_S164_mean UHM908.20492_S116_mean
#> 1               62.22728              0.4893778               1.041393
#>   UHM909.20653_S124_mean UHM910.20658_S184_mean UHM965.20633_S169_mean
#> 1              0.1546957               2.278284               0.472433
#>   UHM966.20839_S147_mean UHM967.20840_S159_mean UHM968.20667_S102_mean
#> 1              0.1901028               3.151745             0.06339572
#>   UHM969.20841_S171_mean UHM971.20842_S183_mean UHM973.20674_S186_mean
#> 1               13.09695               4.165992              0.3769179
#>   UHM974.20528_S168_mean UHM975.20843_S100_mean UHM977.20844_S112_mean
#> 1             0.06373293               3.938459               1.206879
#>   UHM978.20845_S124_mean UHM979.20846_S136_mean UHM980.20827_S98_mean
#> 1               21.44613               2.467628             0.1012477
#>   UHM981.20635_S98_mean UHM982.20836_S111_mean UHM983.20652_S112_mean
#> 1             0.3614905               10.26353               1.448407
#>   UHM984.20847_S148_mean UHM985.20848_S160_mean UHM988.20849_S172_mean
#> 1               17.59105               1.269095              0.2959029
#>   UHM989.20850_S184_mean UHM991.20851_S101_mean UHM993.20837_S123_mean
#> 1               8.744141              0.3743045               5.685298
#>   UHM996.20706_S190_mean UHM997.20649_S171_mean UHM998.20714_S191_mean
#> 1             0.05791603              0.6737481             0.04375316
#>   UHM999.20713_S179_mean spiked.blank.20529_S180_sd spiked.blank.20913_S180_sd
#> 1               1.663126                   6.730747                   6.731323
#>   Std2uL.20721_S180_sd StdSwab1uL.20720_S168_sd STP1719.20518_S143_sd
#> 1             6.730294                 3.362462              7.032828
#>   STP213.20519_S155_sd STP268.20520_S167_sd STP544.20515_S107_sd
#> 1             21.25952             111.2298             6.826067
#>   STP570.20516_S119_sd STP579.20517_S131_sd STP614.20514_S190_sd
#> 1             12.37194             6.779944             68.62498
#>   UHM1000.20700_S118_sd UHM1001.20705_S178_sd UHM1007.20718_S144_sd
#> 1              463.9677              5.165837              139.2696
#>   UHM1009.20710_S143_sd UHM1010.20717_S132_sd UHM1011.20702_S142_sd
#> 1               11.3496               4.27458              8.031022
#>   UHM1024.20716_S120_sd UHM1026.20703_S154_sd UHM1028.20709_S131_sd
#> 1              3.724952              7.034125              32.60988
#>   UHM1032.20701_S130_sd UHM1033.20715_S108_sd UHM1034.20712_S167_sd
#> 1              6.534626              3.395946              313.9442
#>   UHM1035.20707_S107_sd UHM1036.20708_S119_sd UHM1052.20711_S155_sd
#> 1              4.899872              44.85895              13.91078
#>   UHM1060.20819_S97_sd UHM1065.20820_S109_sd UHM1068.20828_S110_sd
#> 1             8.119895              7.622605              17.25905
#>   UHM1069.20838_S135_sd UHM1070.20821_S121_sd UHM1071.20829_S122_sd
#> 1              14.51376              7.104436              29.52187
#>   UHM1072.20830_S134_sd UHM1073.20831_S146_sd UHM1075.20822_S133_sd
#> 1              8.023162              310.8534              29.14569
#>   UHM1077.20832_S158_sd UHM1078.20823_S145_sd UHM1080.20833_S170_sd
#> 1              7.484093              49.55108               58.6769
#>   UHM1081.20824_S157_sd UHM1088.20834_S182_sd UHM1090.20835_S99_sd
#> 1              300.8063              42.45345             10.55826
#>   UHM1093.20825_S169_sd UHM1095.20826_S181_sd UHM1097.20719_S156_sd
#> 1              42.59723               17.3579              3.437144
#>   UHM1099.20704_S166_sd UHM1100.20884_S117_sd UHM1102.20885_S129_sd
#> 1              4.582178              1654.794              535.1107
#>   UHM1104.20886_S141_sd UHM1105.20887_S153_sd UHM1109.20627_S97_sd
#> 1              49.32604              102.4097             87.97013
#>   UHM1110.20664_S161_sd UHM1113.20888_S165_sd UHM1114.20889_S177_sd
#> 1              9193.749              71.44446              46.36277
#>   UHM1115.20890_S189_sd UHM1117.20891_S106_sd UHM1118.20892_S118_sd
#> 1              1227.489              930.9339              94.68336
#>   UHM1120.20893_S130_sd UHM1124.20894_S142_sd UHM1126.20895_S154_sd
#> 1              265.6671              105.2451              314.0743
#>   UHM1128.20896_S166_sd UHM1140.20651_S100_sd UHM1145.20897_S178_sd
#> 1              5350.697              247.4484               537.039
#>   UHM1163.20501_S129_sd UHM1164.20498_S188_sd UHM1169.20648_S159_sd
#> 1              51.87968              12.45238              12.86593
#>   UHM1171.20675_S103_sd UHM1176.20500_S117_sd UHM1177.20642_S182_sd
#> 1              1363.682              83.02637              7.388534
#>   UHM1182.20672_S162_sd UHM1210.20898_S190_sd UHM1212.20899_S107_sd
#> 1              297.1795               439.591              107.1386
#>   UHM1217.20900_S119_sd UHM1218.20901_S131_sd UHM1219.20902_S143_sd
#> 1              95.23007               145.438              1209.727
#>   UHM1220.20903_S155_sd UHM1221.20904_S167_sd UHM1222.20905_S179_sd
#> 1              575.6849              192.1637              13.76585
#>   UHM1223.20906_S191_sd UHM1225.20907_S108_sd UHM1227.20908_S120_sd
#> 1              606.4634              420.8719              173.9378
#>   UHM1228.20909_S132_sd UHM1237.20910_S144_sd UHM1240.20662_S137_sd
#> 1              684.4317              160.8829              10.96837
#>   UHM1246.20911_S156_sd UHM1247.20912_S168_sd UHM1248.20671_S150_sd
#> 1              69.08158              216.7753              6.926635
#>   UHM1256.20666_S185_sd UHM1260.20692_S117_sd UHM1270.20673_S174_sd
#> 1              24.68824              141.6744              11.79198
#>   UHM1271.20493_S128_sd UHM1272.20494_S140_sd UHM1274.20650_S183_sd
#> 1              84.53201              27.15906              45.26783
#>   UHM1275.20693_S129_sd UHM1282.20695_S153_sd UHM1287.20639_S146_sd
#> 1              238.9181              284.1955              38.11322
#>   UHM1291.20512_S166_sd UHM1296.20646_S135_sd UHM1319.20657_S172_sd
#> 1              96.53267               1123.16              313.5749
#>   UHM1324.20509_S130_sd UHM1327.20641_S170_sd UHM1328.20668_S114_sd
#> 1              41.42332              4076.875              6.732564
#>   UHM1334.20513_S178_sd UHM1338.20495_S152_sd UHM1341.20698_S189_sd
#> 1              163.4727              9.969518               6.73274
#>   UHM1356.20637_S122_sd UHM1380.20676_S115_sd UHM1383.20690_S188_sd
#> 1              6.809267               462.788              274.2218
#>   UHM1385.20659_S101_sd UHM1399.20852_S113_sd UHM1400.20853_S125_sd
#> 1              7.224829              17.55122              10.89397
#>   UHM1401.20854_S137_sd UHM1402.20855_S149_sd UHM1403.20856_S161_sd
#> 1               14.2473             0.1836331               18.7312
#>   UHM1405.20857_S173_sd UHM1406.20858_S185_sd UHM1414.20859_S102_sd
#> 1              96.03448              12.17151              254.4422
#>   UHM1419.20860_S114_sd UHM1427.20485_S127_sd UHM1428.20486_S139_sd
#> 1              28.97593              8.515484              2237.697
#>   UHM1429.20487_S151_sd UHM1430.20488_S163_sd UHM1432.20489_S175_sd
#> 1               1572.78              641.2063              661.0352
#>   UHM1435.20484_S115_sd UHM162.20656_S160_sd UHM198.20681_S175_sd
#> 1              202.4216             85.05189             112.2029
#>   UHM200.20670_S138_sd UHM203.20685_S128_sd UHM204.20505_S177_sd
#> 1             191.5178             114.2623             28.92776
#>   UHM206.20506_S189_sd UHM207.20689_S176_sd UHM208.20507_S106_sd
#> 1             7.426781             153.3912               72.719
#>   UHM211.20502_S141_sd UHM215.20504_S165_sd UHM216.20525_S132_sd
#> 1             7.095001             11.29853             6.856084
#>   UHM219.20526_S144_sd UHM236.20527_S156_sd UHM238.20503_S153_sd
#> 1             6.730369             6.918625              14.4799
#>   UHM245.20634_S181_sd UHM252.20654_S136_sd UHM267.20496_S164_sd
#> 1             28.40031             158.3913              51.0037
#>   UHM274.20677_S127_sd UHM276.20682_S187_sd UHM280.20497_S176_sd
#> 1             61.12939             25.48116             18.06162
#>   UHM286.20521_S179_sd UHM289.20522_S191_sd UHM294.20523_S108_sd
#> 1             151.5534             24.91676             16.09427
#>   UHM298.20696_S165_sd UHM325.20644_S111_sd UHM337.20508_S118_sd
#> 1             1221.994             275.9052             25.51102
#>   UHM354.20631_S145_sd UHM356.20511_S154_sd UHM369.20869_S127_sd
#> 1             7.416083             20.85372                    0
#>   UHM370.20870_S139_sd UHM372.20871_S151_sd UHM373.20872_S163_sd
#> 1             186.2664             90.27269             317.6432
#>   UHM374.20873_S175_sd UHM375.20874_S187_sd UHM377.20875_S104_sd
#> 1             1004.419             84.91197             164.8947
#>   UHM382.20876_S116_sd UHM386.20877_S128_sd UHM387.20878_S140_sd
#> 1             1426.459             615.1558             461.3813
#>   UHM414.20679_S151_sd UHM418.20861_S126_sd UHM422.20862_S138_sd
#> 1              992.004              330.142             14.62342
#>   UHM425.20863_S150_sd UHM426.20630_S133_sd UHM428.20640_S158_sd
#> 1             159.3581             7.249789             800.4038
#>   UHM429.20655_S148_sd UHM435.20643_S99_sd UHM437.20864_S162_sd
#> 1             11.42767            30.93387             297.9874
#>   UHM439.20660_S113_sd UHM443.20524_S120_sd UHM445.20665_S173_sd
#> 1             254.8257             61.08636             4796.936
#>   UHM447.20879_S152_sd UHM448.20865_S174_sd UHM452.20880_S164_sd
#> 1              1986.24             52.10842             104.6164
#>   UHM454.20866_S186_sd UHM455.20881_S176_sd UHM458.20882_S188_sd
#> 1             146.6321             207.7634             1344.188
#>   UHM459.20883_S105_sd UHM461.20867_S103_sd UHM467.20868_S115_sd
#> 1             694.6036             39.92127             371.3097
#>   UHM470.20629_S121_sd UHM476.20510_S142_sd UHM478.20645_S123_sd
#> 1             121.7511             52.05833             9.908419
#>   UHM479.20647_S147_sd UHM481.20499_S105_sd UHM482.20686_S140_sd
#> 1             6.732509              7.56535              6.77745
#>   UHM483.20699_S106_sd UHM519.20678_S139_sd UHM520.20669_S126_sd
#> 1             981.3737             55.69854             5470.864
#>   UHM836.20481_S174_sd UHM837.20482_S186_sd UHM838.20483_S103_sd
#> 1             12.22542              6.74099             2148.269
#>   UHM891.20480_S162_sd UHM892.20628_S109_sd UHM893.20691_S105_sd
#> 1             1681.282             359.5898             7022.485
#>   UHM894.20636_S110_sd UHM895.20632_S157_sd UHM896.20697_S177_sd
#> 1             2681.619             170.8953             2325.908
#>   UHM897.20687_S152_sd UHM898.20490_S187_sd UHM899.20684_S116_sd
#> 1             1000.358             537.9758             141.0076
#>   UHM900.20491_S104_sd UHM901.20638_S134_sd UHM902.20680_S163_sd
#> 1             2566.026             291.9347             98.32261
#>   UHM903.20683_S104_sd UHM904.20663_S149_sd UHM905.20694_S141_sd
#> 1             50.92155             491.9152             1071.835
#>   UHM906.20661_S125_sd UHM907.20688_S164_sd UHM908.20492_S116_sd
#> 1             3285.998             28.04827             72.51777
#>   UHM909.20653_S124_sd UHM910.20658_S184_sd UHM965.20633_S169_sd
#> 1             12.11342             192.7355             12.22066
#>   UHM966.20839_S147_sd UHM967.20840_S159_sd UHM968.20667_S102_sd
#> 1              8.88396             176.9531             6.730496
#>   UHM969.20841_S171_sd UHM971.20842_S183_sd UHM973.20674_S186_sd
#> 1             1143.512             357.4598             24.11147
#>   UHM974.20528_S168_sd UHM975.20843_S100_sd UHM977.20844_S112_sd
#> 1              6.73038             190.6032             55.62855
#>   UHM978.20845_S124_sd UHM979.20846_S136_sd UHM980.20827_S98_sd
#> 1             2232.539             139.6204            6.841438
#>   UHM981.20635_S98_sd UHM982.20836_S111_sd UHM983.20652_S112_sd
#> 1            30.50647             616.0094             88.60566
#>   UHM984.20847_S148_sd UHM985.20848_S160_sd UHM988.20849_S172_sd
#> 1             1215.089              85.5511             14.13106
#>   UHM989.20850_S184_sd UHM991.20851_S101_sd UHM993.20837_S123_sd
#> 1             765.6343             19.75852             240.3693
#>   UHM996.20706_S190_sd UHM997.20649_S171_sd UHM998.20714_S191_sd
#> 1             3.404387             22.90439             3.374427
#>   UHM999.20713_S179_sd spiked.blank.20529_S180_se spiked.blank.20913_S180_se
#> 1             43.45621                 0.06179941                  0.0618047
#>   Std2uL.20721_S180_se StdSwab1uL.20720_S168_se STP1719.20518_S143_se
#> 1           0.06179524               0.03087297            0.06457301
#>   STP213.20519_S155_se STP268.20520_S167_se STP544.20515_S107_se
#> 1            0.1951976             1.021274            0.0626746
#>   STP570.20516_S119_se STP579.20517_S131_se STP614.20514_S190_se
#> 1            0.1135949           0.06225111             0.630091
#>   UHM1000.20700_S118_se UHM1001.20705_S178_se UHM1007.20718_S144_se
#> 1              4.259992            0.04743094              1.278725
#>   UHM1009.20710_S143_se UHM1010.20717_S132_se UHM1011.20702_S142_se
#> 1             0.1042081            0.03924772            0.07373809
#>   UHM1024.20716_S120_se UHM1026.20703_S154_se UHM1028.20709_S131_se
#> 1            0.03420123            0.06458492             0.2994127
#>   UHM1032.20701_S130_se UHM1033.20715_S108_se UHM1034.20712_S167_se
#> 1            0.05999869            0.03118041              2.882528
#>   UHM1035.20707_S107_se UHM1036.20708_S119_se UHM1052.20711_S155_se
#> 1            0.04498894             0.4118795              0.127724
#>   UHM1060.20819_S97_se UHM1065.20820_S109_se UHM1068.20828_S110_se
#> 1           0.07455409            0.06998814             0.1584666
#>   UHM1069.20838_S135_se UHM1070.20821_S121_se UHM1071.20829_S122_se
#> 1             0.1332604            0.06523049             0.2710597
#>   UHM1072.20830_S134_se UHM1073.20831_S146_se UHM1075.20822_S133_se
#> 1            0.07366592              2.854149             0.2676057
#>   UHM1077.20832_S158_se UHM1078.20823_S145_se UHM1080.20833_S170_se
#> 1            0.06871637              0.454961             0.5387511
#>   UHM1081.20824_S157_se UHM1088.20834_S182_se UHM1090.20835_S99_se
#> 1              2.761901              0.389793           0.09694229
#>   UHM1093.20825_S169_se UHM1095.20826_S181_se UHM1097.20719_S156_se
#> 1             0.3911131             0.1593743            0.03155868
#>   UHM1099.20704_S166_se UHM1100.20884_S117_se UHM1102.20885_S129_se
#> 1            0.04207198              15.19375              4.913202
#>   UHM1104.20886_S141_se UHM1105.20887_S153_se UHM1109.20627_S97_se
#> 1             0.4528948              0.940291            0.8077115
#>   UHM1110.20664_S161_se UHM1113.20888_S165_se UHM1114.20889_S177_se
#> 1              84.41385             0.6559785              0.425687
#>   UHM1115.20890_S189_se UHM1117.20891_S106_se UHM1118.20892_S118_se
#> 1              11.27038              8.547515             0.8693501
#>   UHM1120.20893_S130_se UHM1124.20894_S142_se UHM1126.20895_S154_se
#> 1              2.439264             0.9663243              2.883722
#>   UHM1128.20896_S166_se UHM1140.20651_S100_se UHM1145.20897_S178_se
#> 1              49.12826              2.271986              4.930907
#>   UHM1163.20501_S129_se UHM1164.20498_S188_se UHM1169.20648_S159_se
#> 1             0.4763414             0.1143334             0.1181305
#>   UHM1171.20675_S103_se UHM1176.20500_S117_se UHM1177.20642_S182_se
#> 1              12.52086             0.7623196            0.06783898
#>   UHM1182.20672_S162_se UHM1210.20898_S190_se UHM1212.20899_S107_se
#> 1                2.7286              4.036174             0.9837099
#>   UHM1217.20900_S119_se UHM1218.20901_S131_se UHM1219.20902_S143_se
#> 1             0.8743698              1.335362              11.10729
#>   UHM1220.20903_S155_se UHM1221.20904_S167_se UHM1222.20905_S179_se
#> 1              5.285741              1.764381             0.1263933
#>   UHM1223.20906_S191_se UHM1225.20907_S108_se UHM1227.20908_S120_se
#> 1              5.568339              3.864301              1.597037
#>   UHM1228.20909_S132_se UHM1237.20910_S144_se UHM1240.20662_S137_se
#> 1              6.284217              1.477172             0.1007078
#>   UHM1246.20911_S156_se UHM1247.20912_S168_se UHM1248.20671_S150_se
#> 1             0.6342834              1.990356            0.06359799
#>   UHM1256.20666_S185_se UHM1260.20692_S117_se UHM1270.20673_S174_se
#> 1             0.2266789              1.300806             0.1082699
#>   UHM1271.20493_S128_se UHM1272.20494_S140_se UHM1274.20650_S183_se
#> 1             0.7761439             0.2493652             0.4156337
#>   UHM1275.20693_S129_se UHM1282.20695_S153_se UHM1287.20639_S146_se
#> 1              2.193664              2.609385             0.3499425
#>   UHM1291.20512_S166_se UHM1296.20646_S135_se UHM1319.20657_S172_se
#> 1             0.8863299              10.31247              2.879137
#>   UHM1324.20509_S130_se UHM1327.20641_S170_se UHM1328.20668_S114_se
#> 1             0.3803347              37.43247            0.06181609
#>   UHM1334.20513_S178_se UHM1338.20495_S152_se UHM1341.20698_S189_se
#> 1               1.50095            0.09153669            0.06181771
#>   UHM1356.20637_S122_se UHM1380.20676_S115_se UHM1383.20690_S188_se
#> 1            0.06252035               4.24916               2.51781
#>   UHM1385.20659_S101_se UHM1399.20852_S113_se UHM1400.20853_S125_se
#> 1            0.06633589             0.1611493             0.1000247
#>   UHM1401.20854_S137_se UHM1402.20855_S149_se UHM1403.20856_S161_se
#> 1             0.1308138           0.001686056             0.1719835
#>   UHM1405.20857_S173_se UHM1406.20858_S185_se UHM1414.20859_S102_se
#> 1             0.8817556             0.1117547              2.336201
#>   UHM1419.20860_S114_se UHM1427.20485_S127_se UHM1428.20486_S139_se
#> 1              0.266047            0.07818625              20.54577
#>   UHM1429.20487_S151_se UHM1430.20488_S163_se UHM1432.20489_S175_se
#> 1              14.44072              5.887336              6.069398
#>   UHM1435.20484_S115_se UHM162.20656_S160_se UHM198.20681_S175_se
#> 1              1.858566            0.7809172             1.030209
#>   UHM200.20670_S138_se UHM203.20685_S128_se UHM204.20505_S177_se
#> 1              1.75845             1.049117            0.2656047
#>   UHM206.20506_S189_se UHM207.20689_S176_se UHM208.20507_S106_se
#> 1           0.06819016             1.408385            0.6676809
#>   UHM211.20502_S141_se UHM215.20504_S165_se UHM216.20525_S132_se
#> 1           0.06514386            0.1037392            0.0629502
#>   UHM219.20526_S144_se UHM236.20527_S156_se UHM238.20503_S153_se
#> 1           0.06179593           0.06352444            0.1329495
#>   UHM245.20634_S181_se UHM252.20654_S136_se UHM267.20496_S164_se
#> 1            0.2607619             1.454295            0.4682985
#>   UHM274.20677_S127_se UHM276.20682_S187_se UHM280.20497_S176_se
#> 1             0.561269            0.2339592            0.1658356
#>   UHM286.20521_S179_se UHM289.20522_S191_se UHM294.20523_S108_se
#> 1             1.391511            0.2287771             0.147772
#>   UHM298.20696_S165_se UHM325.20644_S111_se UHM337.20508_S118_se
#> 1             11.21993             2.533267            0.2342334
#>   UHM354.20631_S145_se UHM356.20511_S154_se UHM369.20869_S127_se
#> 1           0.06809192            0.1914717                    0
#>   UHM370.20870_S139_se UHM372.20871_S151_se UHM373.20872_S163_se
#> 1             1.710234            0.8288528             2.916491
#>   UHM374.20873_S175_se UHM375.20874_S187_se UHM377.20875_S104_se
#> 1             9.222234            0.7796326             1.514006
#>   UHM382.20876_S116_se UHM386.20877_S128_se UHM387.20878_S140_se
#> 1             13.09726             5.648149             4.236245
#>   UHM414.20679_S151_se UHM418.20861_S126_se UHM422.20862_S138_se
#> 1              9.10824              3.03125            0.1342672
#>   UHM425.20863_S150_se UHM426.20630_S133_se UHM428.20640_S158_se
#> 1             1.463171           0.06656507             7.349032
#>   UHM429.20655_S148_se UHM435.20643_S99_se UHM437.20864_S162_se
#> 1             0.104925           0.2840242             2.736018
#>   UHM439.20660_S113_se UHM443.20524_S120_se UHM445.20665_S173_se
#> 1             2.339722             0.560874             44.04382
#>   UHM447.20879_S152_se UHM448.20865_S174_se UHM452.20880_S164_se
#> 1             18.23697            0.4784416            0.9605517
#>   UHM454.20866_S186_se UHM455.20881_S176_se UHM458.20882_S188_se
#> 1             1.346326             1.907612             12.34188
#>   UHM459.20883_S105_se UHM461.20867_S103_se UHM467.20868_S115_se
#> 1             6.377612            0.3665434             3.409238
#>   UHM470.20629_S121_se UHM476.20510_S142_se UHM478.20645_S123_se
#> 1             1.117876            0.4779817            0.0909757
#>   UHM479.20647_S147_se UHM481.20499_S105_se UHM482.20686_S140_se
#> 1           0.06181558           0.06946245           0.06222822
#>   UHM483.20699_S106_se UHM519.20678_S139_se UHM520.20669_S126_se
#> 1             9.010636            0.5114049             50.23159
#>   UHM836.20481_S174_se UHM837.20482_S186_se UHM838.20483_S103_se
#> 1            0.1122496           0.06189345             19.72467
#>   UHM891.20480_S162_se UHM892.20628_S109_se UHM893.20691_S105_se
#> 1             15.43696              3.30163             64.47805
#>   UHM894.20636_S110_se UHM895.20632_S157_se UHM896.20697_S177_se
#> 1              24.6217             1.569102             21.35569
#>   UHM897.20687_S152_se UHM898.20490_S187_se UHM899.20684_S116_se
#> 1             9.184941             4.939509             1.294683
#>   UHM900.20491_S104_se UHM901.20638_S134_se UHM902.20680_S163_se
#> 1             23.56037             2.680444            0.9027645
#>   UHM903.20683_S104_se UHM904.20663_S149_se UHM905.20694_S141_se
#> 1            0.4675442             4.516596             9.841217
#>   UHM906.20661_S125_se UHM907.20688_S164_se UHM908.20492_S116_se
#> 1              30.1709            0.2575295            0.6658332
#>   UHM909.20653_S124_se UHM910.20658_S184_se UHM965.20633_S169_se
#> 1            0.1112213             1.769631            0.1122059
#>   UHM966.20839_S147_se UHM967.20840_S159_se UHM968.20667_S102_se
#> 1           0.08156947             1.624723           0.06179711
#>   UHM969.20841_S171_se UHM971.20842_S183_se UHM973.20674_S186_se
#> 1             10.49934             3.282073            0.2213832
#>   UHM974.20528_S168_se UHM975.20843_S100_se UHM977.20844_S112_se
#> 1           0.06179604             1.750053            0.5107622
#>   UHM978.20845_S124_se UHM979.20846_S136_se UHM980.20827_S98_se
#> 1             20.49841             1.281947          0.06281574
#>   UHM981.20635_S98_se UHM982.20836_S111_se UHM983.20652_S112_se
#> 1              0.2801             5.655986            0.8135467
#>   UHM984.20847_S148_se UHM985.20848_S160_se UHM988.20849_S172_se
#> 1             11.15653            0.7855008            0.1297465
#>   UHM989.20850_S184_se UHM991.20851_S101_se UHM993.20837_S123_se
#> 1             7.029791            0.1814159             2.206989
#>   UHM996.20706_S190_se UHM997.20649_S171_se UHM998.20714_S191_se
#> 1           0.03125791            0.2103003           0.03098282
#>   UHM999.20713_S179_se spiked.blank.20529_S180_q25 spiked.blank.20913_S180_q25
#> 1            0.3989999                           0                           0
#>   Std2uL.20721_S180_q25 StdSwab1uL.20720_S168_q25 STP1719.20518_S143_q25
#> 1                     0                         0                      0
#>   STP213.20519_S155_q25 STP268.20520_S167_q25 STP544.20515_S107_q25
#> 1                     0                     0                     0
#>   STP570.20516_S119_q25 STP579.20517_S131_q25 STP614.20514_S190_q25
#> 1                     0                     0                     0
#>   UHM1000.20700_S118_q25 UHM1001.20705_S178_q25 UHM1007.20718_S144_q25
#> 1                      0                      0                      0
#>   UHM1009.20710_S143_q25 UHM1010.20717_S132_q25 UHM1011.20702_S142_q25
#> 1                      0                      0                      0
#>   UHM1024.20716_S120_q25 UHM1026.20703_S154_q25 UHM1028.20709_S131_q25
#> 1                      0                      0                      0
#>   UHM1032.20701_S130_q25 UHM1033.20715_S108_q25 UHM1034.20712_S167_q25
#> 1                      0                      0                      0
#>   UHM1035.20707_S107_q25 UHM1036.20708_S119_q25 UHM1052.20711_S155_q25
#> 1                      0                      0                      0
#>   UHM1060.20819_S97_q25 UHM1065.20820_S109_q25 UHM1068.20828_S110_q25
#> 1                     0                      0                      0
#>   UHM1069.20838_S135_q25 UHM1070.20821_S121_q25 UHM1071.20829_S122_q25
#> 1                      0                      0                      0
#>   UHM1072.20830_S134_q25 UHM1073.20831_S146_q25 UHM1075.20822_S133_q25
#> 1                      0                      0                      0
#>   UHM1077.20832_S158_q25 UHM1078.20823_S145_q25 UHM1080.20833_S170_q25
#> 1                      0                      0                      0
#>   UHM1081.20824_S157_q25 UHM1088.20834_S182_q25 UHM1090.20835_S99_q25
#> 1                      0                      0                     0
#>   UHM1093.20825_S169_q25 UHM1095.20826_S181_q25 UHM1097.20719_S156_q25
#> 1                      0                      0                      0
#>   UHM1099.20704_S166_q25 UHM1100.20884_S117_q25 UHM1102.20885_S129_q25
#> 1                      0                      0                      0
#>   UHM1104.20886_S141_q25 UHM1105.20887_S153_q25 UHM1109.20627_S97_q25
#> 1                      0                      0                     0
#>   UHM1110.20664_S161_q25 UHM1113.20888_S165_q25 UHM1114.20889_S177_q25
#> 1                      0                      0                      0
#>   UHM1115.20890_S189_q25 UHM1117.20891_S106_q25 UHM1118.20892_S118_q25
#> 1                      0                      0                      0
#>   UHM1120.20893_S130_q25 UHM1124.20894_S142_q25 UHM1126.20895_S154_q25
#> 1                      0                      0                      0
#>   UHM1128.20896_S166_q25 UHM1140.20651_S100_q25 UHM1145.20897_S178_q25
#> 1                      0                      0                      0
#>   UHM1163.20501_S129_q25 UHM1164.20498_S188_q25 UHM1169.20648_S159_q25
#> 1                      0                      0                      0
#>   UHM1171.20675_S103_q25 UHM1176.20500_S117_q25 UHM1177.20642_S182_q25
#> 1                      0                      0                      0
#>   UHM1182.20672_S162_q25 UHM1210.20898_S190_q25 UHM1212.20899_S107_q25
#> 1                      0                      0                      0
#>   UHM1217.20900_S119_q25 UHM1218.20901_S131_q25 UHM1219.20902_S143_q25
#> 1                      0                      0                      0
#>   UHM1220.20903_S155_q25 UHM1221.20904_S167_q25 UHM1222.20905_S179_q25
#> 1                      0                      0                      0
#>   UHM1223.20906_S191_q25 UHM1225.20907_S108_q25 UHM1227.20908_S120_q25
#> 1                      0                      0                      0
#>   UHM1228.20909_S132_q25 UHM1237.20910_S144_q25 UHM1240.20662_S137_q25
#> 1                      0                      0                      0
#>   UHM1246.20911_S156_q25 UHM1247.20912_S168_q25 UHM1248.20671_S150_q25
#> 1                      0                      0                      0
#>   UHM1256.20666_S185_q25 UHM1260.20692_S117_q25 UHM1270.20673_S174_q25
#> 1                      0                      0                      0
#>   UHM1271.20493_S128_q25 UHM1272.20494_S140_q25 UHM1274.20650_S183_q25
#> 1                      0                      0                      0
#>   UHM1275.20693_S129_q25 UHM1282.20695_S153_q25 UHM1287.20639_S146_q25
#> 1                      0                      0                      0
#>   UHM1291.20512_S166_q25 UHM1296.20646_S135_q25 UHM1319.20657_S172_q25
#> 1                      0                      0                      0
#>   UHM1324.20509_S130_q25 UHM1327.20641_S170_q25 UHM1328.20668_S114_q25
#> 1                      0                      0                      0
#>   UHM1334.20513_S178_q25 UHM1338.20495_S152_q25 UHM1341.20698_S189_q25
#> 1                      0                      0                      0
#>   UHM1356.20637_S122_q25 UHM1380.20676_S115_q25 UHM1383.20690_S188_q25
#> 1                      0                      0                      0
#>   UHM1385.20659_S101_q25 UHM1399.20852_S113_q25 UHM1400.20853_S125_q25
#> 1                      0                      0                      0
#>   UHM1401.20854_S137_q25 UHM1402.20855_S149_q25 UHM1403.20856_S161_q25
#> 1                      0                      0                      0
#>   UHM1405.20857_S173_q25 UHM1406.20858_S185_q25 UHM1414.20859_S102_q25
#> 1                      0                      0                      0
#>   UHM1419.20860_S114_q25 UHM1427.20485_S127_q25 UHM1428.20486_S139_q25
#> 1                      0                      0                      0
#>   UHM1429.20487_S151_q25 UHM1430.20488_S163_q25 UHM1432.20489_S175_q25
#> 1                      0                      0                      0
#>   UHM1435.20484_S115_q25 UHM162.20656_S160_q25 UHM198.20681_S175_q25
#> 1                      0                     0                     0
#>   UHM200.20670_S138_q25 UHM203.20685_S128_q25 UHM204.20505_S177_q25
#> 1                     0                     0                     0
#>   UHM206.20506_S189_q25 UHM207.20689_S176_q25 UHM208.20507_S106_q25
#> 1                     0                     0                     0
#>   UHM211.20502_S141_q25 UHM215.20504_S165_q25 UHM216.20525_S132_q25
#> 1                     0                     0                     0
#>   UHM219.20526_S144_q25 UHM236.20527_S156_q25 UHM238.20503_S153_q25
#> 1                     0                     0                     0
#>   UHM245.20634_S181_q25 UHM252.20654_S136_q25 UHM267.20496_S164_q25
#> 1                     0                     0                     0
#>   UHM274.20677_S127_q25 UHM276.20682_S187_q25 UHM280.20497_S176_q25
#> 1                     0                     0                     0
#>   UHM286.20521_S179_q25 UHM289.20522_S191_q25 UHM294.20523_S108_q25
#> 1                     0                     0                     0
#>   UHM298.20696_S165_q25 UHM325.20644_S111_q25 UHM337.20508_S118_q25
#> 1                     0                     0                     0
#>   UHM354.20631_S145_q25 UHM356.20511_S154_q25 UHM369.20869_S127_q25
#> 1                     0                     0                     0
#>   UHM370.20870_S139_q25 UHM372.20871_S151_q25 UHM373.20872_S163_q25
#> 1                     0                     0                     0
#>   UHM374.20873_S175_q25 UHM375.20874_S187_q25 UHM377.20875_S104_q25
#> 1                     0                     0                     0
#>   UHM382.20876_S116_q25 UHM386.20877_S128_q25 UHM387.20878_S140_q25
#> 1                     0                     0                     0
#>   UHM414.20679_S151_q25 UHM418.20861_S126_q25 UHM422.20862_S138_q25
#> 1                     0                     0                     0
#>   UHM425.20863_S150_q25 UHM426.20630_S133_q25 UHM428.20640_S158_q25
#> 1                     0                     0                     0
#>   UHM429.20655_S148_q25 UHM435.20643_S99_q25 UHM437.20864_S162_q25
#> 1                     0                    0                     0
#>   UHM439.20660_S113_q25 UHM443.20524_S120_q25 UHM445.20665_S173_q25
#> 1                     0                     0                     0
#>   UHM447.20879_S152_q25 UHM448.20865_S174_q25 UHM452.20880_S164_q25
#> 1                     0                     0                     0
#>   UHM454.20866_S186_q25 UHM455.20881_S176_q25 UHM458.20882_S188_q25
#> 1                     0                     0                     0
#>   UHM459.20883_S105_q25 UHM461.20867_S103_q25 UHM467.20868_S115_q25
#> 1                     0                     0                     0
#>   UHM470.20629_S121_q25 UHM476.20510_S142_q25 UHM478.20645_S123_q25
#> 1                     0                     0                     0
#>   UHM479.20647_S147_q25 UHM481.20499_S105_q25 UHM482.20686_S140_q25
#> 1                     0                     0                     0
#>   UHM483.20699_S106_q25 UHM519.20678_S139_q25 UHM520.20669_S126_q25
#> 1                     0                     0                     0
#>   UHM836.20481_S174_q25 UHM837.20482_S186_q25 UHM838.20483_S103_q25
#> 1                     0                     0                     0
#>   UHM891.20480_S162_q25 UHM892.20628_S109_q25 UHM893.20691_S105_q25
#> 1                     0                     0                     0
#>   UHM894.20636_S110_q25 UHM895.20632_S157_q25 UHM896.20697_S177_q25
#> 1                     0                     0                     0
#>   UHM897.20687_S152_q25 UHM898.20490_S187_q25 UHM899.20684_S116_q25
#> 1                     0                     0                     0
#>   UHM900.20491_S104_q25 UHM901.20638_S134_q25 UHM902.20680_S163_q25
#> 1                     0                     0                     0
#>   UHM903.20683_S104_q25 UHM904.20663_S149_q25 UHM905.20694_S141_q25
#> 1                     0                     0                     0
#>   UHM906.20661_S125_q25 UHM907.20688_S164_q25 UHM908.20492_S116_q25
#> 1                     0                     0                     0
#>   UHM909.20653_S124_q25 UHM910.20658_S184_q25 UHM965.20633_S169_q25
#> 1                     0                     0                     0
#>   UHM966.20839_S147_q25 UHM967.20840_S159_q25 UHM968.20667_S102_q25
#> 1                     0                     0                     0
#>   UHM969.20841_S171_q25 UHM971.20842_S183_q25 UHM973.20674_S186_q25
#> 1                     0                     0                     0
#>   UHM974.20528_S168_q25 UHM975.20843_S100_q25 UHM977.20844_S112_q25
#> 1                     0                     0                     0
#>   UHM978.20845_S124_q25 UHM979.20846_S136_q25 UHM980.20827_S98_q25
#> 1                     0                     0                    0
#>   UHM981.20635_S98_q25 UHM982.20836_S111_q25 UHM983.20652_S112_q25
#> 1                    0                     0                     0
#>   UHM984.20847_S148_q25 UHM985.20848_S160_q25 UHM988.20849_S172_q25
#> 1                     0                     0                     0
#>   UHM989.20850_S184_q25 UHM991.20851_S101_q25 UHM993.20837_S123_q25
#> 1                     0                     0                     0
#>   UHM996.20706_S190_q25 UHM997.20649_S171_q25 UHM998.20714_S191_q25
#> 1                     0                     0                     0
#>   UHM999.20713_S179_q25 spiked.blank.20529_S180_median
#> 1                     0                              0
#>   spiked.blank.20913_S180_median Std2uL.20721_S180_median
#> 1                              0                        0
#>   StdSwab1uL.20720_S168_median STP1719.20518_S143_median
#> 1                            0                         0
#>   STP213.20519_S155_median STP268.20520_S167_median STP544.20515_S107_median
#> 1                        0                        0                        0
#>   STP570.20516_S119_median STP579.20517_S131_median STP614.20514_S190_median
#> 1                        0                        0                        0
#>   UHM1000.20700_S118_median UHM1001.20705_S178_median UHM1007.20718_S144_median
#> 1                         0                         0                         0
#>   UHM1009.20710_S143_median UHM1010.20717_S132_median UHM1011.20702_S142_median
#> 1                         0                         0                         0
#>   UHM1024.20716_S120_median UHM1026.20703_S154_median UHM1028.20709_S131_median
#> 1                         0                         0                         0
#>   UHM1032.20701_S130_median UHM1033.20715_S108_median UHM1034.20712_S167_median
#> 1                         0                         0                         0
#>   UHM1035.20707_S107_median UHM1036.20708_S119_median UHM1052.20711_S155_median
#> 1                         0                         0                         0
#>   UHM1060.20819_S97_median UHM1065.20820_S109_median UHM1068.20828_S110_median
#> 1                        0                         0                         0
#>   UHM1069.20838_S135_median UHM1070.20821_S121_median UHM1071.20829_S122_median
#> 1                         0                         0                         0
#>   UHM1072.20830_S134_median UHM1073.20831_S146_median UHM1075.20822_S133_median
#> 1                         0                         0                         0
#>   UHM1077.20832_S158_median UHM1078.20823_S145_median UHM1080.20833_S170_median
#> 1                         0                         0                         0
#>   UHM1081.20824_S157_median UHM1088.20834_S182_median UHM1090.20835_S99_median
#> 1                         0                         0                        0
#>   UHM1093.20825_S169_median UHM1095.20826_S181_median UHM1097.20719_S156_median
#> 1                         0                         0                         0
#>   UHM1099.20704_S166_median UHM1100.20884_S117_median UHM1102.20885_S129_median
#> 1                         0                         0                         0
#>   UHM1104.20886_S141_median UHM1105.20887_S153_median UHM1109.20627_S97_median
#> 1                         0                         0                        0
#>   UHM1110.20664_S161_median UHM1113.20888_S165_median UHM1114.20889_S177_median
#> 1                         0                         0                         0
#>   UHM1115.20890_S189_median UHM1117.20891_S106_median UHM1118.20892_S118_median
#> 1                         0                         0                         0
#>   UHM1120.20893_S130_median UHM1124.20894_S142_median UHM1126.20895_S154_median
#> 1                         0                         0                         0
#>   UHM1128.20896_S166_median UHM1140.20651_S100_median UHM1145.20897_S178_median
#> 1                         0                         0                         0
#>   UHM1163.20501_S129_median UHM1164.20498_S188_median UHM1169.20648_S159_median
#> 1                         0                         0                         0
#>   UHM1171.20675_S103_median UHM1176.20500_S117_median UHM1177.20642_S182_median
#> 1                         0                         0                         0
#>   UHM1182.20672_S162_median UHM1210.20898_S190_median UHM1212.20899_S107_median
#> 1                         0                         0                         0
#>   UHM1217.20900_S119_median UHM1218.20901_S131_median UHM1219.20902_S143_median
#> 1                         0                         0                         0
#>   UHM1220.20903_S155_median UHM1221.20904_S167_median UHM1222.20905_S179_median
#> 1                         0                         0                         0
#>   UHM1223.20906_S191_median UHM1225.20907_S108_median UHM1227.20908_S120_median
#> 1                         0                         0                         0
#>   UHM1228.20909_S132_median UHM1237.20910_S144_median UHM1240.20662_S137_median
#> 1                         0                         0                         0
#>   UHM1246.20911_S156_median UHM1247.20912_S168_median UHM1248.20671_S150_median
#> 1                         0                         0                         0
#>   UHM1256.20666_S185_median UHM1260.20692_S117_median UHM1270.20673_S174_median
#> 1                         0                         0                         0
#>   UHM1271.20493_S128_median UHM1272.20494_S140_median UHM1274.20650_S183_median
#> 1                         0                         0                         0
#>   UHM1275.20693_S129_median UHM1282.20695_S153_median UHM1287.20639_S146_median
#> 1                         0                         0                         0
#>   UHM1291.20512_S166_median UHM1296.20646_S135_median UHM1319.20657_S172_median
#> 1                         0                         0                         0
#>   UHM1324.20509_S130_median UHM1327.20641_S170_median UHM1328.20668_S114_median
#> 1                         0                         0                         0
#>   UHM1334.20513_S178_median UHM1338.20495_S152_median UHM1341.20698_S189_median
#> 1                         0                         0                         0
#>   UHM1356.20637_S122_median UHM1380.20676_S115_median UHM1383.20690_S188_median
#> 1                         0                         0                         0
#>   UHM1385.20659_S101_median UHM1399.20852_S113_median UHM1400.20853_S125_median
#> 1                         0                         0                         0
#>   UHM1401.20854_S137_median UHM1402.20855_S149_median UHM1403.20856_S161_median
#> 1                         0                         0                         0
#>   UHM1405.20857_S173_median UHM1406.20858_S185_median UHM1414.20859_S102_median
#> 1                         0                         0                         0
#>   UHM1419.20860_S114_median UHM1427.20485_S127_median UHM1428.20486_S139_median
#> 1                         0                         0                         0
#>   UHM1429.20487_S151_median UHM1430.20488_S163_median UHM1432.20489_S175_median
#> 1                         0                         0                         0
#>   UHM1435.20484_S115_median UHM162.20656_S160_median UHM198.20681_S175_median
#> 1                         0                        0                        0
#>   UHM200.20670_S138_median UHM203.20685_S128_median UHM204.20505_S177_median
#> 1                        0                        0                        0
#>   UHM206.20506_S189_median UHM207.20689_S176_median UHM208.20507_S106_median
#> 1                        0                        0                        0
#>   UHM211.20502_S141_median UHM215.20504_S165_median UHM216.20525_S132_median
#> 1                        0                        0                        0
#>   UHM219.20526_S144_median UHM236.20527_S156_median UHM238.20503_S153_median
#> 1                        0                        0                        0
#>   UHM245.20634_S181_median UHM252.20654_S136_median UHM267.20496_S164_median
#> 1                        0                        0                        0
#>   UHM274.20677_S127_median UHM276.20682_S187_median UHM280.20497_S176_median
#> 1                        0                        0                        0
#>   UHM286.20521_S179_median UHM289.20522_S191_median UHM294.20523_S108_median
#> 1                        0                        0                        0
#>   UHM298.20696_S165_median UHM325.20644_S111_median UHM337.20508_S118_median
#> 1                        0                        0                        0
#>   UHM354.20631_S145_median UHM356.20511_S154_median UHM369.20869_S127_median
#> 1                        0                        0                        0
#>   UHM370.20870_S139_median UHM372.20871_S151_median UHM373.20872_S163_median
#> 1                        0                        0                        0
#>   UHM374.20873_S175_median UHM375.20874_S187_median UHM377.20875_S104_median
#> 1                        0                        0                        0
#>   UHM382.20876_S116_median UHM386.20877_S128_median UHM387.20878_S140_median
#> 1                        0                        0                        0
#>   UHM414.20679_S151_median UHM418.20861_S126_median UHM422.20862_S138_median
#> 1                        0                        0                        0
#>   UHM425.20863_S150_median UHM426.20630_S133_median UHM428.20640_S158_median
#> 1                        0                        0                        0
#>   UHM429.20655_S148_median UHM435.20643_S99_median UHM437.20864_S162_median
#> 1                        0                       0                        0
#>   UHM439.20660_S113_median UHM443.20524_S120_median UHM445.20665_S173_median
#> 1                        0                        0                        0
#>   UHM447.20879_S152_median UHM448.20865_S174_median UHM452.20880_S164_median
#> 1                        0                        0                        0
#>   UHM454.20866_S186_median UHM455.20881_S176_median UHM458.20882_S188_median
#> 1                        0                        0                        0
#>   UHM459.20883_S105_median UHM461.20867_S103_median UHM467.20868_S115_median
#> 1                        0                        0                        0
#>   UHM470.20629_S121_median UHM476.20510_S142_median UHM478.20645_S123_median
#> 1                        0                        0                        0
#>   UHM479.20647_S147_median UHM481.20499_S105_median UHM482.20686_S140_median
#> 1                        0                        0                        0
#>   UHM483.20699_S106_median UHM519.20678_S139_median UHM520.20669_S126_median
#> 1                        0                        0                        0
#>   UHM836.20481_S174_median UHM837.20482_S186_median UHM838.20483_S103_median
#> 1                        0                        0                        0
#>   UHM891.20480_S162_median UHM892.20628_S109_median UHM893.20691_S105_median
#> 1                        0                        0                        0
#>   UHM894.20636_S110_median UHM895.20632_S157_median UHM896.20697_S177_median
#> 1                        0                        0                        0
#>   UHM897.20687_S152_median UHM898.20490_S187_median UHM899.20684_S116_median
#> 1                        0                        0                        0
#>   UHM900.20491_S104_median UHM901.20638_S134_median UHM902.20680_S163_median
#> 1                        0                        0                        0
#>   UHM903.20683_S104_median UHM904.20663_S149_median UHM905.20694_S141_median
#> 1                        0                        0                        0
#>   UHM906.20661_S125_median UHM907.20688_S164_median UHM908.20492_S116_median
#> 1                        0                        0                        0
#>   UHM909.20653_S124_median UHM910.20658_S184_median UHM965.20633_S169_median
#> 1                        0                        0                        0
#>   UHM966.20839_S147_median UHM967.20840_S159_median UHM968.20667_S102_median
#> 1                        0                        0                        0
#>   UHM969.20841_S171_median UHM971.20842_S183_median UHM973.20674_S186_median
#> 1                        0                        0                        0
#>   UHM974.20528_S168_median UHM975.20843_S100_median UHM977.20844_S112_median
#> 1                        0                        0                        0
#>   UHM978.20845_S124_median UHM979.20846_S136_median UHM980.20827_S98_median
#> 1                        0                        0                       0
#>   UHM981.20635_S98_median UHM982.20836_S111_median UHM983.20652_S112_median
#> 1                       0                        0                        0
#>   UHM984.20847_S148_median UHM985.20848_S160_median UHM988.20849_S172_median
#> 1                        0                        0                        0
#>   UHM989.20850_S184_median UHM991.20851_S101_median UHM993.20837_S123_median
#> 1                        0                        0                        0
#>   UHM996.20706_S190_median UHM997.20649_S171_median UHM998.20714_S191_median
#> 1                        0                        0                        0
#>   UHM999.20713_S179_median spiked.blank.20529_S180_q75
#> 1                        0                           0
#>   spiked.blank.20913_S180_q75 Std2uL.20721_S180_q75 StdSwab1uL.20720_S168_q75
#> 1                           0                     0                         0
#>   STP1719.20518_S143_q75 STP213.20519_S155_q75 STP268.20520_S167_q75
#> 1                      0                     0                     0
#>   STP544.20515_S107_q75 STP570.20516_S119_q75 STP579.20517_S131_q75
#> 1                     0                     0                     0
#>   STP614.20514_S190_q75 UHM1000.20700_S118_q75 UHM1001.20705_S178_q75
#> 1                     0                      0                      0
#>   UHM1007.20718_S144_q75 UHM1009.20710_S143_q75 UHM1010.20717_S132_q75
#> 1                      0                      0                      0
#>   UHM1011.20702_S142_q75 UHM1024.20716_S120_q75 UHM1026.20703_S154_q75
#> 1                      0                      0                      0
#>   UHM1028.20709_S131_q75 UHM1032.20701_S130_q75 UHM1033.20715_S108_q75
#> 1                      0                      0                      0
#>   UHM1034.20712_S167_q75 UHM1035.20707_S107_q75 UHM1036.20708_S119_q75
#> 1                      0                      0                      0
#>   UHM1052.20711_S155_q75 UHM1060.20819_S97_q75 UHM1065.20820_S109_q75
#> 1                      0                     0                      0
#>   UHM1068.20828_S110_q75 UHM1069.20838_S135_q75 UHM1070.20821_S121_q75
#> 1                      0                      0                      0
#>   UHM1071.20829_S122_q75 UHM1072.20830_S134_q75 UHM1073.20831_S146_q75
#> 1                      0                      0                      0
#>   UHM1075.20822_S133_q75 UHM1077.20832_S158_q75 UHM1078.20823_S145_q75
#> 1                      0                      0                      0
#>   UHM1080.20833_S170_q75 UHM1081.20824_S157_q75 UHM1088.20834_S182_q75
#> 1                      0                      0                      0
#>   UHM1090.20835_S99_q75 UHM1093.20825_S169_q75 UHM1095.20826_S181_q75
#> 1                     0                      0                      0
#>   UHM1097.20719_S156_q75 UHM1099.20704_S166_q75 UHM1100.20884_S117_q75
#> 1                      0                      0                      0
#>   UHM1102.20885_S129_q75 UHM1104.20886_S141_q75 UHM1105.20887_S153_q75
#> 1                      0                      0                      0
#>   UHM1109.20627_S97_q75 UHM1110.20664_S161_q75 UHM1113.20888_S165_q75
#> 1                     0                      0                      0
#>   UHM1114.20889_S177_q75 UHM1115.20890_S189_q75 UHM1117.20891_S106_q75
#> 1                      0                      0                      0
#>   UHM1118.20892_S118_q75 UHM1120.20893_S130_q75 UHM1124.20894_S142_q75
#> 1                      0                      0                      0
#>   UHM1126.20895_S154_q75 UHM1128.20896_S166_q75 UHM1140.20651_S100_q75
#> 1                      0                      0                      0
#>   UHM1145.20897_S178_q75 UHM1163.20501_S129_q75 UHM1164.20498_S188_q75
#> 1                      0                      0                      0
#>   UHM1169.20648_S159_q75 UHM1171.20675_S103_q75 UHM1176.20500_S117_q75
#> 1                      0                      0                      0
#>   UHM1177.20642_S182_q75 UHM1182.20672_S162_q75 UHM1210.20898_S190_q75
#> 1                      0                      0                      0
#>   UHM1212.20899_S107_q75 UHM1217.20900_S119_q75 UHM1218.20901_S131_q75
#> 1                      0                      0                      0
#>   UHM1219.20902_S143_q75 UHM1220.20903_S155_q75 UHM1221.20904_S167_q75
#> 1                      0                      0                      0
#>   UHM1222.20905_S179_q75 UHM1223.20906_S191_q75 UHM1225.20907_S108_q75
#> 1                      0                      0                      0
#>   UHM1227.20908_S120_q75 UHM1228.20909_S132_q75 UHM1237.20910_S144_q75
#> 1                      0                      0                      0
#>   UHM1240.20662_S137_q75 UHM1246.20911_S156_q75 UHM1247.20912_S168_q75
#> 1                      0                      0                      0
#>   UHM1248.20671_S150_q75 UHM1256.20666_S185_q75 UHM1260.20692_S117_q75
#> 1                      0                      0                      0
#>   UHM1270.20673_S174_q75 UHM1271.20493_S128_q75 UHM1272.20494_S140_q75
#> 1                      0                      0                      0
#>   UHM1274.20650_S183_q75 UHM1275.20693_S129_q75 UHM1282.20695_S153_q75
#> 1                      0                      0                      0
#>   UHM1287.20639_S146_q75 UHM1291.20512_S166_q75 UHM1296.20646_S135_q75
#> 1                      0                      0                      0
#>   UHM1319.20657_S172_q75 UHM1324.20509_S130_q75 UHM1327.20641_S170_q75
#> 1                      0                      0                      0
#>   UHM1328.20668_S114_q75 UHM1334.20513_S178_q75 UHM1338.20495_S152_q75
#> 1                      0                      0                      0
#>   UHM1341.20698_S189_q75 UHM1356.20637_S122_q75 UHM1380.20676_S115_q75
#> 1                      0                      0                      0
#>   UHM1383.20690_S188_q75 UHM1385.20659_S101_q75 UHM1399.20852_S113_q75
#> 1                      0                      0                      0
#>   UHM1400.20853_S125_q75 UHM1401.20854_S137_q75 UHM1402.20855_S149_q75
#> 1                      0                      0                      0
#>   UHM1403.20856_S161_q75 UHM1405.20857_S173_q75 UHM1406.20858_S185_q75
#> 1                      0                      0                      0
#>   UHM1414.20859_S102_q75 UHM1419.20860_S114_q75 UHM1427.20485_S127_q75
#> 1                      0                      0                      0
#>   UHM1428.20486_S139_q75 UHM1429.20487_S151_q75 UHM1430.20488_S163_q75
#> 1                      0                      0                      0
#>   UHM1432.20489_S175_q75 UHM1435.20484_S115_q75 UHM162.20656_S160_q75
#> 1                      0                      0                     0
#>   UHM198.20681_S175_q75 UHM200.20670_S138_q75 UHM203.20685_S128_q75
#> 1                     0                     0                     0
#>   UHM204.20505_S177_q75 UHM206.20506_S189_q75 UHM207.20689_S176_q75
#> 1                     0                     0                     0
#>   UHM208.20507_S106_q75 UHM211.20502_S141_q75 UHM215.20504_S165_q75
#> 1                     0                     0                     0
#>   UHM216.20525_S132_q75 UHM219.20526_S144_q75 UHM236.20527_S156_q75
#> 1                     0                     0                     0
#>   UHM238.20503_S153_q75 UHM245.20634_S181_q75 UHM252.20654_S136_q75
#> 1                     0                     0                     0
#>   UHM267.20496_S164_q75 UHM274.20677_S127_q75 UHM276.20682_S187_q75
#> 1                     0                     0                     0
#>   UHM280.20497_S176_q75 UHM286.20521_S179_q75 UHM289.20522_S191_q75
#> 1                     0                     0                     0
#>   UHM294.20523_S108_q75 UHM298.20696_S165_q75 UHM325.20644_S111_q75
#> 1                     0                     0                     0
#>   UHM337.20508_S118_q75 UHM354.20631_S145_q75 UHM356.20511_S154_q75
#> 1                     0                     0                     0
#>   UHM369.20869_S127_q75 UHM370.20870_S139_q75 UHM372.20871_S151_q75
#> 1                     0                     0                     0
#>   UHM373.20872_S163_q75 UHM374.20873_S175_q75 UHM375.20874_S187_q75
#> 1                     0                     0                     0
#>   UHM377.20875_S104_q75 UHM382.20876_S116_q75 UHM386.20877_S128_q75
#> 1                     0                     0                     0
#>   UHM387.20878_S140_q75 UHM414.20679_S151_q75 UHM418.20861_S126_q75
#> 1                     0                     0                     0
#>   UHM422.20862_S138_q75 UHM425.20863_S150_q75 UHM426.20630_S133_q75
#> 1                     0                     0                     0
#>   UHM428.20640_S158_q75 UHM429.20655_S148_q75 UHM435.20643_S99_q75
#> 1                     0                     0                    0
#>   UHM437.20864_S162_q75 UHM439.20660_S113_q75 UHM443.20524_S120_q75
#> 1                     0                     0                     0
#>   UHM445.20665_S173_q75 UHM447.20879_S152_q75 UHM448.20865_S174_q75
#> 1                     0                     0                     0
#>   UHM452.20880_S164_q75 UHM454.20866_S186_q75 UHM455.20881_S176_q75
#> 1                     0                     0                     0
#>   UHM458.20882_S188_q75 UHM459.20883_S105_q75 UHM461.20867_S103_q75
#> 1                     0                     0                     0
#>   UHM467.20868_S115_q75 UHM470.20629_S121_q75 UHM476.20510_S142_q75
#> 1                     0                     0                     0
#>   UHM478.20645_S123_q75 UHM479.20647_S147_q75 UHM481.20499_S105_q75
#> 1                     0                     0                     0
#>   UHM482.20686_S140_q75 UHM483.20699_S106_q75 UHM519.20678_S139_q75
#> 1                     0                     0                     0
#>   UHM520.20669_S126_q75 UHM836.20481_S174_q75 UHM837.20482_S186_q75
#> 1                     0                     0                     0
#>   UHM838.20483_S103_q75 UHM891.20480_S162_q75 UHM892.20628_S109_q75
#> 1                     0                     0                     0
#>   UHM893.20691_S105_q75 UHM894.20636_S110_q75 UHM895.20632_S157_q75
#> 1                     0                     0                     0
#>   UHM896.20697_S177_q75 UHM897.20687_S152_q75 UHM898.20490_S187_q75
#> 1                     0                     0                     0
#>   UHM899.20684_S116_q75 UHM900.20491_S104_q75 UHM901.20638_S134_q75
#> 1                     0                     0                     0
#>   UHM902.20680_S163_q75 UHM903.20683_S104_q75 UHM904.20663_S149_q75
#> 1                     0                     0                     0
#>   UHM905.20694_S141_q75 UHM906.20661_S125_q75 UHM907.20688_S164_q75
#> 1                     0                     0                     0
#>   UHM908.20492_S116_q75 UHM909.20653_S124_q75 UHM910.20658_S184_q75
#> 1                     0                     0                     0
#>   UHM965.20633_S169_q75 UHM966.20839_S147_q75 UHM967.20840_S159_q75
#> 1                     0                     0                     0
#>   UHM968.20667_S102_q75 UHM969.20841_S171_q75 UHM971.20842_S183_q75
#> 1                     0                     0                     0
#>   UHM973.20674_S186_q75 UHM974.20528_S168_q75 UHM975.20843_S100_q75
#> 1                     0                     0                     0
#>   UHM977.20844_S112_q75 UHM978.20845_S124_q75 UHM979.20846_S136_q75
#> 1                     0                     0                     0
#>   UHM980.20827_S98_q75 UHM981.20635_S98_q75 UHM982.20836_S111_q75
#> 1                    0                    0                     0
#>   UHM983.20652_S112_q75 UHM984.20847_S148_q75 UHM985.20848_S160_q75
#> 1                     0                     0                     0
#>   UHM988.20849_S172_q75 UHM989.20850_S184_q75 UHM991.20851_S101_q75
#> 1                     0                     0                     0
#>   UHM993.20837_S123_q75 UHM996.20706_S190_q75 UHM997.20649_S171_q75
#> 1                     0                     0                     0
#>   UHM998.20714_S191_q75 UHM999.20713_S179_q75
#> 1                     0                     0

# Back normal  
# the scaling factor was computed based on spiked species reads and fixed cell count.
# Multiplying the spiked species read count by this scaling factor restores the exact spiked cell count.
# lets check it
# BackNormal <- calculate_spike_percentage(
#  physeq_absolute, 
#  merged_spiked_species, 
#  passed_range = c(0.1, 20)
# )

11 Filter out unsuccessful spiked samples


#**Time to filter out unsuccessful spiked samples**

library(phyloseq)
library(dplyr)
library(tibble)
library(microbiome)

filtered_sample_data <- microbiome::meta(physeq_absolute) %>%
  as.data.frame() %>%
  tibble::rownames_to_column(var = "Sample") %>%  
  dplyr::mutate(Sample = as.character(Sample)) %>%
  dplyr::left_join(Perc, by = "Sample")

filtered_sample_data <- tibble::column_to_rownames(filtered_sample_data, "Sample")

filtered_sample_data <- sample_data(as.data.frame(filtered_sample_data))

# Assign back to phyloseq obj
sample_data(physeq_absolute) <- filtered_sample_data

12 spiked species retrieval is system-dependent

The goal is to identify the range where, for example, the evenness of your community remains independent of spiked species retrieval—meaning the p-value should not be significant, and the R² value should be low, indicating minimal influence.


# The acceptable range of spiked species retrieval is system-dependent**
# Spiked species become centroid of the community (Distance to Centroid)
# Spiked species become dominant and imbalance the community (Evenness)

# What range of spiked species retrieval is appropriate for your system?
  
# Calculate Pielou's Evenness using Shannon index and species richness (Observed)
# Load required libraries
library(vegan)

# Calculate Pielou's Evenness using Shannon index and species richness (Observed)
alphab <- estimate_richness(physeq_absolute, measures = c("Observed", "Shannon"))
alphab$Pielou_evenness <- alphab$Shannon / alphab$Observed

# Normalize values
# alphab <- alphab %>%
# mutate(across(c("Observed", "Shannon", "Pielou_evenness"), ~ as.numeric(scale(.))))

metadata <- as.data.frame(microbiome::meta(physeq_absolute))

metadata$Sample <- rownames(metadata)
alphab$Sample <- rownames(alphab)

# Merge alpha diversity metrics into metadata
metadata <- dplyr::left_join(metadata, alphab[, c("Sample", "Observed", "Shannon", "Pielou_evenness")], by = "Sample")

metadata <- metadata %>%
  column_to_rownames(var = "Sample")

# Updated metadata back to the phyloseq obj
sample_data(physeq_absolute) <- sample_data(metadata)

if (!"Spiked_Reads" %in% colnames(metadata)) {
  stop("Column 'Spiked_Reads' not found in metadata.")
}

# Generate regression plot
plot_object <- regression_plot(
  data = metadata,
  x_var = "Pielou_evenness",
  y_var = "Spiked_Reads",
  custom_range = c(0.1, 20, 30, 50, 100),
  plot_title = NULL
)

plot_object

13 Calculate the percentage of spiked species retrieval


#*Calculate the percentage of spiked species retrieval per sample***

absolute_abundance_ITS_OTU_perc <- phyloseq::subset_samples(physeq_absolute, sample.or.blank != "blank")

# Back normal to check the accuracy ## The spiked reads must be the same as the spiked cell numbers
conclusion(absolute_abundance_ITS_OTU_perc, 
  merged_spiked_species, 
  max_passed_range=20, 
  output_path)
#> 📂 Table saved in docx format: merged_data.docx 
#> 📂 Merged data saved as CSV: merged_data.csv
#> $summary_stats
#> a flextable object.
#> col_keys: `mean_total_reads_spiked`, `sd_total_reads_spiked`, `median_total_reads_spiked`, `mean_percentage`, `sd_percentage`, `median_percentage`, `passed_count`, `failed_count` 
#> header has 1 row(s) 
#> body has 1 row(s) 
#> original dataset sample: 
#>   mean_total_reads_spiked sd_total_reads_spiked median_total_reads_spiked
#> 1                75313.93                189227                   15200.5
#>   mean_percentage sd_percentage median_percentage passed_count failed_count
#> 1        15.60495      22.94053          4.581823           NA           NA
#> 
#> $full_report
#>                 Sample Total_Reads Spiked_Reads  Percentage Result
#> 1   STP1719.20518_S143        1203          733 60.93100582 failed
#> 2    STP213.20519_S155        6609          733 11.09093660 passed
#> 3    STP268.20520_S167       23689          733  3.09426316 passed
#> 4    STP544.20515_S107         874          733 83.86727689 failed
#> 5    STP570.20516_S119        2053          733 35.70384803 failed
#> 6    STP579.20517_S131         917          733 79.93456925 failed
#> 7    STP614.20514_S190       15689          733  4.67206323 passed
#> 8   UHM1000.20700_S118       70053          366  0.52246156 passed
#> 9   UHM1001.20705_S178        2755          366 13.28493648 passed
#> 10  UHM1007.20718_S144       30851          366  1.18634728 passed
#> 11  UHM1009.20710_S143        5951          366  6.15022685 passed
#> 12  UHM1010.20717_S132        1471          366 24.88103331 failed
#> 13  UHM1011.20702_S142        2198          366 16.65150136 passed
#> 14  UHM1024.20716_S120         766          366 47.78067885 failed
#> 15  UHM1026.20703_S154        2074          367 17.69527483 passed
#> 16  UHM1028.20709_S131        7126          366  5.13612125 passed
#> 17  UHM1032.20701_S130        1768          366 20.70135747 failed
#> 18  UHM1033.20715_S108         506          366 72.33201581 failed
#> 19  UHM1034.20712_S167       42646          366  0.85822820 passed
#> 20  UHM1035.20707_S107        1865          366 19.62466488 passed
#> 21  UHM1036.20708_S119        8497          366  4.30740261 passed
#> 22  UHM1052.20711_S155        3179          366 11.51305442 passed
#> 23   UHM1060.20819_S97        1313          733 55.82635187 failed
#> 24  UHM1065.20820_S109        1514          733 48.41479524 failed
#> 25  UHM1068.20828_S110        5242          733 13.98321251 passed
#> 26  UHM1069.20838_S135        4753          733 15.42183884 passed
#> 27  UHM1070.20821_S121        1700          733 43.11764706 failed
#> 28  UHM1071.20829_S122        7570          733  9.68295905 passed
#> 29  UHM1072.20830_S134        2336          733 31.37842466 failed
#> 30  UHM1073.20831_S146       61350          733  1.19478403 passed
#> 31  UHM1075.20822_S133        7172          733 10.22030117 passed
#> 32  UHM1077.20832_S158        1655          733 44.29003021 failed
#> 33  UHM1078.20823_S145       14847          733  4.93702431 passed
#> 34  UHM1080.20833_S170       11169          733  6.56280777 passed
#> 35  UHM1081.20824_S157       34040          733  2.15334900 passed
#> 36  UHM1088.20834_S182        8425          733  8.70029674 passed
#> 37   UHM1090.20835_S99        3238          733 22.63743051 failed
#> 38  UHM1093.20825_S169        9289          733  7.89105393 passed
#> 39  UHM1095.20826_S181        3945          733 18.58048162 passed
#> 40  UHM1097.20719_S156         834          366 43.88489209 failed
#> 41  UHM1099.20704_S166        1262          366 29.00158479 failed
#> 42  UHM1100.20884_S117      242139          733  0.30271869 passed
#> 43  UHM1102.20885_S129       82409          733  0.88946596 passed
#> 44  UHM1104.20886_S141       17977          733  4.07743227 passed
#> 45  UHM1105.20887_S153       35401          733  2.07056298 passed
#> 46   UHM1109.20627_S97       10498          733  6.98228234 passed
#> 47  UHM1110.20664_S161     1490927          733  0.04916404 failed
#> 48  UHM1113.20888_S165       16940          733  4.32703660 passed
#> 49  UHM1114.20889_S177       14560          733  5.03434066 passed
#> 50  UHM1115.20890_S189      159333          733  0.46004280 passed
#> 51  UHM1117.20891_S106      171299          733  0.42790676 passed
#> 52  UHM1118.20892_S118       25161          733  2.91323874 passed
#> 53  UHM1120.20893_S130       39307          733  1.86480780 passed
#> 54  UHM1124.20894_S142       33641          733  2.17888886 passed
#> 55  UHM1126.20895_S154       58413          733  1.25485765 passed
#> 56  UHM1128.20896_S166      610931          733  0.11998082 passed
#> 57  UHM1140.20651_S100       40483          733  1.81063656 passed
#> 58  UHM1145.20897_S178       68122          733  1.07601069 passed
#> 59  UHM1163.20501_S129       14715          733  4.98131159 passed
#> 60  UHM1164.20498_S188        2417          733 30.32685147 failed
#> 61  UHM1169.20648_S159        2136          733 34.31647940 failed
#> 62  UHM1171.20675_S103      320891          733  0.22842648 passed
#> 63  UHM1176.20500_S117       30776          733  2.38172602 passed
#> 64  UHM1177.20642_S182        1637          733 44.77703115 failed
#> 65  UHM1182.20672_S162       42254          733  1.73474701 passed
#> 66  UHM1210.20898_S190       68488          733  1.07026048 passed
#> 67  UHM1212.20899_S107       19893          733  3.68471322 passed
#> 68  UHM1217.20900_S119       15347          733  4.77617775 passed
#> 69  UHM1218.20901_S131       32130          733  2.28135699 passed
#> 70  UHM1219.20902_S143      201521          733  0.36373380 passed
#> 71  UHM1220.20903_S155       81871          733  0.89531092 passed
#> 72  UHM1221.20904_S167       29070          733  2.52149983 passed
#> 73  UHM1222.20905_S179        3176          733 23.07934509 failed
#> 74  UHM1223.20906_S191       92107          733  0.79581356 passed
#> 75  UHM1225.20907_S108       57441          733  1.27609199 passed
#> 76  UHM1227.20908_S120       28365          733  2.58417063 passed
#> 77  UHM1228.20909_S132      109387          733  0.67009791 passed
#> 78  UHM1237.20910_S144       26057          733  2.81306367 passed
#> 79  UHM1240.20662_S137        2415          733 30.35196687 failed
#> 80  UHM1246.20911_S156       11130          733  6.58580413 passed
#> 81  UHM1247.20912_S168       30259          733  2.42241978 passed
#> 82  UHM1248.20671_S150        1098          733 66.75774135 failed
#> 83  UHM1256.20666_S185        5327          733 13.76009011 passed
#> 84  UHM1260.20692_S117       21261          733  3.44762711 passed
#> 85  UHM1270.20673_S174        2835          733 25.85537919 failed
#> 86  UHM1271.20493_S128       13333          733  5.49763744 passed
#> 87  UHM1272.20494_S140        5301          733 13.82757970 passed
#> 88  UHM1274.20650_S183        8174          733  8.96745779 passed
#> 89  UHM1275.20693_S129       37017          733  1.98017127 passed
#> 90  UHM1282.20695_S153       37437          733  1.95795603 passed
#> 91  UHM1287.20639_S146        7278          733 10.07144820 passed
#> 92  UHM1291.20512_S166       14068          733  5.21040660 passed
#> 93  UHM1296.20646_S135      200764          733  0.36510530 passed
#> 94  UHM1319.20657_S172       50837          733  1.44186321 passed
#> 95  UHM1324.20509_S130        6832          733 10.72892272 passed
#> 96  UHM1327.20641_S170      507439          733  0.14445086 passed
#> 97  UHM1328.20668_S114         796          733 92.08542714 failed
#> 98  UHM1334.20513_S178       19550          733  3.74936061 passed
#> 99  UHM1338.20495_S152        2481          733 29.54453849 failed
#> 100 UHM1341.20698_S189         803          733 91.28268991 failed
#> 101 UHM1356.20637_S122        1081          733 67.80758557 failed
#> 102 UHM1380.20676_S115       83330          733  0.87963519 passed
#> 103 UHM1383.20690_S188       42801          733  1.71257681 passed
#> 104 UHM1385.20659_S101        1368          733 53.58187135 failed
#> 105 UHM1399.20852_S113        4542          733 16.13826508 passed
#> 106 UHM1400.20853_S125        2290          733 32.00873362 failed
#> 107 UHM1401.20854_S137        2390          733 30.66945607 failed
#> 108 UHM1402.20855_S149          20            0  0.00000000 failed
#> 109 UHM1403.20856_S161        4178          733 17.54427956 passed
#> 110 UHM1405.20857_S173       14002          733  5.23496643 passed
#> 111 UHM1406.20858_S185        2058          733 35.61710398 failed
#> 112 UHM1414.20859_S102       35800          733  2.04748603 passed
#> 113 UHM1419.20860_S114        6979          733 10.50293738 passed
#> 114 UHM1427.20485_S127        1500          733 48.86666667 failed
#> 115 UHM1428.20486_S139      530317          733  0.13821922 passed
#> 116 UHM1429.20487_S151      233757          733  0.31357350 passed
#> 117 UHM1430.20488_S163      170156          733  0.43078117 passed
#> 118 UHM1432.20489_S175      145970          733  0.50215798 passed
#> 119 UHM1435.20484_S115       37756          733  1.94141329 passed
#> 120  UHM162.20656_S160       16900          733  4.33727811 passed
#> 121  UHM198.20681_S175       17603          733  4.16406294 passed
#> 122  UHM200.20670_S138       36610          733  2.00218520 passed
#> 123  UHM203.20685_S128       20450          733  3.58435208 passed
#> 124  UHM204.20505_S177        4644          733 15.78380706 passed
#> 125  UHM206.20506_S189        1589          733 46.12964128 failed
#> 126  UHM207.20689_S176       36971          733  1.98263504 passed
#> 127  UHM208.20507_S106       12640          733  5.79905063 passed
#> 128  UHM211.20502_S141        1721          733 42.59151656 failed
#> 129  UHM215.20504_S165        3288          733 22.29318735 failed
#> 130  UHM216.20525_S132        1421          733 51.58339198 failed
#> 131  UHM219.20526_S144         747          733 98.12583668 failed
#> 132  UHM236.20527_S156        1153          733 63.57328708 failed
#> 133  UHM238.20503_S153        3219          733 22.77104691 failed
#> 134  UHM245.20634_S181        5660          733 12.95053004 passed
#> 135  UHM252.20654_S136       30529          733  2.40099577 passed
#> 136  UHM267.20496_S164       14174          733  5.17144067 passed
#> 137  UHM274.20677_S127       10383          733  7.05961668 passed
#> 138  UHM276.20682_S187        7782          733  9.41917245 passed
#> 139  UHM280.20497_S176        4501          733 16.28526994 passed
#> 140  UHM286.20521_S179       18231          733  4.02062421 passed
#> 141  UHM289.20522_S191        4847          733 15.12275634 passed
#> 142  UHM294.20523_S108        4268          733 17.17432052 passed
#> 143  UHM298.20696_S165      171431          733  0.42757728 passed
#> 144  UHM325.20644_S111       43328          733  1.69174668 passed
#> 145  UHM337.20508_S118        5764          733 12.71686329 passed
#> 146  UHM354.20631_S145        1253          733 58.49960096 failed
#> 147  UHM356.20511_S154        3772          733 19.43266172 passed
#> 148  UHM369.20869_S127           0            0         NaN   <NA>
#> 149  UHM370.20870_S139       33855          733  2.16511594 passed
#> 150  UHM372.20871_S151       16408          733  4.46733301 passed
#> 151  UHM373.20872_S163       39692          733  1.84671974 passed
#> 152  UHM374.20873_S175      172521          733  0.42487581 passed
#> 153  UHM375.20874_S187       13411          733  5.46566252 passed
#> 154  UHM377.20875_S104       28094          733  2.60909803 passed
#> 155  UHM382.20876_S116      219952          733  0.33325453 passed
#> 156  UHM386.20877_S128       75850          733  0.96638102 passed
#> 157  UHM387.20878_S140       87685          733  0.83594686 passed
#> 158  UHM414.20679_S151      156593          733  0.46809244 passed
#> 159  UHM418.20861_S126       64320          733  1.13961443 passed
#> 160  UHM422.20862_S138        3245          733 22.58859784 failed
#> 161  UHM425.20863_S150       31337          733  2.33908798 passed
#> 162  UHM426.20630_S133        1277          733 57.40015662 failed
#> 163  UHM428.20640_S158      143879          733  0.50945586 passed
#> 164  UHM429.20655_S148        2370          733 30.92827004 failed
#> 165   UHM435.20643_S99        6470          733 11.32921175 passed
#> 166  UHM437.20864_S162       47278          733  1.55040399 passed
#> 167  UHM439.20660_S113       36708          733  1.99683993 passed
#> 168  UHM443.20524_S120       15452            0  0.00000000 failed
#> 169  UHM445.20665_S173     1596109          733  0.04592418 failed
#> 170  UHM447.20879_S152      311393          733  0.23539386 passed
#> 171  UHM448.20865_S174        7439          733  9.85347493 passed
#> 172  UHM452.20880_S164       16254          733  4.50965916 passed
#> 173  UHM454.20866_S186       31733          733  2.30989821 passed
#> 174  UHM455.20881_S176       36439          733  2.01158100 passed
#> 175  UHM458.20882_S188      210285          733  0.34857455 passed
#> 176  UHM459.20883_S105      131999          733  0.55530724 passed
#> 177  UHM461.20867_S103        5986          733 12.24523889 passed
#> 178  UHM467.20868_S115       52866          733  1.38652442 passed
#> 179  UHM470.20629_S121       20818          733  3.52099145 passed
#> 180  UHM476.20510_S142        9551          733  7.67458905 passed
#> 181  UHM478.20645_S123        1549          733 47.32085216 failed
#> 182  UHM479.20647_S147         795          733 92.20125786 failed
#> 183  UHM481.20499_S105        1843          733 39.77211069 failed
#> 184  UHM482.20686_S140         985          733 74.41624365 failed
#> 185  UHM483.20699_S106      189124          733  0.38757640 passed
#> 186  UHM519.20678_S139       17833          733  4.11035720 passed
#> 187  UHM520.20669_S126      622602          733  0.11773171 passed
#> 188  UHM836.20481_S174        2525          733 29.02970297 failed
#> 189  UHM837.20482_S186         815          733 89.93865031 failed
#> 190  UHM838.20483_S103      404227          733  0.18133376 passed
#> 191  UHM891.20480_S162      193049          733  0.37969635 passed
#> 192  UHM892.20628_S109       74507          733  0.98380018 passed
#> 193  UHM893.20691_S105     1056846          733  0.06935731 failed
#> 194  UHM894.20636_S110      407335          733  0.17995016 passed
#> 195  UHM895.20632_S157       46442          733  1.57831273 passed
#> 196  UHM896.20697_S177      557848          733  0.13139780 passed
#> 197  UHM897.20687_S152      195868          733  0.37423163 passed
#> 198  UHM898.20490_S187       86962          733  0.84289690 passed
#> 199  UHM899.20684_S116       26831            0  0.00000000 failed
#> 200  UHM900.20491_S104      426029          733  0.17205402 passed
#> 201  UHM901.20638_S134       64944          733  1.12866470 passed
#> 202  UHM902.20680_S163       15998          733  4.58182273 passed
#> 203  UHM903.20683_S104        7055          733 10.38979447 passed
#> 204  UHM904.20663_S149       90263          733  0.81207139 passed
#> 205  UHM905.20694_S141      189294          733  0.38722833 passed
#> 206  UHM906.20661_S125      738140          733  0.09930366 failed
#> 207  UHM907.20688_S164        5805          733 12.62704565 passed
#> 208  UHM908.20492_S116       12353          733  5.93378127 passed
#> 209  UHM909.20653_S124        1835          733 39.94550409 failed
#> 210  UHM910.20658_S184       27025          733  2.71230342 passed
#> 211  UHM965.20633_S169        5604          733 13.07994290 passed
#> 212  UHM966.20839_S147        2255          733 32.50554324 failed
#> 213  UHM967.20840_S159       37386          733  1.96062697 passed
#> 214  UHM968.20667_S102         752          733 97.47340426 failed
#> 215  UHM969.20841_S171      155356          733  0.47181956 passed
#> 216  UHM971.20842_S183       49417          733  1.48329522 passed
#> 217  UHM973.20674_S186        4471          733 16.39454261 passed
#> 218  UHM974.20528_S168         756          733 96.95767196 failed
#> 219  UHM975.20843_S100       46718          733  1.56898840 passed
#> 220  UHM977.20844_S112       14316          733  5.12014529 passed
#> 221  UHM978.20845_S124      254394          733  0.28813573 passed
#> 222  UHM979.20846_S136       29271          733  2.50418503 passed
#> 223   UHM980.20827_S98        1201          733 61.03247294 failed
#> 224   UHM981.20635_S98        4288          733 17.09421642 passed
#> 225  UHM982.20836_S111      121746          733  0.60207317 passed
#> 226  UHM983.20652_S112       17181          733  4.26634073 passed
#> 227  UHM984.20847_S148      208665          733  0.35128076 passed
#> 228  UHM985.20848_S160       15054          733  4.86913777 passed
#> 229  UHM988.20849_S172        3510          733 20.88319088 failed
#> 230  UHM989.20850_S184      103723          733  0.70668993 passed
#> 231  UHM991.20851_S101        4440          733 16.50900901 passed
#> 232  UHM993.20837_S123       67439          733  1.08690817 passed
#> 233  UHM996.20706_S190         687          366 53.27510917 failed
#> 234  UHM997.20649_S171        7992          733  9.17167167 passed
#> 235  UHM998.20714_S191         519          366 70.52023121 failed
#> 236  UHM999.20713_S179       19728          366  1.85523114 passed
#> 
#> $phy_tree
#> 
#> Phylogenetic tree with 10451 tips and 10450 internal nodes.
#> 
#> Tip labels:
#>   b0d8709d00c52cd6f95e80208ec58bed, 8802fa20235c7208c28a77bf31b16ab0, 7f78e32ee8be7c4e84c2468a78e56ed1, e6a1c236f2da2bb42b7863b40b151857, 4bb6692c6d9f4a818a80b78eefb05ee8, 4dccbfe4f811fe0d5871482a35c0256e, ...
#> Node labels:
#>   root, 0.860, 0.301, 0.963, 0.957, 0.566, ...
#> 
#> Rooted; includes branch length(s).

 physeq_absolute <- absolute$obj_adj
 pps_Abs <- get_long_format_data(physeq_absolute)

 # calculation for relative abundance needs sum of total reads
 # total_reads <- sum(pps_Abs$Abundance)

 # Generate an alluvial plot using the extended palette
 alluvial_plot_abs <- alluvial_plot(
   data = pps_Abs,
   axes = c( "Host.genus","Ecoregion.III", "Diet"),
   abundance_threshold = 10000,
   fill_variable = "Family",
   silent = TRUE,
   abundance_type = "absolute",
   top_taxa = 15,
   text_size = 4,
   legend_ncol = 1,
   custom_colors = DspikeIn::color_palette$light_MG  # Use the extended palette from your package
 )
 alluvial_plot_abs

14 Data transform & Normalization

you may select to transform your data befor moving forward with Differential Abundance


 ps <- physeq_ITSOTU

  # TC Normalization
  result_TC <- normalization_set(ps, method = "TC", groups = "Host.species")
  normalized_ps_TC <- result_TC$dat.normed
  scaling_factors_TC <- result_TC$scaling.factor

  # UQ Normalization
  data("physeq_ITSOTU", package = "DspikeIn")
  ps <- physeq_16SOTU
  result_UQ <- normalization_set(ps, method = "UQ", groups = "Host.species")
  normalized_ps_UQ <- result_UQ$dat.normed
  scaling_factors_UQ <- result_UQ$scaling.factor

  # Median Normalization
  data("physeq_ITSOTU", package = "DspikeIn")
  ps <- physeq_16SOTU
  result_med <- normalization_set(ps, method = "med", groups = "Host.species")
  normalized_ps_med <- result_med$dat.normed
  scaling_factors_med <- result_med$scaling.factor

  # DESeq Normalization
  data("physeq_ITSOTU", package = "DspikeIn")
  ps <- physeq_16SOTU
  ps_n <- remove_zero_negative_count_samples(ps)
  result_DESeq <- normalization_set(ps_n, method = "DESeq", groups = "Animal.type")
  normalized_ps_DESeq <- result_DESeq$dat.normed
  scaling_factors_DESeq <- result_DESeq$scaling.factor

  # Poisson Normalization
  data("physeq_ITSOTU", package = "DspikeIn")
  ps <- physeq_16SOTU
  result_Poisson <- normalization_set(ps, method = "Poisson", groups = "Host.genus")
  normalized_ps_Poisson <- result_Poisson$dat.normed
  scaling_factors_Poisson <- result_Poisson$scaling.factor

  # Quantile Normalization
  data("physeq_ITSOTU", package = "DspikeIn")
  ps <- physeq_16SOTU
  result_QN <- normalization_set(ps, method = "QN")
  normalized_ps_QN <- result_QN$dat.normed
  scaling_factors_QN <- result_QN$scaling.factor

  # TMM Normalization
  data("physeq_ITSOTU", package = "DspikeIn")
  ps <- physeq_16SOTU
  result_TMM <- normalization_set(ps, method = "TMM", groups = "Animal.type")
  normalized_ps_TMM <- result_TMM$dat.normed
  scaling_factors_TMM <- result_TMM$scaling.factor

  # CLR Normalization
  data("physeq_ITSOTU", package = "DspikeIn")
  ps <- physeq_16SOTU
  result_clr <- normalization_set(ps, method = "clr")
  normalized_ps_clr <- result_clr$dat.normed
  scaling_factors_clr <- result_clr$scaling.factor

  # Rarefying
  data("physeq_ITSOTU", package = "DspikeIn")
  ps <- physeq_16SOTU
  result_rar <- normalization_set(ps, method = "rar")
  normalized_ps_rar <- result_rar$dat.normed
  scaling_factors_rar <- result_rar$scaling.factor

  # CSS Normalization
  data("physeq_ITSOTU", package = "DspikeIn")
  ps <- physeq_16SOTU
  result_css <- normalization_set(ps, method = "css")
  normalized_ps_css <- result_css$dat.normed
  scaling_factors_css <- result_css$scaling.factor

  # TSS Normalization
  data("physeq_ITSOTU", package = "DspikeIn")
  ps <- physeq_16SOTU
  result_tss <- normalization_set(ps, method = "tss")
  normalized_ps_tss <- result_tss$dat.normed
  scaling_factors_tss <- result_tss$scaling.factor

  # RLE Normalization
  data("physeq_ITSOTU", package = "DspikeIn")
  ps <- physeq_16SOTU
  result_rle <- normalization_set(ps, method = "rle")
  normalized_ps_rle <- result_rle$dat.normed
  scaling_factors_rle <- result_rle$scaling.factor

Ridge plot


ridge_physeq <- ridge_plot_it(physeq_ITSOTU, taxrank = "Family", top_n = 10)+ scale_fill_manual(values = DspikeIn::color_palette$cool_MG)
ridge_physeq


ps <- physeq_ITSOTU
  result_css <- normalization_set(ps, method = "css")
#> Removing 1 samples with zero, negative counts, or NA values.
  normalized_ps_css <- result_css$dat.normed
  
ridge_physeq <- ridge_plot_it(normalized_ps_css, taxrank = "Family", top_n = 10)+ scale_fill_manual(values = DspikeIn::color_palette$cool_MG)
ridge_physeq

15 Further analysis

remove the spike-in sp before further analysis


absolute <- phyloseq::subset_taxa(physeq_absolute, Genus!="Dekkera")
Caudate_abs <- phyloseq::subset_samples(absolute, Clade.Order == "Caudate"  )
Three_Genara_abs <- phyloseq::subset_samples(Caudate_abs, Host.genus %in% c("Desmognathus", "Plethodon", "Eurycea"))
Three_Genara_abs_BlueRidge<- phyloseq::subset_samples(Three_Genara_abs,Ecoregion.III=="Blue Ridge" )
Desmog_Blue_Ins_ITS_abs<- phyloseq::subset_samples(Three_Genara_abs_BlueRidge,Host.genus=="Desmognathus")

 results_DESeq2 <- perform_and_visualize_DA(
   obj = Desmog_Blue_Ins_ITS_abs,
   method = "DESeq2",
   group_var = "Host.taxon",
   contrast = c("Desmognathus monticola", "Desmognathus imitator" ),
   output_csv_path = "DA_DESeq2.csv",
   target_glom = "Genus",
   significance_level = 0.05
 )

head(results_DESeq2$results)  
#> # A tibble: 6 × 17
#>   baseMean     logFC lfcSE      stat pvalue  padj   FDR Significance group OTU  
#>      <dbl>     <dbl> <dbl>     <dbl>  <dbl> <dbl> <dbl> <chr>        <fct> <chr>
#> 1     2     1.03e-14 0.544  1.90e-14  1.00      1     1 Not Signifi… Desm… 71c9…
#> 2     1     1.76e-23 0.748  2.35e-23  1         1     1 Not Signifi… Desm… 1bfe…
#> 3     1     1.76e-23 0.748  2.35e-23  1         1     1 Not Signifi… Desm… 9757…
#> 4     5.02 -3.56e- 2 0.357 -9.99e- 2  0.920     1     1 Not Signifi… Desm… d8b7…
#> 5     1     1.76e-23 0.748  2.35e-23  1         1     1 Not Signifi… Desm… f80a…
#> 6     3     8.42e-15 0.452  1.86e-14  1.00      1     1 Not Signifi… Desm… 097f…
#> # ℹ 7 more variables: Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>,
#> #   Family <chr>, Genus <chr>, Species <chr>
results_DESeq2$obj_significant
#> phyloseq-class experiment-level object
#> otu_table()   OTU Table:          [ 4 taxa and 42 samples ]:
#> sample_data() Sample Data:        [ 42 samples by 39 sample variables ]:
#> tax_table()   Taxonomy Table:     [ 4 taxa by 7 taxonomic ranks ]:
#> phy_tree()    Phylogenetic Tree:  [ 4 tips and 3 internal nodes ]:
#> refseq()      DNAStringSet:       [ 4 reference sequences ]
#> taxa are rows
results_DESeq2$plot

results_DESeq2$bar_plot


# Relative abundance
# data("physeq_ITSOTU",package = "DspikeIn")
relative <- tidy_phyloseq_tse(physeq_ITSOTU)
relative <- phyloseq::subset_taxa(physeq_ITSOTU, Genus!="Dekkera")
Caudate_rel <- phyloseq::subset_samples(relative, Clade.Order == "Caudate"  )
Three_Genara_rel <- phyloseq::subset_samples(Caudate_rel, Host.genus %in% c("Desmognathus", "Plethodon", "Eurycea"))
Three_Genara_rel_BlueRidge<- phyloseq::subset_samples(Three_Genara_rel,Ecoregion.III=="Blue Ridge" )
Desmog_Blue_Ins_ITS_rel<- phyloseq::subset_samples(Three_Genara_rel_BlueRidge,Host.genus=="Desmognathus")

 results_DESeq2_rel <- perform_and_visualize_DA(
   obj = Desmog_Blue_Ins_ITS_rel,
   method = "DESeq2",
   group_var = "Host.taxon",
   contrast = c("Desmognathus monticola", "Desmognathus imitator" ),
   output_csv_path = "DA_DESeq2.csv",
   target_glom = "Genus",
   significance_level = 0.05
 )
results_DESeq2_rel$plot

results_DESeq2_rel$results  #  sig taxa
#> # A tibble: 1,077 × 17
#>    baseMean     logFC lfcSE      stat pvalue  padj   FDR Significance    group  
#>       <dbl>     <dbl> <dbl>     <dbl>  <dbl> <dbl> <dbl> <chr>           <fct>  
#>  1     3     7.47e-15 0.430  1.74e-14  1.00      1     1 Not Significant Desmog…
#>  2     1     1.73e-23 0.745  2.32e-23  1         1     1 Not Significant Desmog…
#>  3     1     1.73e-23 0.745  2.32e-23  1         1     1 Not Significant Desmog…
#>  4     1     1.73e-23 0.745  2.32e-23  1         1     1 Not Significant Desmog…
#>  5     5.02 -3.56e- 2 0.334 -1.07e- 1  0.915     1     1 Not Significant Desmog…
#>  6     1     1.73e-23 0.745  2.32e-23  1         1     1 Not Significant Desmog…
#>  7     1     1.73e-23 0.745  2.32e-23  1         1     1 Not Significant Desmog…
#>  8     3     7.47e-15 0.430  1.74e-14  1.00      1     1 Not Significant Desmog…
#>  9     3     7.47e-15 0.430  1.74e-14  1.00      1     1 Not Significant Desmog…
#> 10     4     4.87e-15 0.374  1.30e-14  1.00      1     1 Not Significant Desmog…
#> # ℹ 1,067 more rows
#> # ℹ 8 more variables: OTU <chr>, Kingdom <chr>, Phylum <chr>, Class <chr>,
#> #   Order <chr>, Family <chr>, Genus <chr>, Species <chr>
results_DESeq2_rel$bar_bplot
#> NULL

16 Visualization

# ===========================================================
#  Visualization of community composition 
# ===========================================================


relative_Des <- physeq_ITSOTU %>%
  phyloseq::subset_taxa(Genus != "Dekkera") %>%
  phyloseq::subset_samples(Clade.Order == "Caudate") %>%
  phyloseq::subset_samples(Host.genus %in% c("Desmognathus", "Plethodon", "Eurycea")) %>%
  phyloseq::subset_samples(Ecoregion.III == "Blue Ridge") %>%
  phyloseq::subset_samples(Host.genus == "Desmognathus") 
  

taxa_barplot(
  relative_Des,
  target_glom = "Genus",
  custom_tax_names = NULL,
  normalize = TRUE,
  treatment_variable = "Animal.ecomode",
  abundance_type = "relative",
  x_angle = 25,
  fill_variable = "Genus",
  facet_variable = "Diet",
  top_n_taxa = 15,
  palette = DspikeIn::color_palette$cool_MG,
  legend_size = 11,
  legend_columns = 1,
  x_scale = "free",
  xlab = NULL
)
#> $barplot

#> 
#> $taxa_data
#> phyloseq-class experiment-level object
#> otu_table()   OTU Table:          [ 16 taxa and 42 samples ]:
#> sample_data() Sample Data:        [ 42 samples by 32 sample variables ]:
#> tax_table()   Taxonomy Table:     [ 16 taxa by 7 taxonomic ranks ]:
#> taxa are rows

17 NetWork comparision


# ===========================================================
# 1. Initialization and loading NetWorks for Comparision
# ===========================================================

#library(SpiecEasi)
#library(ggnet)
library(igraph)
library(tidyr)
library(dplyr)
library(ggpubr)

# To create a microbial co-occurrence network, you can refer to the SpiecEasi package available at:
# SpiecEasi GitHub Repository  https://github.com/zdk123/SpiecEasi 

# herp.Bas.rel.f is a merged phyloseq object for both bacterial and fungal domains
# herp.spiec <- spiec.easi(herp.Bas.rel.f, method='mb', lambda.min.ratio=1e-3, nlambda=250,pulsar.select=TRUE )
# write_graph(herp.spiec, "Complete.graphml", "graphml")

Complete <- load_graphml("Complete.graphml")
NoBasid <- load_graphml("NoBasid.graphml")
NoHubs <- load_graphml("NoHubs.graphml")

18 Network Topological Metrics


# ===========================================================
# 2. Metrics Calculation
# ===========================================================

result_Complete <- node_level_metrics(Complete)
result_NoHubs <- node_level_metrics(NoHubs)
result_NoBasid <- node_level_metrics(NoBasid)

Complete_metrics<-result_Complete$metrics
Nohub_metrics<-result_NoHubs$metrics
Nobasid_metrics<-result_NoBasid$metrics

Complete_metrics <- data.frame(lapply(Complete_metrics, as.character), stringsAsFactors = FALSE)
Nohub_metrics <- data.frame(lapply(Nohub_metrics, as.character), stringsAsFactors = FALSE)
Nobasid_metrics <- data.frame(lapply(Nobasid_metrics, as.character), stringsAsFactors = FALSE)


print(vcount(Complete))  # Number of nodes
#> [1] 308
print(ecount(Complete))  # Number of edges
#> [1] 1144

print(vcount(NoBasid))
#> [1] 307
print(ecount(NoBasid))
#> [1] 1187

print(vcount(NoHubs))
#> [1] 286
print(ecount(NoHubs))
#> [1] 916


metrics_scaled <- bind_rows(
  Complete_metrics %>% mutate(Network = "Complete"),
  Nohub_metrics %>% mutate(Network = "NoHubs"),
  Nobasid_metrics %>% mutate(Network = "NoBasid")
) %>%
dplyr::mutate(dplyr::across(where(is.numeric), scale))

metrics_long_scaled <- metrics_scaled %>%
  tidyr::pivot_longer(cols = -c(Node, Network), names_to = "Metric", values_to = "Value")

bind the metrics to plot them

# ===========================================================
# 3. Visualization
# ===========================================================

# Remove missing values 
metrics_long_scaled <- na.omit(metrics_long_scaled)

# We visualize only six metrics 
selected_metrics <- c("Degree", "Closeness", "Betweenness", 
                      "EigenvectorCentrality", "PageRank", "Transitivity")

metrics_long_filtered <- metrics_long_scaled %>%
  filter(Metric %in% selected_metrics) %>%
  mutate(
    Value = as.numeric(as.character(Value)),
    Network = recode(Network, 
                     "Complete" = "Complete Network",
                     "NoHubs" = "Network & Module Hubs Removed",
                     "NoBasid" = "Basidiobolus Subnetwork Removed") ) %>%
  na.omit()  # Remove any NA 

metrics_long_filtered$Network <- factor(metrics_long_filtered$Network, 
                                        levels = c("Complete Network", 
                                                   "Network & Module Hubs Removed", 
                                                  "Basidiobolus Subnetwork Removed"))

# DspikeIn::color_palette$light_MG
network_colors <- c(
  "Complete Network" = "#F1E0C5", 
  "Network & Module Hubs Removed" = "#D2A5A1", 
  "Basidiobolus Subnetwork Removed" = "#B2C3A8"
)

# statistical comparisons a vs b
comparisons <- list(
  c("Complete Network", "Network & Module Hubs Removed"),
  c("Complete Network", "Basidiobolus Subnetwork Removed"),
  c("Network & Module Hubs Removed", "Basidiobolus Subnetwork Removed")
)

networks_in_data <- unique(metrics_long_filtered$Network)
comparisons <- comparisons[sapply(comparisons, function(pair) all(pair %in% networks_in_data))]

ggplot(metrics_long_filtered, aes(x = Network, y = Value, fill = Network)) +
  geom_boxplot(outlier.shape = NA) +  
  geom_jitter(aes(color = Network), 
              position = position_jitter(0.2), alpha = 0.2, size = 1.5) +  
  scale_fill_manual(values = network_colors) +
  scale_color_manual(values = network_colors) +  
  facet_wrap(~ Metric, scales = "free_y", labeller = label_wrap_gen(width = 20)) +
  ggpubr::stat_compare_means(method = "wilcox.test", label = "p.signif", comparisons = comparisons) +
  theme_minimal() +
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    axis.text.x = element_text(size = 10, angle = 10, hjust = 0.8),
    strip.text = element_text(size = 12, margin = margin(t = 15, b = 5)),
    legend.position = "top",
    legend.text = element_text(size = 13),
    legend.title = element_text(size = 13, face = "bold"),
    plot.title = element_text(size = 13, face = "bold")
  ) +
  labs(title = "Selected Node Metrics Across Networks", fill = "Network Type", color = "Network Type")

19 To find first and second neighbors your target node


 Complete <- load_graphml("Complete.graphml")
 result2 <- extract_neighbors(graph = Complete,
 target_node = "OTU69:Basidiobolus_sp", mode = "all")
 print(result2$summary)
#>                Type                                           Node
#> 1    First Neighbor                            OTU8:Mortierella_sp
#> 2    First Neighbor                           OTU13:Mortierella_sp
#> 3    First Neighbor                           OTU15:Mortierella_sp
#> 4    First Neighbor                            OTU16:Ascomycota_sp
#> 5    First Neighbor                            OTU18:Helotiales_sp
#> 6    First Neighbor                 OTU19:Margaritispora_monticola
#> 7    First Neighbor                           OTU20:Scytalidium_sp
#> 8    First Neighbor                OTU27:Penicillium_glaucoalbidum
#> 9    First Neighbor                              OTU40:Tremella_sp
#> 10   First Neighbor                              OTU50:Taphrina_sp
#> 11   First Neighbor                    OTU135:uncultured_bacterium
#> 12   First Neighbor                    OTU146:uncultured_bacterium
#> 13   First Neighbor                    OTU153:uncultured_bacterium
#> 14   First Neighbor                    OTU230:uncultured_bacterium
#> 15   First Neighbor                   OTU247:uncultured_Firmicutes
#> 16   First Neighbor                    OTU287:uncultured_bacterium
#> 17   First Neighbor                OTU300:Robinsoniella_peoriensis
#> 18   First Neighbor              OTU312:uncultured_Verrucomicrobia
#> 19  Second Neighbor                     OTU4:Mortierella_pulchella
#> 20  Second Neighbor                    OTU12:Mortierella_gemmifera
#> 21  Second Neighbor                               OTU36:Inocybe_sp
#> 22  Second Neighbor                     OTU7:Mortierella_pulchella
#> 23  Second Neighbor                       OTU66:Tausonia_pullulans
#> 24  Second Neighbor                    OTU141:uncultured_bacterium
#> 25  Second Neighbor                    OTU268:uncultured_bacterium
#> 26  Second Neighbor                           OTU1:Lilapila_jurana
#> 27  Second Neighbor                           OTU11:Podila_humilis
#> 28  Second Neighbor                       OTU22:Sclerotiniaceae_sp
#> 29  Second Neighbor                           OTU51:Tremellales_sp
#> 30  Second Neighbor                      OTU42:Armillaria_borealis
#> 31  Second Neighbor                  OTU44:Kuehneromyces_rostratus
#> 32  Second Neighbor              OTU67:Rhodosporidiobolus_colostri
#> 33  Second Neighbor                                 OTU86:Fungi_sp
#> 34  Second Neighbor                OTU28:Penicillium_glaucoalbidum
#> 35  Second Neighbor                      OTU29:Cladophialophora_sp
#> 36  Second Neighbor                             OTU85:Mucorales_sp
#> 37  Second Neighbor                      OTU25:Cryptosporiopsis_sp
#> 38  Second Neighbor                OTU34:Paraboeremia_selaginellae
#> 39  Second Neighbor                         OTU61:Rozellomycota_sp
#> 40  Second Neighbor                       OTU82:Mycoacia_fuscoatra
#> 41  Second Neighbor               OTU151:Ruminococcaceae_bacterium
#> 42  Second Neighbor                    OTU198:uncultured_bacterium
#> 43  Second Neighbor                OTU289:uncultured_Bacteroidetes
#> 44  Second Neighbor                   OTU10:Dissophora_globulifera
#> 45  Second Neighbor                  OTU31:Clonostachys_krabiensis
#> 46  Second Neighbor                       OTU45:Ganoderma_carnosum
#> 47  Second Neighbor                         OTU78:Rozellomycota_sp
#> 48  Second Neighbor                         OTU79:Rozellomycota_sp
#> 49  Second Neighbor                           OTU14:Mortierella_sp
#> 50  Second Neighbor                                 OTU39:Fungi_sp
#> 51  Second Neighbor               OTU64:Curvibasidium_cygneicollum
#> 52  Second Neighbor                     OTU60:Chytriomycetaceae_sp
#> 53  Second Neighbor                                 OTU68:Fungi_sp
#> 54  Second Neighbor                         OTU70:Rozellomycota_sp
#> 55  Second Neighbor                  OTU54:Papiliotrema_flavescens
#> 56  Second Neighbor                          OTU55:Papiliotrema_sp
#> 57  Second Neighbor                           OTU62:Tremellales_sp
#> 58  Second Neighbor                       OTU73:Chytridiomycota_sp
#> 59  Second Neighbor                    OTU105:uncultured_bacterium
#> 60  Second Neighbor                    OTU200:uncultured_bacterium
#> 61  Second Neighbor                     OTU224:Breznakia_pachnodae
#> 62  Second Neighbor                    OTU310:uncultured_bacterium
#> 63  Second Neighbor              OTU100:uncultured_proteobacterium
#> 64  Second Neighbor                    OTU107:uncultured_bacterium
#> 65  Second Neighbor                      OTU123:anaerobic_digester
#> 66  Second Neighbor                    OTU124:uncultured_bacterium
#> 67  Second Neighbor                    OTU199:uncultured_bacterium
#> 68  Second Neighbor                    OTU206:uncultured_bacterium
#> 69  Second Neighbor                    OTU238:uncultured_bacterium
#> 70  Second Neighbor                    OTU261:uncultured_bacterium
#> 71  Second Neighbor                OTU269:uncultured_Bacteroidetes
#> 72  Second Neighbor                           OTU270:Alistipes_sp.
#> 73  Second Neighbor                    OTU290:uncultured_bacterium
#> 74  Second Neighbor                    OTU104:uncultured_bacterium
#> 75  Second Neighbor                    OTU112:uncultured_bacterium
#> 76  Second Neighbor                    OTU120:uncultured_bacterium
#> 77  Second Neighbor                    OTU148:uncultured_bacterium
#> 78  Second Neighbor                   OTU175:uncultured_Firmicutes
#> 79  Second Neighbor                    OTU215:uncultured_bacterium
#> 80  Second Neighbor                    OTU236:uncultured_bacterium
#> 81  Second Neighbor                    OTU239:uncultured_bacterium
#> 82  Second Neighbor                    OTU251:uncultured_bacterium
#> 83  Second Neighbor                    OTU254:uncultured_Rikenella
#> 84  Second Neighbor                OTU164:uncultured_Anaerotruncus
#> 85  Second Neighbor                    OTU165:uncultured_bacterium
#> 86  Second Neighbor                     OTU204:uncultured_organism
#> 87  Second Neighbor                    OTU205:uncultured_bacterium
#> 88  Second Neighbor                    OTU292:uncultured_bacterium
#> 89  Second Neighbor                OTU309:Akkermansia_glycaniphila
#> 90  Second Neighbor                    OTU197:uncultured_bacterium
#> 91  Second Neighbor                    OTU285:uncultured_bacterium
#> 92  Second Neighbor             OTU91:uncultured_Conexibacteraceae
#> 93  Second Neighbor                    OTU181:uncultured_bacterium
#> 94  Second Neighbor                  OTU194:Christensenella_minuta
#> 95  Second Neighbor               OTU235:Paenibacillus_taiwanensis
#> 96  Second Neighbor                         OTU243:Bacteroides_sp.
#> 97  Second Neighbor                    OTU280:uncultured_bacterium
#> 98  Second Neighbor                    OTU282:uncultured_bacterium
#> 99  Second Neighbor                    OTU291:uncultured_bacterium
#> 100 Second Neighbor                   OTU172:uncultured_Firmicutes
#> 101 Second Neighbor                OTU183:uncultured_Clostridiales
#> 102 Second Neighbor                            OTU185:unidentified
#> 103 Second Neighbor                    OTU196:uncultured_bacterium
#> 104 Second Neighbor                    OTU203:uncultured_bacterium
#> 105 Second Neighbor           OTU226:Erysipelotrichaceae_bacterium
#> 106 Second Neighbor                    OTU253:uncultured_bacterium
#> 107 Second Neighbor                  OTU277:Mucinivorans_hirudinis
#> 108 Second Neighbor                    OTU297:uncultured_bacterium
#> 109 Second Neighbor                    OTU306:uncultured_bacterium
#> 110 Second Neighbor                  OTU106:Mucinivorans_hirudinis
#> 111 Second Neighbor                    OTU111:Coprobacter_secundus
#> 112 Second Neighbor               OTU126:Actinomycetales_bacterium
#> 113 Second Neighbor OTU154:Hydrogenoanaerobacterium_saccharovorans
#> 114 Second Neighbor                    OTU166:uncultured_bacterium
#> 115 Second Neighbor                  OTU187:bacterium_endosymbiont
#> 116 Second Neighbor                    OTU208:uncultured_bacterium
#> 117 Second Neighbor                    OTU210:uncultured_bacterium
#> 118 Second Neighbor                    OTU262:uncultured_bacterium

20 Compute Node-Level Metrics

# Load required libraries
library(igraph)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggrepel)

# Compute Node-Level Metrics
completeMetrics <- node_level_metrics(Complete)
NoHubsMetrics <- node_level_metrics(NoHubs)
NoBasidMetrics <- node_level_metrics(NoBasid)

# Ensure each dataset has a "Network" column before combining
completeMetrics$metrics <- completeMetrics$metrics %>% mutate(Network = "Complete Network")
NoHubsMetrics$metrics <- NoHubsMetrics$metrics %>% mutate(Network = "Network & Module Hubs Removed")
NoBasidMetrics$metrics <- NoBasidMetrics$metrics %>% mutate(Network = "Basidiobolus Subnetwork Removed")

# Combine All Data
combined_data <- bind_rows(
  completeMetrics$metrics, 
  NoHubsMetrics$metrics, 
  NoBasidMetrics$metrics
)


# Add Node Identifier if missing
if (!"Node" %in% colnames(combined_data)) {
  combined_data <- combined_data %>% mutate(Node = rownames(.))
}

# Convert `Network` into Factor
combined_data$Network <- factor(combined_data$Network, levels = c(
  "Complete Network", 
  "Network & Module Hubs Removed", 
  "Basidiobolus Subnetwork Removed"
))

# Convert Data to Long Format
metrics_long <- combined_data %>%
  pivot_longer(cols = c("Redundancy", "Efficiency", "Betweenness"),
               names_to = "Metric", values_to = "Value")

# Define Custom Colors and Shapes
network_colors <- c(
  "Complete Network" = "#F1E0C5",
  "Network & Module Hubs Removed" = "#D2A5A1",
  "Basidiobolus Subnetwork Removed" = "#B2C3A8"
)

network_shapes <- c(
  "Complete Network" = 21,
  "Network & Module Hubs Removed" = 22, 
  "Basidiobolus Subnetwork Removed" = 23  
)

# Determine Top 30% of Nodes to Label/Optional
metrics_long <- metrics_long %>%
  group_by(Network, Metric) %>%
  mutate(Label = ifelse(rank(-Value, ties.method = "random") / n() <= 0.3, Node, NA))

#?quadrant_plot() can creat plot for indivisual network
# plot <- quadrant_plot(metrics, x_metric = "Degree", y_metric = "Efficiency")

# Create comparision Plots  
create_metric_plot <- function(metric_name, data, title) {
  data_filtered <- data %>% filter(Metric == metric_name)
  median_degree <- median(data_filtered$Degree, na.rm = TRUE)
  median_value <- median(data_filtered$Value, na.rm = TRUE)
  
  ggplot(data_filtered, aes(x = Degree, y = Value, fill = Network)) +
    geom_point(aes(shape = Network), size = 3, stroke = 1, color = "black") +
    geom_text_repel(aes(label = Label), size = 3, max.overlaps = 50) +
    scale_fill_manual(values = network_colors) +
    scale_shape_manual(values = network_shapes) +
    geom_vline(xintercept = median_degree, linetype = "dashed", color = "black", size = 1) +
    geom_hline(yintercept = median_value, linetype = "dashed", color = "black", size = 1) +
    labs(
      title = title,
      x = "Degree",
      y = metric_name,
      fill = "Network",
      shape = "Network"
    ) +
    theme_minimal() +
    theme(
      plot.title = element_text(
        hjust = 0.5, size = 16, face = "bold",
        margin = margin(t = 10, b = 20)  # Moves the title downward
      ),
      axis.title = element_text(size = 14, face = "bold"),
      legend.position = "top",
      legend.title = element_text(size = 14, face = "bold"),
      legend.text = element_text(size = 12)
    )
}


# Generate Plots
plot_redundancy <- create_metric_plot("Redundancy", metrics_long, "Redundancy vs. Degree Across Networks")
plot_efficiency <- create_metric_plot("Efficiency", metrics_long, "Efficiency vs. Degree Across Networks")
plot_betweenness <- create_metric_plot("Betweenness", metrics_long, "Betweenness vs. Degree Across Networks")

# Save Plots
#ggsave("plot_redundancy_20percent.png", plot_redundancy, width = 8, height = 6)
#ggsave("plot_efficiency_20percent.png", plot_efficiency, width = 8, height = 6)
#ggsave("plot_betweenness_20percent.png", plot_betweenness, width = 8, height = 6)

# Print Plots
print(plot_redundancy)

print(plot_efficiency)

print(plot_betweenness)

21 Compute degree metrics and visualize the network


  # Compute degree metrics and visualize the network  
  # Options: `"stress"` (default), `"graphopt"`, `"fr"`

  result <- degree_network(graph_path = Complete, save_metrics = TRUE)
  print(result$metrics)
  print(result$plot)


 # Compute network weights for different graph structures
NH <- weight_Network(graph_path = "NoHubs.graphml")
NB <- weight_Network(graph_path = "NoBasid.graphml")
C <- weight_Network(graph_path = "Complete.graphml")

# Extract metrics from the computed network weights
CompleteM <- C$metrics
NoHubsM <- NH$metrics
NoBasidM <- NB$metrics

# Combine metrics into a single dataframe for comparison
df <- bind_rows(
  CompleteM %>% mutate(Group = "CompleteM"),
  NoHubsM %>% mutate(Group = "NoHubsM"),
  NoBasidM %>% mutate(Group = "NoBasidM")
) %>%
  pivot_longer(cols = -Group, names_to = "Metric", values_to = "Value")

# Aggregate the total values by metric and group
df_bar <- df %>%
  group_by(Metric, Group) %>%
  summarise(Total_Value = sum(Value), .groups = "drop")

# Plot the metrics comparison
ggplot(df_bar, aes(x = Metric, y = log1p(Total_Value), fill = Group)) +
  geom_bar(stat = "identity", position = "dodge", alpha = 0.8) +  
  theme_minimal(base_size = 14) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  scale_fill_manual(values = c("#F1E0C5", "#D2A5A1", "#B2C3A8")) +  
  labs(title = "Total Network Metrics Comparison",
       x = "Metric",
       y = "Total Value (log-scaled)",
       fill = "Group") 

22 DspikeIn volume protocol

Spike-in volume Protocol; To get support for the whole-cell spike-in protocol, please contact Donnald Walker at .

The species Tetragenococcus halophilus (bacterial spike; ATCC33315) and Dekkera bruxellensis (fungal spike; WLP4642-White Labs) were selected as taxa to spike into gut microbiome samples as they were not found in an extensive collection of wildlife skin (GenBank BioProjects: PRJNA1114724, PRJNA 1114659) or gut microbiome samples. Stock cell suspensions of both microbes were grown in either static tryptic soy broth (T. halophilus) or potato dextrose broth (D. bruxellensis) for 72 hours then serially diluted and optical density (OD600) determined on a ClarioStar plate reader. Cell suspensions with an optical density of 1.0, 0.1, 0.01, 0.001 were DNA extracted using the Qiagen DNeasy Powersoil Pro Kit. These DNA isolations were used as standards to determine the proper spike in volume of cells to represent 0.1-10% of a sample (Rao et al., 2021b) Fecal pellets (3.1 ± 1.6 mg; range = 1 – 5.1 mg) from an ongoing live animal study using wood frogs (Lithobates sylvaticus) were used to standardize the input material for the development of this protocol. A total of (n=9) samples were used to validate the spike in protocol. Each fecal sample was homogenized in 1mL of sterile molecular grade water then 250uL of fecal slurry was DNA extracted as above with and without spiked cells. Two approaches were used to evaluate the target spike-in of 0.1-10%, the range of effective spike-in percentage described in (Rao et al., 2021b), including 1) an expected increase of qPCR cycle threshold (Ct) value that is proportional to the amount of spiked cells and 2) the expected increase in copy number of T. halophilus and D. bruxellensis in spiked vs. unspiked samples. A standard curve was generated using a synthetic fragment of DNA for the 16S-V4 rRNA and ITS1 rDNA regions of T. halophilus and D. bruxellensis, respectively. The standard curve was used to convert Ct values into log copy number for statistical analyses (detailed approach in[2, 3]) using the formula y = -0.2426x + 10.584 for T. halophilus and y = -0.3071x + 10.349 for D. bruxellensis, where x is the average Ct for each unknown sample. Quantitative PCR (qPCR) was used to compare known copy numbers from synthetic DNA sequences of T. halophilus and D. bruxellensis to DNA extractions of T. halophilus and D. bruxellensis independently, and wood frog fecal samples with and without spiked cells. SYBR qPCR assays were run at 20ul total volume including 10ul 2X Quantabio PerfeCTa SYBR Green Fastmix, 1ul of 10uM forward and reverse primers, 1ul of ArcticEnzymes dsDNAse master mix clean up kit, and either 1ul of DNA for D. bruxellensis or 3ul for T. halophilus. Different volumes of DNA were chosen for amplification of bacteria and fungi due to previous optimization of library preparation and sequencing steps [3]. The 515F [4] and 806R [5] primers were chosen to amplify bacteria and ITS1FI2 [6] and ITS2 for fungi, as these are the same primers used during amplicon library preparation and sequencing. Cycling conditions on an Agilent AriaMX consisted of 95 C for 3 mins followed by 40 cycles of 95 C for 15 sec, 60 C for 30 sec and 72 C for 30 sec. Following amplification, a melt curve was generated under the following conditions including 95 C for 30 sec, and a melt from 60 C to 90 C increasing in resolution of 0.5 C in increments of a 5 sec soak time. To validate the spike in protocol we selected two sets of fecal samples including 360 samples from a diverse species pool of frogs, lizards, salamanders and snakes and a more targeted approach of 122 fecal samples from three genera of salamanders from the Plethodontidae. (Supplemental Table #). FFecal samples were not weighed in the field, rather, a complete fecal pellet was diluted in an equal volume of sterile water and standardized volume of fecal slurry (250µL) extracted for independent samples.. A volume of 1ul T. halophilus (1847 copies) and 1ul D. bruxellensis (733 copies) were spiked into each fecal sample then DNA was extracted as above, libraries constructed, and amplicon sequenced on an Illumina MiSeq as in [7] .

https://github.com/mghotbi/DspikeIn