# ============================================================================
# INSTALL CRAN PACKAGES
# ============================================================================
# Install missing CRAN packages
install.packages(setdiff(c("stats", "dplyr", "ggplot2", "flextable", "ggpubr",
"randomForest", "ggridges", "ggalluvial", "tibble",
"matrixStats", "RColorBrewer", "ape", "rlang",
"scales", "magrittr", "phangorn", "igraph", "tidyr",
"xml2", "data.table", "reshape2","vegan", "patchwork", "officer"),
installed.packages()[,"Package"]))
# Load CRAN packages
lapply(c("stats", "dplyr", "ggplot2", "flextable", "ggpubr", "randomForest",
"ggridges", "ggalluvial", "tibble", "matrixStats", "RColorBrewer",
"ape", "rlang", "scales", "magrittr", "phangorn", "igraph", "tidyr",
"xml2", "data.table", "reshape2","vegan", "patchwork", "officer"), library, character.only = TRUE)
# ============================================================================
# INSTALL BIOCONDUCTOR PACKAGES
# ============================================================================
# Install BiocManager if not installed
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
# Install missing Bioconductor packages
BiocManager::install(setdiff(c("phyloseq", "msa", "DESeq2", "ggtree", "edgeR",
"Biostrings", "DECIPHER", "microbiome", "limma",
"S4Vectors", "SummarizedExperiment", "TreeSummarizedExperiment"),
installed.packages()[,"Package"]))
# Load Bioconductor packages
lapply(c("phyloseq", "msa", "DESeq2", "edgeR", "Biostrings", "ggtree", "DECIPHER",
"microbiome", "limma", "S4Vectors", "SummarizedExperiment", "TreeSummarizedExperiment"),
library, character.only = TRUE)
# ============================================================================
# INSTALL GITHUB PACKAGES
# ============================================================================
# Install remotes if not installed
if (!requireNamespace("remotes", quietly = TRUE)) install.packages("remotes")
library(remotes)
# Install missing GitHub packages
remotes::install_github("mikemc/speedyseq")
remotes::install_github("microsud/microbiomeutilities")
# Optional
#devtools::install_github("briatte/ggnet")
#devtools::install_github("zdk123/SpiecEasi")
# Load GitHub packages
library(speedyseq)
library(microbiomeutilities)
#library(SpiecEasi)
#library(ggnet)
# ============================================================================
# INSTALL DspikeIn FROM GITHUB
# ============================================================================
# To access the DspikeIn vignette for a detailed tutorial, use vignette("DspikeIn"), or browse all available vignettes with browseVignettes("DspikeIn").
devtools::install_github("mghotbi/DspikeIn", build_vignettes = TRUE, dependencies = TRUE)
browseVignettes("DspikeIn")
vignette("DspikeIn")
## or
if (!requireNamespace("devtools", quietly = TRUE)) install.packages("devtools")
devtools::install_github("mghotbi/DspikeIn")
# Load DspikeIn only if installed
if ("DspikeIn" %in% installed.packages()[, "Package"]) {
library(DspikeIn)
} else {
stop("DspikeIn installation failed. Check errors above.")
}
# =====================================================================
# To remove strain from the taxonomic ranks
# =====================================================================
library(phyloseq)
# Function to remove strain information from taxonomy columns
remove_strain_info <- function(tax_table) {
# Define the regex pattern for common strain identifiers
pattern <- "Strain.*|strain.*|\\s*\\[.*\\]|\\s*\\(.*\\)" # Adjust the regex to match specific strain formats
# Apply the pattern to each column of the taxonomy table
for (col in colnames(tax_table)) {
tax_table[, col] <- gsub(pattern, "", tax_table[, col]) # Remove strain info
tax_table[, col] <- trimws(tax_table[, col]) # Trim trailing whitespace
}
return(tax_table)}
# Step 1: Extract the taxonomy table
taxonomy <- tax_table(ps)
# Step 2: Remove strain information (including the `Strain` column)
cleaned_taxonomy <- remove_strain_info(taxonomy)
# Remove the `Strain` column if it exists
if ("Strain" %in% colnames(cleaned_taxonomy)) {
cleaned_taxonomy <- cleaned_taxonomy[, colnames(cleaned_taxonomy) != "Strain"]}
# Step 3: Update the taxonomy table in the phyloseq object
tax_table(ps) <- cleaned_taxonomy
# Step 4: Verify the changes
print(head(tax_table(ps))) # Display the first few rows
# =====================================================================
# To add species rank to the taxonomic ranks
# =====================================================================
library(phyloseq)
# Step 1: Extract taxonomy table safely
taxonomy <- as.data.frame(as.matrix(tax_table(ps)))
if (!"Genus" %in% colnames(taxonomy)) {
stop("The 'Genus' column is missing in the taxonomy table")
}
# Step 2: Create a new 'species' column
taxonomy$species <- paste0(taxonomy$Genus, "_OTU", seq_len(nrow(taxonomy)))
# Step 3: Assign back to phyloseq obj
tax_table(ps) <- tax_table(as.matrix(taxonomy))
# In case there are several OTUs/ASVs resulting from the spiked species, you may want to check the phylogenetic distances.
# We first read DNA sequences from a FASTA file, to perform multiple sequence alignment and compute a distance matrix using the maximum likelihood method, then we construct a phylogenetic tree
# Use the Neighbor-Joining method based on a Jukes-Cantor distance matrix and plot the tree with bootstrap values.
# we compare the Sanger read of Tetragenococcus halophilus with the FASTA sequence of Tetragenococcus halophilus from our phyloseq object.
library(Biostrings)
library(phyloseq)
# Get path to external data folder
extdata_path <- system.file("extdata", package = "DspikeIn")
data("physeq_ITSOTU",package = "DspikeIn")
list.files(extdata_path)
# Subset the phyloseq object to include only Tetragenococcus species first
Dekkera <- subset_taxa(physeq_ITSOTU, Genus=="Dekkera")
Dekkera <- subset_taxa(Dekkera, !is.na(taxa_names(Dekkera)) & taxa_names(Dekkera) != "")
plot_tree_nj(Dekkera, output_file = "neighbor_joining_tree_with_bootstrap.png")
# Plot phylogenetic tree
plot_tree_custom(Dekkera, output_prefix = "p0", width = 18, height = 18, layout = "circular")
# Plot the phylogenetic tree with multiple sequence alignment
# you may use the highlighted #-codes to find relevant OTUs with more than ~0.2 branch length
plot_tree_with_alignment(Dekkera, output_prefix = "tree_alignment", width = 15, height = 15)
# Plot phylogenetic tree with bootstrap values and cophenetic distances
Bootstrap_phy_tree_with_cophenetic(Dekkera, output_file = "tree_with_bootstrap_and_cophenetic.png", bootstrap_replicates = 500)
# Plot the tree with glommed OTUs at 0.3 resolution/ or modify it
plot_glommed_tree(Dekkera, resolution = 0.3, output_prefix = "top", width = 18, height = 18)
# merges ASVs/OTUs**
#The function Pre_processing_species() merges ASVs of a species using "sum" or "max" methods, preserving #taxonomic, phylogenetic, and sequencing data.
# =====================================================================
# Load the phyloseq objs/ TSE obj
# =====================================================================
library(phyloseq)
library(DspikeIn)
library(TreeSummarizedExperiment)
library(SummarizedExperiment)
data("physeq_ITSOTU", package = "DspikeIn")
# tse_ITSOTU <- convert_phyloseq_to_tse(physeq_ITSOTU)
# physeq_ITSOTU <- convert_tse_to_phyloseq(tse_ITSOTU)
physeq_ITSOTU <- DspikeIn::tidy_phyloseq_tse(physeq_ITSOTU) # make it tidy
# Check if metadata contains spiked volumes
physeq_ITSOTU@sam_data$spiked.volume
#> [1] 0 0 0 2 2 2 1 2 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2
#> [38] 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 2 0 0 0 2 2 2 2 2 2 2 2
#> [149] 2 2 2 2 2 2 2 0 0 0 2 2 2 2 2 2 2 0 0 0 2 0 0 0 2 2 2 0 0 0 2 2 2 2 2 2 2
#> [186] 0 0 0 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 2 0 0 0 2 2 2 0 0 0 2 2 2 2 0 0 0 2 2
#> [223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1
#
# =====================================================================
# CALCULATE SCALING FACTORS
# =====================================================================
# Calculate scaling factors
result <- calculate_spikeIn_factors(Spiked_ITS_sum_scaled, spiked_cells, merged_spiked_species)
#> Extracting taxonomy and sample data...
#> Removing spiked species...
#> 🧮 Calculating total reads per sample...
#> âž– Extracting spiked species...
#> âž• Merging spiked species...
#> 🧮 Calculating scaling factors...
result$spiked_species_merged
#> phyloseq-class experiment-level object
#> otu_table() OTU Table: [ 1 taxa and 240 samples ]:
#> sample_data() Sample Data: [ 240 samples by 32 sample variables ]:
#> tax_table() Taxonomy Table: [ 1 taxa by 7 taxonomic ranks ]:
#> refseq() DNAStringSet: [ 1 reference sequences ]
#> taxa are rows
result$spiked_species_reads
#> # A tibble: 240 × 2
#> Sample Total_Reads
#> <chr> <dbl>
#> 1 spiked.blank.20529_S180 51352
#> 2 spiked.blank.20913_S180 48471
#> 3 Std2uL.20721_S180 66229
#> 4 StdSwab1uL.20720_S168 53977
#> 5 STP1719.20518_S143 18165
#> 6 STP213.20519_S155 2547
#> 7 STP268.20520_S167 1332
#> 8 STP544.20515_S107 28061
#> 9 STP570.20516_S119 13722
#> 10 STP579.20517_S131 30845
#> # ℹ 230 more rows
scaling_factors <- result$scaling_factors
scaling_factors
#> spiked.blank.20529_S180 spiked.blank.20913_S180 Std2uL.20721_S180
#> 0.014274030 0.015122444 0.011067659
#> StdSwab1uL.20720_S168 STP1719.20518_S143 STP213.20519_S155
#> 0.006789929 0.040352326 0.287789556
#> STP268.20520_S167 STP544.20515_S107 STP570.20516_S119
#> 0.550300300 0.026121664 0.053417869
#> STP579.20517_S131 STP614.20514_S190 UHM1000.20700_S118
#> 0.023763981 0.690857681 1.559574468
#> UHM1001.20705_S178 UHM1007.20718_S144 UHM1009.20710_S143
#> 0.110291905 0.640734266 0.339037928
#> UHM1010.20717_S132 UHM1011.20702_S142 UHM1024.20716_S120
#> 0.060850075 0.057662052 0.028369069
#> UHM1026.20703_S154 UHM1028.20709_S131 UHM1032.20701_S130
#> 0.073653537 0.348384030 0.060468570
#> UHM1033.20715_S108 UHM1034.20712_S167 UHM1035.20707_S107
#> 0.096219480 18.325000000 0.087616543
#> UHM1036.20708_S119 UHM1052.20711_S155 UHM1060.20819_S97
#> 0.294377510 0.083238701 0.028247717
#> UHM1065.20820_S109 UHM1068.20828_S110 UHM1069.20838_S135
#> 0.047147360 0.242474363 0.211239193
#> UHM1070.20821_S121 UHM1071.20829_S122 UHM1072.20830_S134
#> 0.061820022 0.331074977 0.096257387
#> UHM1073.20831_S146 UHM1075.20822_S133 UHM1077.20832_S158
#> 3.683417085 0.280091708 0.049580628
#> UHM1078.20823_S145 UHM1080.20833_S170 UHM1081.20824_S157
#> 1.199672668 0.955671447 0.540959410
#> UHM1088.20834_S182 UHM1090.20835_S99 UHM1093.20825_S169
#> 0.460138104 0.183021223 0.453308596
#> UHM1095.20826_S181 UHM1097.20719_S156 UHM1099.20704_S166
#> 0.200163845 0.027154182 0.034924719
#> UHM1100.20884_S117 UHM1102.20885_S129 UHM1104.20886_S141
#> 12.423728814 2.655797101 1.692840647
#> UHM1105.20887_S153 UHM1109.20627_S97 UHM1110.20664_S161
#> 1.337591241 0.179612840 28.192307692
#> UHM1113.20888_S165 UHM1114.20889_S177 UHM1115.20890_S189
#> 0.495605139 0.614417435 6.787037037
#> UHM1117.20891_S106 UHM1118.20892_S118 UHM1120.20893_S130
#> 5.682170543 1.385633270 1.732860520
#> UHM1124.20894_S142 UHM1126.20895_S154 UHM1128.20896_S166
#> 1.846347607 1.981081081 9.644736842
#> UHM1140.20651_S100 UHM1145.20897_S178 UHM1163.20501_S129
#> 1.138198758 2.188059701 0.617523168
#> UHM1164.20498_S188 UHM1169.20648_S159 UHM1171.20675_S103
#> 0.079251811 0.049440173 12.216666667
#> UHM1176.20500_S117 UHM1177.20642_S182 UHM1182.20672_S162
#> 1.272569444 0.028440616 1.150706436
#> UHM1210.20898_S190 UHM1212.20899_S107 UHM1217.20900_S119
#> 3.646766169 1.213576159 0.667577413
#> UHM1218.20901_S131 UHM1219.20902_S143 UHM1220.20903_S155
#> 1.315978456 10.471428571 3.665000000
#> UHM1221.20904_S167 UHM1222.20905_S179 UHM1223.20906_S191
#> 1.918848168 0.102661064 4.639240506
#> UHM1225.20907_S108 UHM1227.20908_S120 UHM1228.20909_S132
#> 2.262345679 1.227805695 6.429824561
#> UHM1237.20910_S144 UHM1240.20662_S137 UHM1246.20911_S156
#> 1.240270728 0.111516811 0.530390738
#> UHM1247.20912_S168 UHM1248.20671_S150 UHM1256.20666_S185
#> 1.147104851 0.025198529 0.063683753
#> UHM1260.20692_S117 UHM1270.20673_S174 UHM1271.20493_S128
#> 0.771578947 0.087900228 0.538179148
#> UHM1272.20494_S140 UHM1274.20650_S183 UHM1275.20693_S129
#> 0.272998138 0.255757153 1.274782609
#> UHM1282.20695_S153 UHM1287.20639_S146 UHM1291.20512_S166
#> 1.074780059 0.207179197 0.289837881
#> UHM1296.20646_S135 UHM1319.20657_S172 UHM1324.20509_S130
#> 11.453125000 1.586580087 0.371703854
#> UHM1327.20641_S170 UHM1328.20668_S114 UHM1334.20513_S178
#> 12.016393443 0.021200289 0.925505051
#> UHM1338.20495_S152 UHM1341.20698_S189 UHM1356.20637_S122
#> 0.104894104 0.014220860 0.020272139
#> UHM1380.20676_S115 UHM1383.20690_S188 UHM1385.20659_S101
#> 2.863281250 1.480808081 0.048424391
#> UHM1399.20852_S113 UHM1400.20853_S125 UHM1401.20854_S137
#> 0.204863052 0.090628091 0.085301990
#> UHM1402.20855_S149 UHM1403.20856_S161 UHM1405.20857_S173
#> 1.000000000 0.153926921 0.603292181
#> UHM1406.20858_S185 UHM1414.20859_S102 UHM1419.20860_S114
#> 0.060284563 1.440078585 0.319389978
#> UHM1427.20485_S127 UHM1428.20486_S139 UHM1429.20487_S151
#> 0.536996337 22.212121212 13.830188679
#> UHM1430.20488_S163 UHM1432.20489_S175 UHM1435.20484_S115
#> 5.682170543 4.524691358 1.514462810
#> UHM162.20656_S160 UHM198.20681_S175 UHM200.20670_S138
#> 0.480655738 0.395148248 1.283712785
#> UHM203.20685_S128 UHM204.20505_S177 UHM206.20506_S189
#> 0.607794362 0.275667544 0.053519276
#> UHM207.20689_S176 UHM208.20507_S106 UHM211.20502_S141
#> 0.903822441 0.830124575 0.064913213
#> UHM215.20504_S165 UHM216.20525_S132 UHM219.20526_S144
#> 0.218479881 0.044916968 0.015032814
#> UHM236.20527_S156 UHM238.20503_S153 UHM245.20634_S181
#> 0.036143984 0.103239437 0.373788883
#> UHM252.20654_S136 UHM267.20496_S164 UHM274.20677_S127
#> 0.859320047 0.478772044 0.393029491
#> UHM276.20682_S187 UHM280.20497_S176 UHM286.20521_S179
#> 0.287450980 0.161063503 0.640734266
#> UHM289.20522_S191 UHM294.20523_S108 UHM298.20696_S165
#> 0.249829584 0.408584169 5.020547945
#> UHM325.20644_S111 UHM337.20508_S118 UHM354.20631_S145
#> 1.217607973 0.881009615 23.645161290
#> UHM356.20511_S154 UHM369.20869_S127 UHM370.20870_S139
#> 0.213391557 1.000000000 1.377819549
#> UHM372.20871_S151 UHM373.20872_S163 UHM374.20873_S175
#> 0.609310058 1.313620072 7.186274510
#> UHM375.20874_S187 UHM377.20875_S104 UHM382.20876_S116
#> 0.527338129 1.539915966 10.180555556
#> UHM386.20877_S128 UHM387.20878_S140 UHM414.20679_S151
#> 2.599290780 3.919786096 5.161971831
#> UHM418.20861_S126 UHM422.20862_S138 UHM425.20863_S150
#> 3.739795918 0.109142347 1.163492063
#> UHM426.20630_S133 UHM428.20640_S158 UHM429.20655_S148
#> 0.032558966 6.373913043 0.068755276
#> UHM435.20643_S99 UHM437.20864_S162 UHM439.20660_S113
#> 0.186942107 2.227963526 1.141744548
#> UHM443.20524_S120 UHM445.20665_S173 UHM447.20879_S152
#> 1.000000000 73.300000000 14.959183673
#> UHM448.20865_S174 UHM452.20880_S164 UHM454.20866_S186
#> 0.330477908 0.840596330 1.665909091
#> UHM455.20881_S176 UHM458.20882_S188 UHM459.20883_S105
#> 2.118497110 14.372549020 5.470149254
#> UHM461.20867_S103 UHM467.20868_S115 UHM470.20629_S121
#> 0.187756148 2.341853035 0.645814978
#> UHM476.20510_S142 UHM478.20645_S123 UHM479.20647_S147
#> 0.554882665 0.047244602 0.015253990
#> UHM481.20499_S105 UHM482.20686_S140 UHM483.20699_S106
#> 0.085084156 0.029153243 3.646766169
#> UHM519.20678_S139 UHM520.20669_S126 UHM836.20481_S174
#> 0.468969930 16.659090909 0.410414334
#> UHM837.20482_S186 UHM838.20483_S103 UHM891.20480_S162
#> 0.146688013 12.216666667 7.715789474
#> UHM892.20628_S109 UHM893.20691_S105 UHM894.20636_S110
#> 2.714814815 28.192307692 15.270833333
#> UHM895.20632_S157 UHM896.20697_S177 UHM897.20687_S152
#> 1.800982801 15.934782609 3.898936170
#> UHM898.20490_S187 UHM899.20684_S116 UHM900.20491_S104
#> 2.704797048 1.000000000 22.212121212
#> UHM901.20638_S134 UHM902.20680_S163 UHM903.20683_S104
#> 1.658371041 0.371515459 0.273609556
#> UHM904.20663_S149 UHM905.20694_S141 UHM906.20661_S125
#> 3.041493776 3.092827004 29.320000000
#> UHM907.20688_S164 UHM908.20492_S116 UHM909.20653_S124
#> 0.241914191 0.468670077 0.047974344
#> UHM910.20658_S184 UHM965.20633_S169 UHM966.20839_S147
#> 0.495270270 0.165127281 0.089412052
#> UHM967.20840_S159 UHM968.20667_S102 UHM969.20841_S171
#> 1.255136986 0.012972533 5.429629630
#> UHM971.20842_S183 UHM973.20674_S186 UHM974.20528_S168
#> 2.070621469 0.168235024 0.015603380
#> UHM975.20843_S100 UHM977.20844_S112 UHM978.20845_S124
#> 2.468013468 0.420298165 7.479591837
#> UHM979.20846_S136 UHM980.20827_S98 UHM981.20635_S98
#> 1.749403341 0.049925078 0.109305100
#> UHM982.20836_S111 UHM983.20652_S112 UHM984.20847_S148
#> 4.759740260 0.442632850 5.682170543
#> UHM985.20848_S160 UHM988.20849_S172 UHM989.20850_S184
#> 0.421022401 0.110474755 3.646766169
#> UHM991.20851_S101 UHM993.20837_S123 UHM996.20706_S190
#> 0.174192015 3.159482759 0.025157880
#> UHM997.20649_S171 UHM998.20714_S191 UHM999.20713_S179
#> 0.383970665 0.024668506 1.138198758
str(scaling_factors)
#> Named num [1:240] 0.01427 0.01512 0.01107 0.00679 0.04035 ...
#> - attr(*, "names")= chr [1:240] "spiked.blank.20529_S180" "spiked.blank.20913_S180" "Std2uL.20721_S180" "StdSwab1uL.20720_S168" ...
# =====================================================================
# Convert relative counts to absolute counts
# =====================================================================
#**Absolute Read Count=Relative Read Count×Scaling Factor**
# Convert to absolute counts
absolute <- convert_to_absolute_counts(Spiked_ITS_sum_scaled, scaling_factors)
# Extract processed data
absolute_counts <- absolute$absolute_counts
physeq_absolute <- absolute$obj_adj
physeq_absolute <- tidy_phyloseq_tse(physeq_absolute)
# View absolute count data
head(absolute_counts)
#> # A tibble: 6 × 240
#> spiked.blank.20529_S180 spiked.blank.20913_S180 Std2uL.20721_S180
#> <dbl> <dbl> <dbl>
#> 1 0 0 0
#> 2 0 0 0
#> 3 0 0 0
#> 4 0 0 0
#> 5 0 0 0
#> 6 0 0 0
#> # ℹ 237 more variables: StdSwab1uL.20720_S168 <dbl>, STP1719.20518_S143 <dbl>,
#> # STP213.20519_S155 <dbl>, STP268.20520_S167 <dbl>, STP544.20515_S107 <dbl>,
#> # STP570.20516_S119 <dbl>, STP579.20517_S131 <dbl>, STP614.20514_S190 <dbl>,
#> # UHM1000.20700_S118 <dbl>, UHM1001.20705_S178 <dbl>,
#> # UHM1007.20718_S144 <dbl>, UHM1009.20710_S143 <dbl>,
#> # UHM1010.20717_S132 <dbl>, UHM1011.20702_S142 <dbl>,
#> # UHM1024.20716_S120 <dbl>, UHM1026.20703_S154 <dbl>, …
# =====================================================================
# CALCULATE SPIKE PERCENTAGE & summary stat
# =====================================================================
#**Calculate spike percentage & Generate summary statistics for absolute counts**
# Generate summary statistics for absolute counts
post_eval_summary <- calculate_summary_stats_table(absolute_counts)
#> 💾 Table saved in docx format: post_eval_summary.docx
#> 💾 Summary statistics saved as CSV: post_eval_summary.csv
print(post_eval_summary)
#> a flextable object.
#> col_keys: `spiked.blank.20529_S180_mean`, `spiked.blank.20913_S180_mean`, `Std2uL.20721_S180_mean`, `StdSwab1uL.20720_S168_mean`, `STP1719.20518_S143_mean`, `STP213.20519_S155_mean`, `STP268.20520_S167_mean`, `STP544.20515_S107_mean`, `STP570.20516_S119_mean`, `STP579.20517_S131_mean`, `STP614.20514_S190_mean`, `UHM1000.20700_S118_mean`, `UHM1001.20705_S178_mean`, `UHM1007.20718_S144_mean`, `UHM1009.20710_S143_mean`, `UHM1010.20717_S132_mean`, `UHM1011.20702_S142_mean`, `UHM1024.20716_S120_mean`, `UHM1026.20703_S154_mean`, `UHM1028.20709_S131_mean`, `UHM1032.20701_S130_mean`, `UHM1033.20715_S108_mean`, `UHM1034.20712_S167_mean`, `UHM1035.20707_S107_mean`, `UHM1036.20708_S119_mean`, `UHM1052.20711_S155_mean`, `UHM1060.20819_S97_mean`, `UHM1065.20820_S109_mean`, `UHM1068.20828_S110_mean`, `UHM1069.20838_S135_mean`, `UHM1070.20821_S121_mean`, `UHM1071.20829_S122_mean`, `UHM1072.20830_S134_mean`, `UHM1073.20831_S146_mean`, `UHM1075.20822_S133_mean`, `UHM1077.20832_S158_mean`, `UHM1078.20823_S145_mean`, `UHM1080.20833_S170_mean`, `UHM1081.20824_S157_mean`, `UHM1088.20834_S182_mean`, `UHM1090.20835_S99_mean`, `UHM1093.20825_S169_mean`, `UHM1095.20826_S181_mean`, `UHM1097.20719_S156_mean`, `UHM1099.20704_S166_mean`, `UHM1100.20884_S117_mean`, `UHM1102.20885_S129_mean`, `UHM1104.20886_S141_mean`, `UHM1105.20887_S153_mean`, `UHM1109.20627_S97_mean`, `UHM1110.20664_S161_mean`, `UHM1113.20888_S165_mean`, `UHM1114.20889_S177_mean`, `UHM1115.20890_S189_mean`, `UHM1117.20891_S106_mean`, `UHM1118.20892_S118_mean`, `UHM1120.20893_S130_mean`, `UHM1124.20894_S142_mean`, `UHM1126.20895_S154_mean`, `UHM1128.20896_S166_mean`, `UHM1140.20651_S100_mean`, `UHM1145.20897_S178_mean`, `UHM1163.20501_S129_mean`, `UHM1164.20498_S188_mean`, `UHM1169.20648_S159_mean`, `UHM1171.20675_S103_mean`, `UHM1176.20500_S117_mean`, `UHM1177.20642_S182_mean`, `UHM1182.20672_S162_mean`, `UHM1210.20898_S190_mean`, `UHM1212.20899_S107_mean`, `UHM1217.20900_S119_mean`, `UHM1218.20901_S131_mean`, `UHM1219.20902_S143_mean`, `UHM1220.20903_S155_mean`, `UHM1221.20904_S167_mean`, `UHM1222.20905_S179_mean`, `UHM1223.20906_S191_mean`, `UHM1225.20907_S108_mean`, `UHM1227.20908_S120_mean`, `UHM1228.20909_S132_mean`, `UHM1237.20910_S144_mean`, `UHM1240.20662_S137_mean`, `UHM1246.20911_S156_mean`, `UHM1247.20912_S168_mean`, `UHM1248.20671_S150_mean`, `UHM1256.20666_S185_mean`, `UHM1260.20692_S117_mean`, `UHM1270.20673_S174_mean`, `UHM1271.20493_S128_mean`, `UHM1272.20494_S140_mean`, `UHM1274.20650_S183_mean`, `UHM1275.20693_S129_mean`, `UHM1282.20695_S153_mean`, `UHM1287.20639_S146_mean`, `UHM1291.20512_S166_mean`, `UHM1296.20646_S135_mean`, `UHM1319.20657_S172_mean`, `UHM1324.20509_S130_mean`, `UHM1327.20641_S170_mean`, `UHM1328.20668_S114_mean`, `UHM1334.20513_S178_mean`, `UHM1338.20495_S152_mean`, `UHM1341.20698_S189_mean`, `UHM1356.20637_S122_mean`, `UHM1380.20676_S115_mean`, `UHM1383.20690_S188_mean`, `UHM1385.20659_S101_mean`, `UHM1399.20852_S113_mean`, `UHM1400.20853_S125_mean`, `UHM1401.20854_S137_mean`, `UHM1402.20855_S149_mean`, `UHM1403.20856_S161_mean`, `UHM1405.20857_S173_mean`, `UHM1406.20858_S185_mean`, `UHM1414.20859_S102_mean`, `UHM1419.20860_S114_mean`, `UHM1427.20485_S127_mean`, `UHM1428.20486_S139_mean`, `UHM1429.20487_S151_mean`, `UHM1430.20488_S163_mean`, `UHM1432.20489_S175_mean`, `UHM1435.20484_S115_mean`, `UHM162.20656_S160_mean`, `UHM198.20681_S175_mean`, `UHM200.20670_S138_mean`, `UHM203.20685_S128_mean`, `UHM204.20505_S177_mean`, `UHM206.20506_S189_mean`, `UHM207.20689_S176_mean`, `UHM208.20507_S106_mean`, `UHM211.20502_S141_mean`, `UHM215.20504_S165_mean`, `UHM216.20525_S132_mean`, `UHM219.20526_S144_mean`, `UHM236.20527_S156_mean`, `UHM238.20503_S153_mean`, `UHM245.20634_S181_mean`, `UHM252.20654_S136_mean`, `UHM267.20496_S164_mean`, `UHM274.20677_S127_mean`, `UHM276.20682_S187_mean`, `UHM280.20497_S176_mean`, `UHM286.20521_S179_mean`, `UHM289.20522_S191_mean`, `UHM294.20523_S108_mean`, `UHM298.20696_S165_mean`, `UHM325.20644_S111_mean`, `UHM337.20508_S118_mean`, `UHM354.20631_S145_mean`, `UHM356.20511_S154_mean`, `UHM369.20869_S127_mean`, `UHM370.20870_S139_mean`, `UHM372.20871_S151_mean`, `UHM373.20872_S163_mean`, `UHM374.20873_S175_mean`, `UHM375.20874_S187_mean`, `UHM377.20875_S104_mean`, `UHM382.20876_S116_mean`, `UHM386.20877_S128_mean`, `UHM387.20878_S140_mean`, `UHM414.20679_S151_mean`, `UHM418.20861_S126_mean`, `UHM422.20862_S138_mean`, `UHM425.20863_S150_mean`, `UHM426.20630_S133_mean`, `UHM428.20640_S158_mean`, `UHM429.20655_S148_mean`, `UHM435.20643_S99_mean`, `UHM437.20864_S162_mean`, `UHM439.20660_S113_mean`, `UHM443.20524_S120_mean`, `UHM445.20665_S173_mean`, `UHM447.20879_S152_mean`, `UHM448.20865_S174_mean`, `UHM452.20880_S164_mean`, `UHM454.20866_S186_mean`, `UHM455.20881_S176_mean`, `UHM458.20882_S188_mean`, `UHM459.20883_S105_mean`, `UHM461.20867_S103_mean`, `UHM467.20868_S115_mean`, `UHM470.20629_S121_mean`, `UHM476.20510_S142_mean`, `UHM478.20645_S123_mean`, `UHM479.20647_S147_mean`, `UHM481.20499_S105_mean`, `UHM482.20686_S140_mean`, `UHM483.20699_S106_mean`, `UHM519.20678_S139_mean`, `UHM520.20669_S126_mean`, `UHM836.20481_S174_mean`, `UHM837.20482_S186_mean`, `UHM838.20483_S103_mean`, `UHM891.20480_S162_mean`, `UHM892.20628_S109_mean`, `UHM893.20691_S105_mean`, `UHM894.20636_S110_mean`, `UHM895.20632_S157_mean`, `UHM896.20697_S177_mean`, `UHM897.20687_S152_mean`, `UHM898.20490_S187_mean`, `UHM899.20684_S116_mean`, `UHM900.20491_S104_mean`, `UHM901.20638_S134_mean`, `UHM902.20680_S163_mean`, `UHM903.20683_S104_mean`, `UHM904.20663_S149_mean`, `UHM905.20694_S141_mean`, `UHM906.20661_S125_mean`, `UHM907.20688_S164_mean`, `UHM908.20492_S116_mean`, `UHM909.20653_S124_mean`, `UHM910.20658_S184_mean`, `UHM965.20633_S169_mean`, `UHM966.20839_S147_mean`, `UHM967.20840_S159_mean`, `UHM968.20667_S102_mean`, `UHM969.20841_S171_mean`, `UHM971.20842_S183_mean`, `UHM973.20674_S186_mean`, `UHM974.20528_S168_mean`, `UHM975.20843_S100_mean`, `UHM977.20844_S112_mean`, `UHM978.20845_S124_mean`, `UHM979.20846_S136_mean`, `UHM980.20827_S98_mean`, `UHM981.20635_S98_mean`, `UHM982.20836_S111_mean`, `UHM983.20652_S112_mean`, `UHM984.20847_S148_mean`, `UHM985.20848_S160_mean`, `UHM988.20849_S172_mean`, `UHM989.20850_S184_mean`, `UHM991.20851_S101_mean`, `UHM993.20837_S123_mean`, `UHM996.20706_S190_mean`, `UHM997.20649_S171_mean`, `UHM998.20714_S191_mean`, `UHM999.20713_S179_mean`, `spiked.blank.20529_S180_sd`, `spiked.blank.20913_S180_sd`, `Std2uL.20721_S180_sd`, `StdSwab1uL.20720_S168_sd`, `STP1719.20518_S143_sd`, `STP213.20519_S155_sd`, `STP268.20520_S167_sd`, `STP544.20515_S107_sd`, `STP570.20516_S119_sd`, `STP579.20517_S131_sd`, `STP614.20514_S190_sd`, `UHM1000.20700_S118_sd`, `UHM1001.20705_S178_sd`, `UHM1007.20718_S144_sd`, `UHM1009.20710_S143_sd`, `UHM1010.20717_S132_sd`, `UHM1011.20702_S142_sd`, `UHM1024.20716_S120_sd`, `UHM1026.20703_S154_sd`, `UHM1028.20709_S131_sd`, `UHM1032.20701_S130_sd`, `UHM1033.20715_S108_sd`, `UHM1034.20712_S167_sd`, `UHM1035.20707_S107_sd`, `UHM1036.20708_S119_sd`, `UHM1052.20711_S155_sd`, `UHM1060.20819_S97_sd`, `UHM1065.20820_S109_sd`, `UHM1068.20828_S110_sd`, `UHM1069.20838_S135_sd`, `UHM1070.20821_S121_sd`, `UHM1071.20829_S122_sd`, `UHM1072.20830_S134_sd`, `UHM1073.20831_S146_sd`, `UHM1075.20822_S133_sd`, `UHM1077.20832_S158_sd`, `UHM1078.20823_S145_sd`, `UHM1080.20833_S170_sd`, `UHM1081.20824_S157_sd`, `UHM1088.20834_S182_sd`, `UHM1090.20835_S99_sd`, `UHM1093.20825_S169_sd`, `UHM1095.20826_S181_sd`, `UHM1097.20719_S156_sd`, `UHM1099.20704_S166_sd`, `UHM1100.20884_S117_sd`, `UHM1102.20885_S129_sd`, `UHM1104.20886_S141_sd`, `UHM1105.20887_S153_sd`, `UHM1109.20627_S97_sd`, `UHM1110.20664_S161_sd`, `UHM1113.20888_S165_sd`, `UHM1114.20889_S177_sd`, `UHM1115.20890_S189_sd`, `UHM1117.20891_S106_sd`, `UHM1118.20892_S118_sd`, `UHM1120.20893_S130_sd`, `UHM1124.20894_S142_sd`, `UHM1126.20895_S154_sd`, `UHM1128.20896_S166_sd`, `UHM1140.20651_S100_sd`, `UHM1145.20897_S178_sd`, `UHM1163.20501_S129_sd`, `UHM1164.20498_S188_sd`, `UHM1169.20648_S159_sd`, `UHM1171.20675_S103_sd`, `UHM1176.20500_S117_sd`, `UHM1177.20642_S182_sd`, `UHM1182.20672_S162_sd`, `UHM1210.20898_S190_sd`, `UHM1212.20899_S107_sd`, `UHM1217.20900_S119_sd`, `UHM1218.20901_S131_sd`, `UHM1219.20902_S143_sd`, `UHM1220.20903_S155_sd`, `UHM1221.20904_S167_sd`, `UHM1222.20905_S179_sd`, `UHM1223.20906_S191_sd`, `UHM1225.20907_S108_sd`, `UHM1227.20908_S120_sd`, `UHM1228.20909_S132_sd`, `UHM1237.20910_S144_sd`, `UHM1240.20662_S137_sd`, `UHM1246.20911_S156_sd`, `UHM1247.20912_S168_sd`, `UHM1248.20671_S150_sd`, `UHM1256.20666_S185_sd`, `UHM1260.20692_S117_sd`, `UHM1270.20673_S174_sd`, `UHM1271.20493_S128_sd`, `UHM1272.20494_S140_sd`, `UHM1274.20650_S183_sd`, `UHM1275.20693_S129_sd`, `UHM1282.20695_S153_sd`, `UHM1287.20639_S146_sd`, `UHM1291.20512_S166_sd`, `UHM1296.20646_S135_sd`, `UHM1319.20657_S172_sd`, `UHM1324.20509_S130_sd`, `UHM1327.20641_S170_sd`, `UHM1328.20668_S114_sd`, `UHM1334.20513_S178_sd`, `UHM1338.20495_S152_sd`, `UHM1341.20698_S189_sd`, `UHM1356.20637_S122_sd`, `UHM1380.20676_S115_sd`, `UHM1383.20690_S188_sd`, `UHM1385.20659_S101_sd`, `UHM1399.20852_S113_sd`, `UHM1400.20853_S125_sd`, `UHM1401.20854_S137_sd`, `UHM1402.20855_S149_sd`, `UHM1403.20856_S161_sd`, `UHM1405.20857_S173_sd`, `UHM1406.20858_S185_sd`, `UHM1414.20859_S102_sd`, `UHM1419.20860_S114_sd`, `UHM1427.20485_S127_sd`, `UHM1428.20486_S139_sd`, `UHM1429.20487_S151_sd`, `UHM1430.20488_S163_sd`, `UHM1432.20489_S175_sd`, `UHM1435.20484_S115_sd`, `UHM162.20656_S160_sd`, `UHM198.20681_S175_sd`, `UHM200.20670_S138_sd`, `UHM203.20685_S128_sd`, `UHM204.20505_S177_sd`, `UHM206.20506_S189_sd`, `UHM207.20689_S176_sd`, `UHM208.20507_S106_sd`, `UHM211.20502_S141_sd`, `UHM215.20504_S165_sd`, `UHM216.20525_S132_sd`, `UHM219.20526_S144_sd`, `UHM236.20527_S156_sd`, `UHM238.20503_S153_sd`, `UHM245.20634_S181_sd`, `UHM252.20654_S136_sd`, `UHM267.20496_S164_sd`, `UHM274.20677_S127_sd`, `UHM276.20682_S187_sd`, `UHM280.20497_S176_sd`, `UHM286.20521_S179_sd`, `UHM289.20522_S191_sd`, `UHM294.20523_S108_sd`, `UHM298.20696_S165_sd`, `UHM325.20644_S111_sd`, `UHM337.20508_S118_sd`, `UHM354.20631_S145_sd`, `UHM356.20511_S154_sd`, `UHM369.20869_S127_sd`, `UHM370.20870_S139_sd`, `UHM372.20871_S151_sd`, `UHM373.20872_S163_sd`, `UHM374.20873_S175_sd`, `UHM375.20874_S187_sd`, `UHM377.20875_S104_sd`, `UHM382.20876_S116_sd`, `UHM386.20877_S128_sd`, `UHM387.20878_S140_sd`, `UHM414.20679_S151_sd`, `UHM418.20861_S126_sd`, `UHM422.20862_S138_sd`, `UHM425.20863_S150_sd`, `UHM426.20630_S133_sd`, `UHM428.20640_S158_sd`, `UHM429.20655_S148_sd`, `UHM435.20643_S99_sd`, `UHM437.20864_S162_sd`, `UHM439.20660_S113_sd`, `UHM443.20524_S120_sd`, `UHM445.20665_S173_sd`, `UHM447.20879_S152_sd`, `UHM448.20865_S174_sd`, `UHM452.20880_S164_sd`, `UHM454.20866_S186_sd`, `UHM455.20881_S176_sd`, `UHM458.20882_S188_sd`, `UHM459.20883_S105_sd`, `UHM461.20867_S103_sd`, `UHM467.20868_S115_sd`, `UHM470.20629_S121_sd`, `UHM476.20510_S142_sd`, `UHM478.20645_S123_sd`, `UHM479.20647_S147_sd`, `UHM481.20499_S105_sd`, `UHM482.20686_S140_sd`, `UHM483.20699_S106_sd`, `UHM519.20678_S139_sd`, `UHM520.20669_S126_sd`, `UHM836.20481_S174_sd`, `UHM837.20482_S186_sd`, `UHM838.20483_S103_sd`, `UHM891.20480_S162_sd`, `UHM892.20628_S109_sd`, `UHM893.20691_S105_sd`, `UHM894.20636_S110_sd`, `UHM895.20632_S157_sd`, `UHM896.20697_S177_sd`, `UHM897.20687_S152_sd`, `UHM898.20490_S187_sd`, `UHM899.20684_S116_sd`, `UHM900.20491_S104_sd`, `UHM901.20638_S134_sd`, `UHM902.20680_S163_sd`, `UHM903.20683_S104_sd`, `UHM904.20663_S149_sd`, `UHM905.20694_S141_sd`, `UHM906.20661_S125_sd`, `UHM907.20688_S164_sd`, `UHM908.20492_S116_sd`, `UHM909.20653_S124_sd`, `UHM910.20658_S184_sd`, `UHM965.20633_S169_sd`, `UHM966.20839_S147_sd`, `UHM967.20840_S159_sd`, `UHM968.20667_S102_sd`, `UHM969.20841_S171_sd`, `UHM971.20842_S183_sd`, `UHM973.20674_S186_sd`, `UHM974.20528_S168_sd`, `UHM975.20843_S100_sd`, `UHM977.20844_S112_sd`, `UHM978.20845_S124_sd`, `UHM979.20846_S136_sd`, `UHM980.20827_S98_sd`, `UHM981.20635_S98_sd`, `UHM982.20836_S111_sd`, `UHM983.20652_S112_sd`, `UHM984.20847_S148_sd`, `UHM985.20848_S160_sd`, `UHM988.20849_S172_sd`, `UHM989.20850_S184_sd`, `UHM991.20851_S101_sd`, `UHM993.20837_S123_sd`, `UHM996.20706_S190_sd`, `UHM997.20649_S171_sd`, `UHM998.20714_S191_sd`, `UHM999.20713_S179_sd`, `spiked.blank.20529_S180_se`, `spiked.blank.20913_S180_se`, `Std2uL.20721_S180_se`, `StdSwab1uL.20720_S168_se`, `STP1719.20518_S143_se`, `STP213.20519_S155_se`, `STP268.20520_S167_se`, `STP544.20515_S107_se`, `STP570.20516_S119_se`, `STP579.20517_S131_se`, `STP614.20514_S190_se`, `UHM1000.20700_S118_se`, `UHM1001.20705_S178_se`, `UHM1007.20718_S144_se`, `UHM1009.20710_S143_se`, `UHM1010.20717_S132_se`, `UHM1011.20702_S142_se`, `UHM1024.20716_S120_se`, `UHM1026.20703_S154_se`, `UHM1028.20709_S131_se`, `UHM1032.20701_S130_se`, `UHM1033.20715_S108_se`, `UHM1034.20712_S167_se`, `UHM1035.20707_S107_se`, `UHM1036.20708_S119_se`, `UHM1052.20711_S155_se`, `UHM1060.20819_S97_se`, `UHM1065.20820_S109_se`, `UHM1068.20828_S110_se`, `UHM1069.20838_S135_se`, `UHM1070.20821_S121_se`, `UHM1071.20829_S122_se`, `UHM1072.20830_S134_se`, `UHM1073.20831_S146_se`, `UHM1075.20822_S133_se`, `UHM1077.20832_S158_se`, `UHM1078.20823_S145_se`, `UHM1080.20833_S170_se`, `UHM1081.20824_S157_se`, `UHM1088.20834_S182_se`, `UHM1090.20835_S99_se`, `UHM1093.20825_S169_se`, `UHM1095.20826_S181_se`, `UHM1097.20719_S156_se`, `UHM1099.20704_S166_se`, `UHM1100.20884_S117_se`, `UHM1102.20885_S129_se`, `UHM1104.20886_S141_se`, `UHM1105.20887_S153_se`, `UHM1109.20627_S97_se`, `UHM1110.20664_S161_se`, `UHM1113.20888_S165_se`, `UHM1114.20889_S177_se`, `UHM1115.20890_S189_se`, `UHM1117.20891_S106_se`, `UHM1118.20892_S118_se`, `UHM1120.20893_S130_se`, `UHM1124.20894_S142_se`, `UHM1126.20895_S154_se`, `UHM1128.20896_S166_se`, `UHM1140.20651_S100_se`, `UHM1145.20897_S178_se`, `UHM1163.20501_S129_se`, `UHM1164.20498_S188_se`, `UHM1169.20648_S159_se`, `UHM1171.20675_S103_se`, `UHM1176.20500_S117_se`, `UHM1177.20642_S182_se`, `UHM1182.20672_S162_se`, `UHM1210.20898_S190_se`, `UHM1212.20899_S107_se`, `UHM1217.20900_S119_se`, `UHM1218.20901_S131_se`, `UHM1219.20902_S143_se`, `UHM1220.20903_S155_se`, `UHM1221.20904_S167_se`, `UHM1222.20905_S179_se`, `UHM1223.20906_S191_se`, `UHM1225.20907_S108_se`, `UHM1227.20908_S120_se`, `UHM1228.20909_S132_se`, `UHM1237.20910_S144_se`, `UHM1240.20662_S137_se`, `UHM1246.20911_S156_se`, `UHM1247.20912_S168_se`, `UHM1248.20671_S150_se`, `UHM1256.20666_S185_se`, `UHM1260.20692_S117_se`, `UHM1270.20673_S174_se`, `UHM1271.20493_S128_se`, `UHM1272.20494_S140_se`, `UHM1274.20650_S183_se`, `UHM1275.20693_S129_se`, `UHM1282.20695_S153_se`, `UHM1287.20639_S146_se`, `UHM1291.20512_S166_se`, `UHM1296.20646_S135_se`, `UHM1319.20657_S172_se`, `UHM1324.20509_S130_se`, `UHM1327.20641_S170_se`, `UHM1328.20668_S114_se`, `UHM1334.20513_S178_se`, `UHM1338.20495_S152_se`, `UHM1341.20698_S189_se`, `UHM1356.20637_S122_se`, `UHM1380.20676_S115_se`, `UHM1383.20690_S188_se`, `UHM1385.20659_S101_se`, `UHM1399.20852_S113_se`, `UHM1400.20853_S125_se`, `UHM1401.20854_S137_se`, `UHM1402.20855_S149_se`, `UHM1403.20856_S161_se`, `UHM1405.20857_S173_se`, `UHM1406.20858_S185_se`, `UHM1414.20859_S102_se`, `UHM1419.20860_S114_se`, `UHM1427.20485_S127_se`, `UHM1428.20486_S139_se`, `UHM1429.20487_S151_se`, `UHM1430.20488_S163_se`, `UHM1432.20489_S175_se`, `UHM1435.20484_S115_se`, `UHM162.20656_S160_se`, `UHM198.20681_S175_se`, `UHM200.20670_S138_se`, `UHM203.20685_S128_se`, `UHM204.20505_S177_se`, `UHM206.20506_S189_se`, `UHM207.20689_S176_se`, `UHM208.20507_S106_se`, `UHM211.20502_S141_se`, `UHM215.20504_S165_se`, `UHM216.20525_S132_se`, `UHM219.20526_S144_se`, `UHM236.20527_S156_se`, `UHM238.20503_S153_se`, `UHM245.20634_S181_se`, `UHM252.20654_S136_se`, `UHM267.20496_S164_se`, `UHM274.20677_S127_se`, `UHM276.20682_S187_se`, `UHM280.20497_S176_se`, `UHM286.20521_S179_se`, `UHM289.20522_S191_se`, `UHM294.20523_S108_se`, `UHM298.20696_S165_se`, `UHM325.20644_S111_se`, `UHM337.20508_S118_se`, `UHM354.20631_S145_se`, `UHM356.20511_S154_se`, `UHM369.20869_S127_se`, `UHM370.20870_S139_se`, `UHM372.20871_S151_se`, `UHM373.20872_S163_se`, `UHM374.20873_S175_se`, `UHM375.20874_S187_se`, `UHM377.20875_S104_se`, `UHM382.20876_S116_se`, `UHM386.20877_S128_se`, `UHM387.20878_S140_se`, `UHM414.20679_S151_se`, `UHM418.20861_S126_se`, `UHM422.20862_S138_se`, `UHM425.20863_S150_se`, `UHM426.20630_S133_se`, `UHM428.20640_S158_se`, `UHM429.20655_S148_se`, `UHM435.20643_S99_se`, `UHM437.20864_S162_se`, `UHM439.20660_S113_se`, `UHM443.20524_S120_se`, `UHM445.20665_S173_se`, `UHM447.20879_S152_se`, `UHM448.20865_S174_se`, `UHM452.20880_S164_se`, `UHM454.20866_S186_se`, `UHM455.20881_S176_se`, `UHM458.20882_S188_se`, `UHM459.20883_S105_se`, `UHM461.20867_S103_se`, `UHM467.20868_S115_se`, `UHM470.20629_S121_se`, `UHM476.20510_S142_se`, `UHM478.20645_S123_se`, `UHM479.20647_S147_se`, `UHM481.20499_S105_se`, `UHM482.20686_S140_se`, `UHM483.20699_S106_se`, `UHM519.20678_S139_se`, `UHM520.20669_S126_se`, `UHM836.20481_S174_se`, `UHM837.20482_S186_se`, `UHM838.20483_S103_se`, `UHM891.20480_S162_se`, `UHM892.20628_S109_se`, `UHM893.20691_S105_se`, `UHM894.20636_S110_se`, `UHM895.20632_S157_se`, `UHM896.20697_S177_se`, `UHM897.20687_S152_se`, `UHM898.20490_S187_se`, `UHM899.20684_S116_se`, `UHM900.20491_S104_se`, `UHM901.20638_S134_se`, `UHM902.20680_S163_se`, `UHM903.20683_S104_se`, `UHM904.20663_S149_se`, `UHM905.20694_S141_se`, `UHM906.20661_S125_se`, `UHM907.20688_S164_se`, `UHM908.20492_S116_se`, `UHM909.20653_S124_se`, `UHM910.20658_S184_se`, `UHM965.20633_S169_se`, `UHM966.20839_S147_se`, `UHM967.20840_S159_se`, `UHM968.20667_S102_se`, `UHM969.20841_S171_se`, `UHM971.20842_S183_se`, `UHM973.20674_S186_se`, `UHM974.20528_S168_se`, `UHM975.20843_S100_se`, `UHM977.20844_S112_se`, `UHM978.20845_S124_se`, `UHM979.20846_S136_se`, `UHM980.20827_S98_se`, `UHM981.20635_S98_se`, `UHM982.20836_S111_se`, `UHM983.20652_S112_se`, `UHM984.20847_S148_se`, `UHM985.20848_S160_se`, `UHM988.20849_S172_se`, `UHM989.20850_S184_se`, `UHM991.20851_S101_se`, `UHM993.20837_S123_se`, `UHM996.20706_S190_se`, `UHM997.20649_S171_se`, `UHM998.20714_S191_se`, `UHM999.20713_S179_se`, `spiked.blank.20529_S180_q25`, `spiked.blank.20913_S180_q25`, `Std2uL.20721_S180_q25`, `StdSwab1uL.20720_S168_q25`, `STP1719.20518_S143_q25`, `STP213.20519_S155_q25`, `STP268.20520_S167_q25`, `STP544.20515_S107_q25`, `STP570.20516_S119_q25`, `STP579.20517_S131_q25`, `STP614.20514_S190_q25`, `UHM1000.20700_S118_q25`, `UHM1001.20705_S178_q25`, `UHM1007.20718_S144_q25`, `UHM1009.20710_S143_q25`, `UHM1010.20717_S132_q25`, `UHM1011.20702_S142_q25`, `UHM1024.20716_S120_q25`, `UHM1026.20703_S154_q25`, `UHM1028.20709_S131_q25`, `UHM1032.20701_S130_q25`, `UHM1033.20715_S108_q25`, `UHM1034.20712_S167_q25`, `UHM1035.20707_S107_q25`, `UHM1036.20708_S119_q25`, `UHM1052.20711_S155_q25`, `UHM1060.20819_S97_q25`, `UHM1065.20820_S109_q25`, `UHM1068.20828_S110_q25`, `UHM1069.20838_S135_q25`, `UHM1070.20821_S121_q25`, `UHM1071.20829_S122_q25`, `UHM1072.20830_S134_q25`, `UHM1073.20831_S146_q25`, `UHM1075.20822_S133_q25`, `UHM1077.20832_S158_q25`, `UHM1078.20823_S145_q25`, `UHM1080.20833_S170_q25`, `UHM1081.20824_S157_q25`, `UHM1088.20834_S182_q25`, `UHM1090.20835_S99_q25`, `UHM1093.20825_S169_q25`, `UHM1095.20826_S181_q25`, `UHM1097.20719_S156_q25`, `UHM1099.20704_S166_q25`, `UHM1100.20884_S117_q25`, `UHM1102.20885_S129_q25`, `UHM1104.20886_S141_q25`, `UHM1105.20887_S153_q25`, `UHM1109.20627_S97_q25`, `UHM1110.20664_S161_q25`, `UHM1113.20888_S165_q25`, `UHM1114.20889_S177_q25`, `UHM1115.20890_S189_q25`, `UHM1117.20891_S106_q25`, `UHM1118.20892_S118_q25`, `UHM1120.20893_S130_q25`, `UHM1124.20894_S142_q25`, `UHM1126.20895_S154_q25`, `UHM1128.20896_S166_q25`, `UHM1140.20651_S100_q25`, `UHM1145.20897_S178_q25`, `UHM1163.20501_S129_q25`, `UHM1164.20498_S188_q25`, `UHM1169.20648_S159_q25`, `UHM1171.20675_S103_q25`, `UHM1176.20500_S117_q25`, `UHM1177.20642_S182_q25`, `UHM1182.20672_S162_q25`, `UHM1210.20898_S190_q25`, `UHM1212.20899_S107_q25`, `UHM1217.20900_S119_q25`, `UHM1218.20901_S131_q25`, `UHM1219.20902_S143_q25`, `UHM1220.20903_S155_q25`, `UHM1221.20904_S167_q25`, `UHM1222.20905_S179_q25`, `UHM1223.20906_S191_q25`, `UHM1225.20907_S108_q25`, `UHM1227.20908_S120_q25`, `UHM1228.20909_S132_q25`, `UHM1237.20910_S144_q25`, `UHM1240.20662_S137_q25`, `UHM1246.20911_S156_q25`, `UHM1247.20912_S168_q25`, `UHM1248.20671_S150_q25`, `UHM1256.20666_S185_q25`, `UHM1260.20692_S117_q25`, `UHM1270.20673_S174_q25`, `UHM1271.20493_S128_q25`, `UHM1272.20494_S140_q25`, `UHM1274.20650_S183_q25`, `UHM1275.20693_S129_q25`, `UHM1282.20695_S153_q25`, `UHM1287.20639_S146_q25`, `UHM1291.20512_S166_q25`, `UHM1296.20646_S135_q25`, `UHM1319.20657_S172_q25`, `UHM1324.20509_S130_q25`, `UHM1327.20641_S170_q25`, `UHM1328.20668_S114_q25`, `UHM1334.20513_S178_q25`, `UHM1338.20495_S152_q25`, `UHM1341.20698_S189_q25`, `UHM1356.20637_S122_q25`, `UHM1380.20676_S115_q25`, `UHM1383.20690_S188_q25`, `UHM1385.20659_S101_q25`, `UHM1399.20852_S113_q25`, `UHM1400.20853_S125_q25`, `UHM1401.20854_S137_q25`, `UHM1402.20855_S149_q25`, `UHM1403.20856_S161_q25`, `UHM1405.20857_S173_q25`, `UHM1406.20858_S185_q25`, `UHM1414.20859_S102_q25`, `UHM1419.20860_S114_q25`, `UHM1427.20485_S127_q25`, `UHM1428.20486_S139_q25`, `UHM1429.20487_S151_q25`, `UHM1430.20488_S163_q25`, `UHM1432.20489_S175_q25`, `UHM1435.20484_S115_q25`, `UHM162.20656_S160_q25`, `UHM198.20681_S175_q25`, `UHM200.20670_S138_q25`, `UHM203.20685_S128_q25`, `UHM204.20505_S177_q25`, `UHM206.20506_S189_q25`, `UHM207.20689_S176_q25`, `UHM208.20507_S106_q25`, `UHM211.20502_S141_q25`, `UHM215.20504_S165_q25`, `UHM216.20525_S132_q25`, `UHM219.20526_S144_q25`, `UHM236.20527_S156_q25`, `UHM238.20503_S153_q25`, `UHM245.20634_S181_q25`, `UHM252.20654_S136_q25`, `UHM267.20496_S164_q25`, `UHM274.20677_S127_q25`, `UHM276.20682_S187_q25`, `UHM280.20497_S176_q25`, `UHM286.20521_S179_q25`, `UHM289.20522_S191_q25`, `UHM294.20523_S108_q25`, `UHM298.20696_S165_q25`, `UHM325.20644_S111_q25`, `UHM337.20508_S118_q25`, `UHM354.20631_S145_q25`, `UHM356.20511_S154_q25`, `UHM369.20869_S127_q25`, `UHM370.20870_S139_q25`, `UHM372.20871_S151_q25`, `UHM373.20872_S163_q25`, `UHM374.20873_S175_q25`, `UHM375.20874_S187_q25`, `UHM377.20875_S104_q25`, `UHM382.20876_S116_q25`, `UHM386.20877_S128_q25`, `UHM387.20878_S140_q25`, `UHM414.20679_S151_q25`, `UHM418.20861_S126_q25`, `UHM422.20862_S138_q25`, `UHM425.20863_S150_q25`, `UHM426.20630_S133_q25`, `UHM428.20640_S158_q25`, `UHM429.20655_S148_q25`, `UHM435.20643_S99_q25`, `UHM437.20864_S162_q25`, `UHM439.20660_S113_q25`, `UHM443.20524_S120_q25`, `UHM445.20665_S173_q25`, `UHM447.20879_S152_q25`, `UHM448.20865_S174_q25`, `UHM452.20880_S164_q25`, `UHM454.20866_S186_q25`, `UHM455.20881_S176_q25`, `UHM458.20882_S188_q25`, `UHM459.20883_S105_q25`, `UHM461.20867_S103_q25`, `UHM467.20868_S115_q25`, `UHM470.20629_S121_q25`, `UHM476.20510_S142_q25`, `UHM478.20645_S123_q25`, `UHM479.20647_S147_q25`, `UHM481.20499_S105_q25`, `UHM482.20686_S140_q25`, `UHM483.20699_S106_q25`, `UHM519.20678_S139_q25`, `UHM520.20669_S126_q25`, `UHM836.20481_S174_q25`, `UHM837.20482_S186_q25`, `UHM838.20483_S103_q25`, `UHM891.20480_S162_q25`, `UHM892.20628_S109_q25`, `UHM893.20691_S105_q25`, `UHM894.20636_S110_q25`, `UHM895.20632_S157_q25`, `UHM896.20697_S177_q25`, `UHM897.20687_S152_q25`, `UHM898.20490_S187_q25`, `UHM899.20684_S116_q25`, `UHM900.20491_S104_q25`, `UHM901.20638_S134_q25`, `UHM902.20680_S163_q25`, `UHM903.20683_S104_q25`, `UHM904.20663_S149_q25`, `UHM905.20694_S141_q25`, `UHM906.20661_S125_q25`, `UHM907.20688_S164_q25`, `UHM908.20492_S116_q25`, `UHM909.20653_S124_q25`, `UHM910.20658_S184_q25`, `UHM965.20633_S169_q25`, `UHM966.20839_S147_q25`, `UHM967.20840_S159_q25`, `UHM968.20667_S102_q25`, `UHM969.20841_S171_q25`, `UHM971.20842_S183_q25`, `UHM973.20674_S186_q25`, `UHM974.20528_S168_q25`, `UHM975.20843_S100_q25`, `UHM977.20844_S112_q25`, `UHM978.20845_S124_q25`, `UHM979.20846_S136_q25`, `UHM980.20827_S98_q25`, `UHM981.20635_S98_q25`, `UHM982.20836_S111_q25`, `UHM983.20652_S112_q25`, `UHM984.20847_S148_q25`, `UHM985.20848_S160_q25`, `UHM988.20849_S172_q25`, `UHM989.20850_S184_q25`, `UHM991.20851_S101_q25`, `UHM993.20837_S123_q25`, `UHM996.20706_S190_q25`, `UHM997.20649_S171_q25`, `UHM998.20714_S191_q25`, `UHM999.20713_S179_q25`, `spiked.blank.20529_S180_median`, `spiked.blank.20913_S180_median`, `Std2uL.20721_S180_median`, `StdSwab1uL.20720_S168_median`, `STP1719.20518_S143_median`, `STP213.20519_S155_median`, `STP268.20520_S167_median`, `STP544.20515_S107_median`, `STP570.20516_S119_median`, `STP579.20517_S131_median`, `STP614.20514_S190_median`, `UHM1000.20700_S118_median`, `UHM1001.20705_S178_median`, `UHM1007.20718_S144_median`, `UHM1009.20710_S143_median`, `UHM1010.20717_S132_median`, `UHM1011.20702_S142_median`, `UHM1024.20716_S120_median`, `UHM1026.20703_S154_median`, `UHM1028.20709_S131_median`, `UHM1032.20701_S130_median`, `UHM1033.20715_S108_median`, `UHM1034.20712_S167_median`, `UHM1035.20707_S107_median`, `UHM1036.20708_S119_median`, `UHM1052.20711_S155_median`, `UHM1060.20819_S97_median`, `UHM1065.20820_S109_median`, `UHM1068.20828_S110_median`, `UHM1069.20838_S135_median`, `UHM1070.20821_S121_median`, `UHM1071.20829_S122_median`, `UHM1072.20830_S134_median`, `UHM1073.20831_S146_median`, `UHM1075.20822_S133_median`, `UHM1077.20832_S158_median`, `UHM1078.20823_S145_median`, `UHM1080.20833_S170_median`, `UHM1081.20824_S157_median`, `UHM1088.20834_S182_median`, `UHM1090.20835_S99_median`, `UHM1093.20825_S169_median`, `UHM1095.20826_S181_median`, `UHM1097.20719_S156_median`, `UHM1099.20704_S166_median`, `UHM1100.20884_S117_median`, `UHM1102.20885_S129_median`, `UHM1104.20886_S141_median`, `UHM1105.20887_S153_median`, `UHM1109.20627_S97_median`, `UHM1110.20664_S161_median`, `UHM1113.20888_S165_median`, `UHM1114.20889_S177_median`, `UHM1115.20890_S189_median`, `UHM1117.20891_S106_median`, `UHM1118.20892_S118_median`, `UHM1120.20893_S130_median`, `UHM1124.20894_S142_median`, `UHM1126.20895_S154_median`, `UHM1128.20896_S166_median`, `UHM1140.20651_S100_median`, `UHM1145.20897_S178_median`, `UHM1163.20501_S129_median`, `UHM1164.20498_S188_median`, `UHM1169.20648_S159_median`, `UHM1171.20675_S103_median`, `UHM1176.20500_S117_median`, `UHM1177.20642_S182_median`, `UHM1182.20672_S162_median`, `UHM1210.20898_S190_median`, `UHM1212.20899_S107_median`, `UHM1217.20900_S119_median`, `UHM1218.20901_S131_median`, `UHM1219.20902_S143_median`, `UHM1220.20903_S155_median`, `UHM1221.20904_S167_median`, `UHM1222.20905_S179_median`, `UHM1223.20906_S191_median`, `UHM1225.20907_S108_median`, `UHM1227.20908_S120_median`, `UHM1228.20909_S132_median`, `UHM1237.20910_S144_median`, `UHM1240.20662_S137_median`, `UHM1246.20911_S156_median`, `UHM1247.20912_S168_median`, `UHM1248.20671_S150_median`, `UHM1256.20666_S185_median`, `UHM1260.20692_S117_median`, `UHM1270.20673_S174_median`, `UHM1271.20493_S128_median`, `UHM1272.20494_S140_median`, `UHM1274.20650_S183_median`, `UHM1275.20693_S129_median`, `UHM1282.20695_S153_median`, `UHM1287.20639_S146_median`, `UHM1291.20512_S166_median`, `UHM1296.20646_S135_median`, `UHM1319.20657_S172_median`, `UHM1324.20509_S130_median`, `UHM1327.20641_S170_median`, `UHM1328.20668_S114_median`, `UHM1334.20513_S178_median`, `UHM1338.20495_S152_median`, `UHM1341.20698_S189_median`, `UHM1356.20637_S122_median`, `UHM1380.20676_S115_median`, `UHM1383.20690_S188_median`, `UHM1385.20659_S101_median`, `UHM1399.20852_S113_median`, `UHM1400.20853_S125_median`, `UHM1401.20854_S137_median`, `UHM1402.20855_S149_median`, `UHM1403.20856_S161_median`, `UHM1405.20857_S173_median`, `UHM1406.20858_S185_median`, `UHM1414.20859_S102_median`, `UHM1419.20860_S114_median`, `UHM1427.20485_S127_median`, `UHM1428.20486_S139_median`, `UHM1429.20487_S151_median`, `UHM1430.20488_S163_median`, `UHM1432.20489_S175_median`, `UHM1435.20484_S115_median`, `UHM162.20656_S160_median`, `UHM198.20681_S175_median`, `UHM200.20670_S138_median`, `UHM203.20685_S128_median`, `UHM204.20505_S177_median`, `UHM206.20506_S189_median`, `UHM207.20689_S176_median`, `UHM208.20507_S106_median`, `UHM211.20502_S141_median`, `UHM215.20504_S165_median`, `UHM216.20525_S132_median`, `UHM219.20526_S144_median`, `UHM236.20527_S156_median`, `UHM238.20503_S153_median`, `UHM245.20634_S181_median`, `UHM252.20654_S136_median`, `UHM267.20496_S164_median`, `UHM274.20677_S127_median`, `UHM276.20682_S187_median`, `UHM280.20497_S176_median`, `UHM286.20521_S179_median`, `UHM289.20522_S191_median`, `UHM294.20523_S108_median`, `UHM298.20696_S165_median`, `UHM325.20644_S111_median`, `UHM337.20508_S118_median`, `UHM354.20631_S145_median`, `UHM356.20511_S154_median`, `UHM369.20869_S127_median`, `UHM370.20870_S139_median`, `UHM372.20871_S151_median`, `UHM373.20872_S163_median`, `UHM374.20873_S175_median`, `UHM375.20874_S187_median`, `UHM377.20875_S104_median`, `UHM382.20876_S116_median`, `UHM386.20877_S128_median`, `UHM387.20878_S140_median`, `UHM414.20679_S151_median`, `UHM418.20861_S126_median`, `UHM422.20862_S138_median`, `UHM425.20863_S150_median`, `UHM426.20630_S133_median`, `UHM428.20640_S158_median`, `UHM429.20655_S148_median`, `UHM435.20643_S99_median`, `UHM437.20864_S162_median`, `UHM439.20660_S113_median`, `UHM443.20524_S120_median`, `UHM445.20665_S173_median`, `UHM447.20879_S152_median`, `UHM448.20865_S174_median`, `UHM452.20880_S164_median`, `UHM454.20866_S186_median`, `UHM455.20881_S176_median`, `UHM458.20882_S188_median`, `UHM459.20883_S105_median`, `UHM461.20867_S103_median`, `UHM467.20868_S115_median`, `UHM470.20629_S121_median`, `UHM476.20510_S142_median`, `UHM478.20645_S123_median`, `UHM479.20647_S147_median`, `UHM481.20499_S105_median`, `UHM482.20686_S140_median`, `UHM483.20699_S106_median`, `UHM519.20678_S139_median`, `UHM520.20669_S126_median`, `UHM836.20481_S174_median`, `UHM837.20482_S186_median`, `UHM838.20483_S103_median`, `UHM891.20480_S162_median`, `UHM892.20628_S109_median`, `UHM893.20691_S105_median`, `UHM894.20636_S110_median`, `UHM895.20632_S157_median`, `UHM896.20697_S177_median`, `UHM897.20687_S152_median`, `UHM898.20490_S187_median`, `UHM899.20684_S116_median`, `UHM900.20491_S104_median`, `UHM901.20638_S134_median`, `UHM902.20680_S163_median`, `UHM903.20683_S104_median`, `UHM904.20663_S149_median`, `UHM905.20694_S141_median`, `UHM906.20661_S125_median`, `UHM907.20688_S164_median`, `UHM908.20492_S116_median`, `UHM909.20653_S124_median`, `UHM910.20658_S184_median`, `UHM965.20633_S169_median`, `UHM966.20839_S147_median`, `UHM967.20840_S159_median`, `UHM968.20667_S102_median`, `UHM969.20841_S171_median`, `UHM971.20842_S183_median`, `UHM973.20674_S186_median`, `UHM974.20528_S168_median`, `UHM975.20843_S100_median`, `UHM977.20844_S112_median`, `UHM978.20845_S124_median`, `UHM979.20846_S136_median`, `UHM980.20827_S98_median`, `UHM981.20635_S98_median`, `UHM982.20836_S111_median`, `UHM983.20652_S112_median`, `UHM984.20847_S148_median`, `UHM985.20848_S160_median`, `UHM988.20849_S172_median`, `UHM989.20850_S184_median`, `UHM991.20851_S101_median`, `UHM993.20837_S123_median`, `UHM996.20706_S190_median`, `UHM997.20649_S171_median`, `UHM998.20714_S191_median`, `UHM999.20713_S179_median`, `spiked.blank.20529_S180_q75`, `spiked.blank.20913_S180_q75`, `Std2uL.20721_S180_q75`, `StdSwab1uL.20720_S168_q75`, `STP1719.20518_S143_q75`, `STP213.20519_S155_q75`, `STP268.20520_S167_q75`, `STP544.20515_S107_q75`, `STP570.20516_S119_q75`, `STP579.20517_S131_q75`, `STP614.20514_S190_q75`, `UHM1000.20700_S118_q75`, `UHM1001.20705_S178_q75`, `UHM1007.20718_S144_q75`, `UHM1009.20710_S143_q75`, `UHM1010.20717_S132_q75`, `UHM1011.20702_S142_q75`, `UHM1024.20716_S120_q75`, `UHM1026.20703_S154_q75`, `UHM1028.20709_S131_q75`, `UHM1032.20701_S130_q75`, `UHM1033.20715_S108_q75`, `UHM1034.20712_S167_q75`, `UHM1035.20707_S107_q75`, `UHM1036.20708_S119_q75`, `UHM1052.20711_S155_q75`, `UHM1060.20819_S97_q75`, `UHM1065.20820_S109_q75`, `UHM1068.20828_S110_q75`, `UHM1069.20838_S135_q75`, `UHM1070.20821_S121_q75`, `UHM1071.20829_S122_q75`, `UHM1072.20830_S134_q75`, `UHM1073.20831_S146_q75`, `UHM1075.20822_S133_q75`, `UHM1077.20832_S158_q75`, `UHM1078.20823_S145_q75`, `UHM1080.20833_S170_q75`, `UHM1081.20824_S157_q75`, `UHM1088.20834_S182_q75`, `UHM1090.20835_S99_q75`, `UHM1093.20825_S169_q75`, `UHM1095.20826_S181_q75`, `UHM1097.20719_S156_q75`, `UHM1099.20704_S166_q75`, `UHM1100.20884_S117_q75`, `UHM1102.20885_S129_q75`, `UHM1104.20886_S141_q75`, `UHM1105.20887_S153_q75`, `UHM1109.20627_S97_q75`, `UHM1110.20664_S161_q75`, `UHM1113.20888_S165_q75`, `UHM1114.20889_S177_q75`, `UHM1115.20890_S189_q75`, `UHM1117.20891_S106_q75`, `UHM1118.20892_S118_q75`, `UHM1120.20893_S130_q75`, `UHM1124.20894_S142_q75`, `UHM1126.20895_S154_q75`, `UHM1128.20896_S166_q75`, `UHM1140.20651_S100_q75`, `UHM1145.20897_S178_q75`, `UHM1163.20501_S129_q75`, `UHM1164.20498_S188_q75`, `UHM1169.20648_S159_q75`, `UHM1171.20675_S103_q75`, `UHM1176.20500_S117_q75`, `UHM1177.20642_S182_q75`, `UHM1182.20672_S162_q75`, `UHM1210.20898_S190_q75`, `UHM1212.20899_S107_q75`, `UHM1217.20900_S119_q75`, `UHM1218.20901_S131_q75`, `UHM1219.20902_S143_q75`, `UHM1220.20903_S155_q75`, `UHM1221.20904_S167_q75`, `UHM1222.20905_S179_q75`, `UHM1223.20906_S191_q75`, `UHM1225.20907_S108_q75`, `UHM1227.20908_S120_q75`, `UHM1228.20909_S132_q75`, `UHM1237.20910_S144_q75`, `UHM1240.20662_S137_q75`, `UHM1246.20911_S156_q75`, `UHM1247.20912_S168_q75`, `UHM1248.20671_S150_q75`, `UHM1256.20666_S185_q75`, `UHM1260.20692_S117_q75`, `UHM1270.20673_S174_q75`, `UHM1271.20493_S128_q75`, `UHM1272.20494_S140_q75`, `UHM1274.20650_S183_q75`, `UHM1275.20693_S129_q75`, `UHM1282.20695_S153_q75`, `UHM1287.20639_S146_q75`, `UHM1291.20512_S166_q75`, `UHM1296.20646_S135_q75`, `UHM1319.20657_S172_q75`, `UHM1324.20509_S130_q75`, `UHM1327.20641_S170_q75`, `UHM1328.20668_S114_q75`, `UHM1334.20513_S178_q75`, `UHM1338.20495_S152_q75`, `UHM1341.20698_S189_q75`, `UHM1356.20637_S122_q75`, `UHM1380.20676_S115_q75`, `UHM1383.20690_S188_q75`, `UHM1385.20659_S101_q75`, `UHM1399.20852_S113_q75`, `UHM1400.20853_S125_q75`, `UHM1401.20854_S137_q75`, `UHM1402.20855_S149_q75`, `UHM1403.20856_S161_q75`, `UHM1405.20857_S173_q75`, `UHM1406.20858_S185_q75`, `UHM1414.20859_S102_q75`, `UHM1419.20860_S114_q75`, `UHM1427.20485_S127_q75`, `UHM1428.20486_S139_q75`, `UHM1429.20487_S151_q75`, `UHM1430.20488_S163_q75`, `UHM1432.20489_S175_q75`, `UHM1435.20484_S115_q75`, `UHM162.20656_S160_q75`, `UHM198.20681_S175_q75`, `UHM200.20670_S138_q75`, `UHM203.20685_S128_q75`, `UHM204.20505_S177_q75`, `UHM206.20506_S189_q75`, `UHM207.20689_S176_q75`, `UHM208.20507_S106_q75`, `UHM211.20502_S141_q75`, `UHM215.20504_S165_q75`, `UHM216.20525_S132_q75`, `UHM219.20526_S144_q75`, `UHM236.20527_S156_q75`, `UHM238.20503_S153_q75`, `UHM245.20634_S181_q75`, `UHM252.20654_S136_q75`, `UHM267.20496_S164_q75`, `UHM274.20677_S127_q75`, `UHM276.20682_S187_q75`, `UHM280.20497_S176_q75`, `UHM286.20521_S179_q75`, `UHM289.20522_S191_q75`, `UHM294.20523_S108_q75`, `UHM298.20696_S165_q75`, `UHM325.20644_S111_q75`, `UHM337.20508_S118_q75`, `UHM354.20631_S145_q75`, `UHM356.20511_S154_q75`, `UHM369.20869_S127_q75`, `UHM370.20870_S139_q75`, `UHM372.20871_S151_q75`, `UHM373.20872_S163_q75`, `UHM374.20873_S175_q75`, `UHM375.20874_S187_q75`, `UHM377.20875_S104_q75`, `UHM382.20876_S116_q75`, `UHM386.20877_S128_q75`, `UHM387.20878_S140_q75`, `UHM414.20679_S151_q75`, `UHM418.20861_S126_q75`, `UHM422.20862_S138_q75`, `UHM425.20863_S150_q75`, `UHM426.20630_S133_q75`, `UHM428.20640_S158_q75`, `UHM429.20655_S148_q75`, `UHM435.20643_S99_q75`, `UHM437.20864_S162_q75`, `UHM439.20660_S113_q75`, `UHM443.20524_S120_q75`, `UHM445.20665_S173_q75`, `UHM447.20879_S152_q75`, `UHM448.20865_S174_q75`, `UHM452.20880_S164_q75`, `UHM454.20866_S186_q75`, `UHM455.20881_S176_q75`, `UHM458.20882_S188_q75`, `UHM459.20883_S105_q75`, `UHM461.20867_S103_q75`, `UHM467.20868_S115_q75`, `UHM470.20629_S121_q75`, `UHM476.20510_S142_q75`, `UHM478.20645_S123_q75`, `UHM479.20647_S147_q75`, `UHM481.20499_S105_q75`, `UHM482.20686_S140_q75`, `UHM483.20699_S106_q75`, `UHM519.20678_S139_q75`, `UHM520.20669_S126_q75`, `UHM836.20481_S174_q75`, `UHM837.20482_S186_q75`, `UHM838.20483_S103_q75`, `UHM891.20480_S162_q75`, `UHM892.20628_S109_q75`, `UHM893.20691_S105_q75`, `UHM894.20636_S110_q75`, `UHM895.20632_S157_q75`, `UHM896.20697_S177_q75`, `UHM897.20687_S152_q75`, `UHM898.20490_S187_q75`, `UHM899.20684_S116_q75`, `UHM900.20491_S104_q75`, `UHM901.20638_S134_q75`, `UHM902.20680_S163_q75`, `UHM903.20683_S104_q75`, `UHM904.20663_S149_q75`, `UHM905.20694_S141_q75`, `UHM906.20661_S125_q75`, `UHM907.20688_S164_q75`, `UHM908.20492_S116_q75`, `UHM909.20653_S124_q75`, `UHM910.20658_S184_q75`, `UHM965.20633_S169_q75`, `UHM966.20839_S147_q75`, `UHM967.20840_S159_q75`, `UHM968.20667_S102_q75`, `UHM969.20841_S171_q75`, `UHM971.20842_S183_q75`, `UHM973.20674_S186_q75`, `UHM974.20528_S168_q75`, `UHM975.20843_S100_q75`, `UHM977.20844_S112_q75`, `UHM978.20845_S124_q75`, `UHM979.20846_S136_q75`, `UHM980.20827_S98_q75`, `UHM981.20635_S98_q75`, `UHM982.20836_S111_q75`, `UHM983.20652_S112_q75`, `UHM984.20847_S148_q75`, `UHM985.20848_S160_q75`, `UHM988.20849_S172_q75`, `UHM989.20850_S184_q75`, `UHM991.20851_S101_q75`, `UHM993.20837_S123_q75`, `UHM996.20706_S190_q75`, `UHM997.20649_S171_q75`, `UHM998.20714_S191_q75`, `UHM999.20713_S179_q75`
#> header has 1 row(s)
#> body has 1 row(s)
#> original dataset sample:
#> spiked.blank.20529_S180_mean spiked.blank.20913_S180_mean
#> 1 0.06339572 0.06533468
#> Std2uL.20721_S180_mean StdSwab1uL.20720_S168_mean STP1719.20518_S143_mean
#> 1 0.0629742 0.03641882 0.1014163
#> STP213.20519_S155_mean STP268.20520_S167_mean STP544.20515_S107_mean
#> 1 0.5571573 1.997049 0.07368066
#> STP570.20516_S119_mean STP579.20517_S131_mean STP614.20514_S190_mean
#> 1 0.1730737 0.07730568 1.322627
#> UHM1000.20700_S118_mean UHM1001.20705_S178_mean UHM1007.20718_S144_mean
#> 1 5.905665 0.2322543 2.600826
#> UHM1009.20710_S143_mean UHM1010.20717_S132_mean UHM1011.20702_S142_mean
#> 1 0.5016861 0.1240094 0.1852976
#> UHM1024.20716_S120_mean UHM1026.20703_S154_mean UHM1028.20709_S131_mean
#> 1 0.06457596 0.174844 0.6007419
#> UHM1032.20701_S130_mean UHM1033.20715_S108_mean UHM1034.20712_S167_mean
#> 1 0.1490474 0.04265722 3.595178
#> UHM1035.20707_S107_mean UHM1036.20708_S119_mean UHM1052.20711_S155_mean
#> 1 0.1572248 0.716321 0.2679987
#> UHM1060.20819_S97_mean UHM1065.20820_S109_mean UHM1068.20828_S110_mean
#> 1 0.1106896 0.1276345 0.4419154
#> UHM1069.20838_S135_mean UHM1070.20821_S121_mean UHM1071.20829_S122_mean
#> 1 0.4006913 0.1433148 0.6381723
#> UHM1072.20830_S134_mean UHM1073.20831_S146_mean UHM1075.20822_S133_mean
#> 1 0.1969314 5.171978 0.6046198
#> UHM1077.20832_S158_mean UHM1078.20823_S145_mean UHM1080.20833_S170_mean
#> 1 0.1395212 1.251644 0.9415781
#> UHM1081.20824_S157_mean UHM1088.20834_S182_mean UHM1090.20835_S99_mean
#> 1 2.869668 0.7102512 0.2729725
#> UHM1093.20825_S169_mean UHM1095.20826_S181_mean UHM1097.20719_S156_mean
#> 1 0.7830889 0.3325746 0.07030855
#> UHM1099.20704_S166_mean UHM1100.20884_S117_mean UHM1102.20885_S129_mean
#> 1 0.1063902 20.413 6.947311
#> UHM1104.20886_S141_mean UHM1105.20887_S153_mean UHM1109.20627_S97_mean
#> 1 1.515512 2.984404 0.885011
#> UHM1110.20664_S161_mean UHM1113.20888_S165_mean UHM1114.20889_S177_mean
#> 1 125.6893 1.42809 1.227449
#> UHM1115.20890_S189_mean UHM1117.20891_S106_mean UHM1118.20892_S118_mean
#> 1 13.43222 14.44099 2.121143
#> UHM1120.20893_S130_mean UHM1124.20894_S142_mean UHM1126.20895_S154_mean
#> 1 3.313691 2.836031 4.92438
#> UHM1128.20896_S166_mean UHM1140.20651_S100_mean UHM1145.20897_S178_mean
#> 1 51.5032 3.412831 5.742876
#> UHM1163.20501_S129_mean UHM1164.20498_S188_mean UHM1169.20648_S159_mean
#> 1 1.240516 0.2037599 0.1800708
#> UHM1171.20675_S103_mean UHM1176.20500_S117_mean UHM1177.20642_S182_mean
#> 1 27.05201 2.594503 0.1380037
#> UHM1182.20672_S162_mean UHM1210.20898_S190_mean UHM1212.20899_S107_mean
#> 1 3.562131 5.773731 1.677036
#> UHM1217.20900_S119_mean UHM1218.20901_S131_mean UHM1219.20902_S143_mean
#> 1 1.293795 2.708649 16.98879
#> UHM1220.20903_S155_mean UHM1221.20904_S167_mean UHM1222.20905_S179_mean
#> 1 6.901956 2.450683 0.2677457
#> UHM1223.20906_S191_mean UHM1225.20907_S108_mean UHM1227.20908_S120_mean
#> 1 7.764879 4.842438 2.391249
#> UHM1228.20909_S132_mean UHM1237.20910_S144_mean UHM1240.20662_S137_mean
#> 1 9.221632 2.196678 0.2035913
#> UHM1246.20911_S156_mean UHM1247.20912_S168_mean UHM1248.20671_S150_mean
#> 1 0.9382903 2.550919 0.09256449
#> UHM1256.20666_S185_mean UHM1260.20692_S117_mean UHM1270.20673_S174_mean
#> 1 0.4490811 1.792362 0.2389985
#> UHM1271.20493_S128_mean UHM1272.20494_S140_mean UHM1274.20650_S183_mean
#> 1 1.124009 0.4468892 0.6890912
#> UHM1275.20693_S129_mean UHM1282.20695_S153_mean UHM1287.20639_S146_mean
#> 1 3.120637 3.156045 0.6135559
#> UHM1291.20512_S166_mean UHM1296.20646_S135_mean UHM1319.20657_S172_mean
#> 1 1.185972 16.92497 4.285702
#> UHM1324.20509_S130_mean UHM1327.20641_S170_mean UHM1328.20668_S114_mean
#> 1 0.5759568 42.77854 0.06710504
#> UHM1334.20513_S178_mean UHM1338.20495_S152_mean UHM1341.20698_S189_mean
#> 1 1.64812 0.2091553 0.06769516
#> UHM1356.20637_S122_mean UHM1380.20676_S115_mean UHM1383.20690_S188_mean
#> 1 0.09113134 7.024954 3.608245
#> UHM1385.20659_S101_mean UHM1399.20852_S113_mean UHM1400.20853_S125_mean
#> 1 0.1153263 0.3829034 0.1930534
#> UHM1401.20854_S137_mean UHM1402.20855_S149_mean UHM1403.20856_S161_mean
#> 1 0.2014837 0.001686056 0.3522172
#> UHM1405.20857_S173_mean UHM1406.20858_S185_mean UHM1414.20859_S102_mean
#> 1 1.180408 0.1734952 3.018041
#> UHM1419.20860_S114_mean UHM1427.20485_S127_mean UHM1428.20486_S139_mean
#> 1 0.5883494 0.1264542 44.70722
#> UHM1429.20487_S151_mean UHM1430.20488_S163_mean UHM1432.20489_S175_mean
#> 1 19.70637 14.34463 12.30568
#> UHM1435.20484_S115_mean UHM162.20656_S160_mean UHM198.20681_S175_mean
#> 1 3.182937 1.424718 1.483982
#> UHM200.20670_S138_mean UHM203.20685_S128_mean UHM204.20505_S177_mean
#> 1 3.086326 1.723993 0.3915023
#> UHM206.20506_S189_mean UHM207.20689_S176_mean UHM208.20507_S106_mean
#> 1 0.1339572 3.116759 1.065588
#> UHM211.20502_S141_mean UHM215.20504_S165_mean UHM216.20525_S132_mean
#> 1 0.1450851 0.2771877 0.1197943
#> UHM219.20526_S144_mean UHM236.20527_S156_mean UHM238.20503_S153_mean
#> 1 0.0629742 0.09720115 0.2713708
#> UHM245.20634_S181_mean UHM252.20654_S136_mean UHM267.20496_S164_mean
#> 1 0.4771539 2.573681 1.194908
#> UHM274.20677_S127_mean UHM276.20682_S187_mean UHM280.20497_S176_mean
#> 1 0.8753161 0.6560445 0.379447
#> UHM286.20521_S179_mean UHM289.20522_S191_mean UHM294.20523_S108_mean
#> 1 1.536925 0.4086157 0.3598044
#> UHM298.20696_S165_mean UHM325.20644_S111_mean UHM337.20508_S118_mean
#> 1 14.45212 3.652672 0.4859214
#> UHM354.20631_S145_mean UHM356.20511_S154_mean UHM369.20869_S127_mean
#> 1 0.1056314 0.3179902 0
#> UHM370.20870_S139_mean UHM372.20871_S151_mean UHM373.20872_S163_mean
#> 1 2.854072 1.383241 3.346147
#> UHM374.20873_S175_mean UHM375.20874_S187_mean UHM377.20875_S104_mean
#> 1 14.54401 1.130585 2.368403
#> UHM382.20876_S116_mean UHM386.20877_S128_mean UHM387.20878_S140_mean
#> 1 18.54257 6.394369 7.392092
#> UHM414.20679_S151_mean UHM418.20861_S126_mean UHM422.20862_S138_mean
#> 1 13.20123 5.422357 0.2735626
#> UHM425.20863_S150_mean UHM426.20630_S133_mean UHM428.20640_S158_mean
#> 1 2.641797 0.1076547 12.1294
#> UHM429.20655_S148_mean UHM435.20643_S99_mean UHM437.20864_S162_mean
#> 1 0.1997977 0.5454392 3.985669
#> UHM439.20660_S113_mean UHM443.20524_S120_mean UHM445.20665_S173_mean
#> 1 3.094588 1.302647 134.5565
#> UHM447.20879_S152_mean UHM448.20865_S174_mean UHM452.20880_S164_mean
#> 1 26.25131 0.6271286 1.370258
#> UHM454.20866_S186_mean UHM455.20881_S176_mean UHM458.20882_S188_mean
#> 1 2.675181 3.07191 17.72762
#> UHM459.20883_S105_mean UHM461.20867_S103_mean UHM467.20868_S115_mean
#> 1 11.12789 0.5046367 4.456753
#> UHM470.20629_S121_mean UHM476.20510_S142_mean UHM478.20645_S123_mean
#> 1 1.755016 0.8051762 0.1305851
#> UHM479.20647_S147_mean UHM481.20499_S105_mean UHM482.20686_S140_mean
#> 1 0.06702074 0.1553701 0.08303827
#> UHM483.20699_S106_mean UHM519.20678_S139_mean UHM520.20669_S126_mean
#> 1 15.94369 1.503372 52.4871
#> UHM836.20481_S174_mean UHM837.20482_S186_mean UHM838.20483_S103_mean
#> 1 0.2128646 0.06870679 34.07747
#> UHM891.20480_S162_mean UHM892.20628_S109_mean UHM893.20691_S105_mean
#> 1 16.27457 6.28115 89.09509
#> UHM894.20636_S110_mean UHM895.20632_S157_mean UHM896.20697_S177_mean
#> 1 34.33949 3.915191 47.02816
#> UHM897.20687_S152_mean UHM898.20490_S187_mean UHM899.20684_S116_mean
#> 1 16.51222 7.331141 2.261929
#> UHM900.20491_S104_mean UHM901.20638_S134_mean UHM902.20680_S163_mean
#> 1 35.91544 5.474962 1.348676
#> UHM903.20683_S104_mean UHM904.20663_S149_mean UHM905.20694_S141_mean
#> 1 0.5947564 7.609425 15.95802
#> UHM906.20661_S125_mean UHM907.20688_S164_mean UHM908.20492_S116_mean
#> 1 62.22728 0.4893778 1.041393
#> UHM909.20653_S124_mean UHM910.20658_S184_mean UHM965.20633_S169_mean
#> 1 0.1546957 2.278284 0.472433
#> UHM966.20839_S147_mean UHM967.20840_S159_mean UHM968.20667_S102_mean
#> 1 0.1901028 3.151745 0.06339572
#> UHM969.20841_S171_mean UHM971.20842_S183_mean UHM973.20674_S186_mean
#> 1 13.09695 4.165992 0.3769179
#> UHM974.20528_S168_mean UHM975.20843_S100_mean UHM977.20844_S112_mean
#> 1 0.06373293 3.938459 1.206879
#> UHM978.20845_S124_mean UHM979.20846_S136_mean UHM980.20827_S98_mean
#> 1 21.44613 2.467628 0.1012477
#> UHM981.20635_S98_mean UHM982.20836_S111_mean UHM983.20652_S112_mean
#> 1 0.3614905 10.26353 1.448407
#> UHM984.20847_S148_mean UHM985.20848_S160_mean UHM988.20849_S172_mean
#> 1 17.59105 1.269095 0.2959029
#> UHM989.20850_S184_mean UHM991.20851_S101_mean UHM993.20837_S123_mean
#> 1 8.744141 0.3743045 5.685298
#> UHM996.20706_S190_mean UHM997.20649_S171_mean UHM998.20714_S191_mean
#> 1 0.05791603 0.6737481 0.04375316
#> UHM999.20713_S179_mean spiked.blank.20529_S180_sd spiked.blank.20913_S180_sd
#> 1 1.663126 6.730747 6.731323
#> Std2uL.20721_S180_sd StdSwab1uL.20720_S168_sd STP1719.20518_S143_sd
#> 1 6.730294 3.362462 7.032828
#> STP213.20519_S155_sd STP268.20520_S167_sd STP544.20515_S107_sd
#> 1 21.25952 111.2298 6.826067
#> STP570.20516_S119_sd STP579.20517_S131_sd STP614.20514_S190_sd
#> 1 12.37194 6.779944 68.62498
#> UHM1000.20700_S118_sd UHM1001.20705_S178_sd UHM1007.20718_S144_sd
#> 1 463.9677 5.165837 139.2696
#> UHM1009.20710_S143_sd UHM1010.20717_S132_sd UHM1011.20702_S142_sd
#> 1 11.3496 4.27458 8.031022
#> UHM1024.20716_S120_sd UHM1026.20703_S154_sd UHM1028.20709_S131_sd
#> 1 3.724952 7.034125 32.60988
#> UHM1032.20701_S130_sd UHM1033.20715_S108_sd UHM1034.20712_S167_sd
#> 1 6.534626 3.395946 313.9442
#> UHM1035.20707_S107_sd UHM1036.20708_S119_sd UHM1052.20711_S155_sd
#> 1 4.899872 44.85895 13.91078
#> UHM1060.20819_S97_sd UHM1065.20820_S109_sd UHM1068.20828_S110_sd
#> 1 8.119895 7.622605 17.25905
#> UHM1069.20838_S135_sd UHM1070.20821_S121_sd UHM1071.20829_S122_sd
#> 1 14.51376 7.104436 29.52187
#> UHM1072.20830_S134_sd UHM1073.20831_S146_sd UHM1075.20822_S133_sd
#> 1 8.023162 310.8534 29.14569
#> UHM1077.20832_S158_sd UHM1078.20823_S145_sd UHM1080.20833_S170_sd
#> 1 7.484093 49.55108 58.6769
#> UHM1081.20824_S157_sd UHM1088.20834_S182_sd UHM1090.20835_S99_sd
#> 1 300.8063 42.45345 10.55826
#> UHM1093.20825_S169_sd UHM1095.20826_S181_sd UHM1097.20719_S156_sd
#> 1 42.59723 17.3579 3.437144
#> UHM1099.20704_S166_sd UHM1100.20884_S117_sd UHM1102.20885_S129_sd
#> 1 4.582178 1654.794 535.1107
#> UHM1104.20886_S141_sd UHM1105.20887_S153_sd UHM1109.20627_S97_sd
#> 1 49.32604 102.4097 87.97013
#> UHM1110.20664_S161_sd UHM1113.20888_S165_sd UHM1114.20889_S177_sd
#> 1 9193.749 71.44446 46.36277
#> UHM1115.20890_S189_sd UHM1117.20891_S106_sd UHM1118.20892_S118_sd
#> 1 1227.489 930.9339 94.68336
#> UHM1120.20893_S130_sd UHM1124.20894_S142_sd UHM1126.20895_S154_sd
#> 1 265.6671 105.2451 314.0743
#> UHM1128.20896_S166_sd UHM1140.20651_S100_sd UHM1145.20897_S178_sd
#> 1 5350.697 247.4484 537.039
#> UHM1163.20501_S129_sd UHM1164.20498_S188_sd UHM1169.20648_S159_sd
#> 1 51.87968 12.45238 12.86593
#> UHM1171.20675_S103_sd UHM1176.20500_S117_sd UHM1177.20642_S182_sd
#> 1 1363.682 83.02637 7.388534
#> UHM1182.20672_S162_sd UHM1210.20898_S190_sd UHM1212.20899_S107_sd
#> 1 297.1795 439.591 107.1386
#> UHM1217.20900_S119_sd UHM1218.20901_S131_sd UHM1219.20902_S143_sd
#> 1 95.23007 145.438 1209.727
#> UHM1220.20903_S155_sd UHM1221.20904_S167_sd UHM1222.20905_S179_sd
#> 1 575.6849 192.1637 13.76585
#> UHM1223.20906_S191_sd UHM1225.20907_S108_sd UHM1227.20908_S120_sd
#> 1 606.4634 420.8719 173.9378
#> UHM1228.20909_S132_sd UHM1237.20910_S144_sd UHM1240.20662_S137_sd
#> 1 684.4317 160.8829 10.96837
#> UHM1246.20911_S156_sd UHM1247.20912_S168_sd UHM1248.20671_S150_sd
#> 1 69.08158 216.7753 6.926635
#> UHM1256.20666_S185_sd UHM1260.20692_S117_sd UHM1270.20673_S174_sd
#> 1 24.68824 141.6744 11.79198
#> UHM1271.20493_S128_sd UHM1272.20494_S140_sd UHM1274.20650_S183_sd
#> 1 84.53201 27.15906 45.26783
#> UHM1275.20693_S129_sd UHM1282.20695_S153_sd UHM1287.20639_S146_sd
#> 1 238.9181 284.1955 38.11322
#> UHM1291.20512_S166_sd UHM1296.20646_S135_sd UHM1319.20657_S172_sd
#> 1 96.53267 1123.16 313.5749
#> UHM1324.20509_S130_sd UHM1327.20641_S170_sd UHM1328.20668_S114_sd
#> 1 41.42332 4076.875 6.732564
#> UHM1334.20513_S178_sd UHM1338.20495_S152_sd UHM1341.20698_S189_sd
#> 1 163.4727 9.969518 6.73274
#> UHM1356.20637_S122_sd UHM1380.20676_S115_sd UHM1383.20690_S188_sd
#> 1 6.809267 462.788 274.2218
#> UHM1385.20659_S101_sd UHM1399.20852_S113_sd UHM1400.20853_S125_sd
#> 1 7.224829 17.55122 10.89397
#> UHM1401.20854_S137_sd UHM1402.20855_S149_sd UHM1403.20856_S161_sd
#> 1 14.2473 0.1836331 18.7312
#> UHM1405.20857_S173_sd UHM1406.20858_S185_sd UHM1414.20859_S102_sd
#> 1 96.03448 12.17151 254.4422
#> UHM1419.20860_S114_sd UHM1427.20485_S127_sd UHM1428.20486_S139_sd
#> 1 28.97593 8.515484 2237.697
#> UHM1429.20487_S151_sd UHM1430.20488_S163_sd UHM1432.20489_S175_sd
#> 1 1572.78 641.2063 661.0352
#> UHM1435.20484_S115_sd UHM162.20656_S160_sd UHM198.20681_S175_sd
#> 1 202.4216 85.05189 112.2029
#> UHM200.20670_S138_sd UHM203.20685_S128_sd UHM204.20505_S177_sd
#> 1 191.5178 114.2623 28.92776
#> UHM206.20506_S189_sd UHM207.20689_S176_sd UHM208.20507_S106_sd
#> 1 7.426781 153.3912 72.719
#> UHM211.20502_S141_sd UHM215.20504_S165_sd UHM216.20525_S132_sd
#> 1 7.095001 11.29853 6.856084
#> UHM219.20526_S144_sd UHM236.20527_S156_sd UHM238.20503_S153_sd
#> 1 6.730369 6.918625 14.4799
#> UHM245.20634_S181_sd UHM252.20654_S136_sd UHM267.20496_S164_sd
#> 1 28.40031 158.3913 51.0037
#> UHM274.20677_S127_sd UHM276.20682_S187_sd UHM280.20497_S176_sd
#> 1 61.12939 25.48116 18.06162
#> UHM286.20521_S179_sd UHM289.20522_S191_sd UHM294.20523_S108_sd
#> 1 151.5534 24.91676 16.09427
#> UHM298.20696_S165_sd UHM325.20644_S111_sd UHM337.20508_S118_sd
#> 1 1221.994 275.9052 25.51102
#> UHM354.20631_S145_sd UHM356.20511_S154_sd UHM369.20869_S127_sd
#> 1 7.416083 20.85372 0
#> UHM370.20870_S139_sd UHM372.20871_S151_sd UHM373.20872_S163_sd
#> 1 186.2664 90.27269 317.6432
#> UHM374.20873_S175_sd UHM375.20874_S187_sd UHM377.20875_S104_sd
#> 1 1004.419 84.91197 164.8947
#> UHM382.20876_S116_sd UHM386.20877_S128_sd UHM387.20878_S140_sd
#> 1 1426.459 615.1558 461.3813
#> UHM414.20679_S151_sd UHM418.20861_S126_sd UHM422.20862_S138_sd
#> 1 992.004 330.142 14.62342
#> UHM425.20863_S150_sd UHM426.20630_S133_sd UHM428.20640_S158_sd
#> 1 159.3581 7.249789 800.4038
#> UHM429.20655_S148_sd UHM435.20643_S99_sd UHM437.20864_S162_sd
#> 1 11.42767 30.93387 297.9874
#> UHM439.20660_S113_sd UHM443.20524_S120_sd UHM445.20665_S173_sd
#> 1 254.8257 61.08636 4796.936
#> UHM447.20879_S152_sd UHM448.20865_S174_sd UHM452.20880_S164_sd
#> 1 1986.24 52.10842 104.6164
#> UHM454.20866_S186_sd UHM455.20881_S176_sd UHM458.20882_S188_sd
#> 1 146.6321 207.7634 1344.188
#> UHM459.20883_S105_sd UHM461.20867_S103_sd UHM467.20868_S115_sd
#> 1 694.6036 39.92127 371.3097
#> UHM470.20629_S121_sd UHM476.20510_S142_sd UHM478.20645_S123_sd
#> 1 121.7511 52.05833 9.908419
#> UHM479.20647_S147_sd UHM481.20499_S105_sd UHM482.20686_S140_sd
#> 1 6.732509 7.56535 6.77745
#> UHM483.20699_S106_sd UHM519.20678_S139_sd UHM520.20669_S126_sd
#> 1 981.3737 55.69854 5470.864
#> UHM836.20481_S174_sd UHM837.20482_S186_sd UHM838.20483_S103_sd
#> 1 12.22542 6.74099 2148.269
#> UHM891.20480_S162_sd UHM892.20628_S109_sd UHM893.20691_S105_sd
#> 1 1681.282 359.5898 7022.485
#> UHM894.20636_S110_sd UHM895.20632_S157_sd UHM896.20697_S177_sd
#> 1 2681.619 170.8953 2325.908
#> UHM897.20687_S152_sd UHM898.20490_S187_sd UHM899.20684_S116_sd
#> 1 1000.358 537.9758 141.0076
#> UHM900.20491_S104_sd UHM901.20638_S134_sd UHM902.20680_S163_sd
#> 1 2566.026 291.9347 98.32261
#> UHM903.20683_S104_sd UHM904.20663_S149_sd UHM905.20694_S141_sd
#> 1 50.92155 491.9152 1071.835
#> UHM906.20661_S125_sd UHM907.20688_S164_sd UHM908.20492_S116_sd
#> 1 3285.998 28.04827 72.51777
#> UHM909.20653_S124_sd UHM910.20658_S184_sd UHM965.20633_S169_sd
#> 1 12.11342 192.7355 12.22066
#> UHM966.20839_S147_sd UHM967.20840_S159_sd UHM968.20667_S102_sd
#> 1 8.88396 176.9531 6.730496
#> UHM969.20841_S171_sd UHM971.20842_S183_sd UHM973.20674_S186_sd
#> 1 1143.512 357.4598 24.11147
#> UHM974.20528_S168_sd UHM975.20843_S100_sd UHM977.20844_S112_sd
#> 1 6.73038 190.6032 55.62855
#> UHM978.20845_S124_sd UHM979.20846_S136_sd UHM980.20827_S98_sd
#> 1 2232.539 139.6204 6.841438
#> UHM981.20635_S98_sd UHM982.20836_S111_sd UHM983.20652_S112_sd
#> 1 30.50647 616.0094 88.60566
#> UHM984.20847_S148_sd UHM985.20848_S160_sd UHM988.20849_S172_sd
#> 1 1215.089 85.5511 14.13106
#> UHM989.20850_S184_sd UHM991.20851_S101_sd UHM993.20837_S123_sd
#> 1 765.6343 19.75852 240.3693
#> UHM996.20706_S190_sd UHM997.20649_S171_sd UHM998.20714_S191_sd
#> 1 3.404387 22.90439 3.374427
#> UHM999.20713_S179_sd spiked.blank.20529_S180_se spiked.blank.20913_S180_se
#> 1 43.45621 0.06179941 0.0618047
#> Std2uL.20721_S180_se StdSwab1uL.20720_S168_se STP1719.20518_S143_se
#> 1 0.06179524 0.03087297 0.06457301
#> STP213.20519_S155_se STP268.20520_S167_se STP544.20515_S107_se
#> 1 0.1951976 1.021274 0.0626746
#> STP570.20516_S119_se STP579.20517_S131_se STP614.20514_S190_se
#> 1 0.1135949 0.06225111 0.630091
#> UHM1000.20700_S118_se UHM1001.20705_S178_se UHM1007.20718_S144_se
#> 1 4.259992 0.04743094 1.278725
#> UHM1009.20710_S143_se UHM1010.20717_S132_se UHM1011.20702_S142_se
#> 1 0.1042081 0.03924772 0.07373809
#> UHM1024.20716_S120_se UHM1026.20703_S154_se UHM1028.20709_S131_se
#> 1 0.03420123 0.06458492 0.2994127
#> UHM1032.20701_S130_se UHM1033.20715_S108_se UHM1034.20712_S167_se
#> 1 0.05999869 0.03118041 2.882528
#> UHM1035.20707_S107_se UHM1036.20708_S119_se UHM1052.20711_S155_se
#> 1 0.04498894 0.4118795 0.127724
#> UHM1060.20819_S97_se UHM1065.20820_S109_se UHM1068.20828_S110_se
#> 1 0.07455409 0.06998814 0.1584666
#> UHM1069.20838_S135_se UHM1070.20821_S121_se UHM1071.20829_S122_se
#> 1 0.1332604 0.06523049 0.2710597
#> UHM1072.20830_S134_se UHM1073.20831_S146_se UHM1075.20822_S133_se
#> 1 0.07366592 2.854149 0.2676057
#> UHM1077.20832_S158_se UHM1078.20823_S145_se UHM1080.20833_S170_se
#> 1 0.06871637 0.454961 0.5387511
#> UHM1081.20824_S157_se UHM1088.20834_S182_se UHM1090.20835_S99_se
#> 1 2.761901 0.389793 0.09694229
#> UHM1093.20825_S169_se UHM1095.20826_S181_se UHM1097.20719_S156_se
#> 1 0.3911131 0.1593743 0.03155868
#> UHM1099.20704_S166_se UHM1100.20884_S117_se UHM1102.20885_S129_se
#> 1 0.04207198 15.19375 4.913202
#> UHM1104.20886_S141_se UHM1105.20887_S153_se UHM1109.20627_S97_se
#> 1 0.4528948 0.940291 0.8077115
#> UHM1110.20664_S161_se UHM1113.20888_S165_se UHM1114.20889_S177_se
#> 1 84.41385 0.6559785 0.425687
#> UHM1115.20890_S189_se UHM1117.20891_S106_se UHM1118.20892_S118_se
#> 1 11.27038 8.547515 0.8693501
#> UHM1120.20893_S130_se UHM1124.20894_S142_se UHM1126.20895_S154_se
#> 1 2.439264 0.9663243 2.883722
#> UHM1128.20896_S166_se UHM1140.20651_S100_se UHM1145.20897_S178_se
#> 1 49.12826 2.271986 4.930907
#> UHM1163.20501_S129_se UHM1164.20498_S188_se UHM1169.20648_S159_se
#> 1 0.4763414 0.1143334 0.1181305
#> UHM1171.20675_S103_se UHM1176.20500_S117_se UHM1177.20642_S182_se
#> 1 12.52086 0.7623196 0.06783898
#> UHM1182.20672_S162_se UHM1210.20898_S190_se UHM1212.20899_S107_se
#> 1 2.7286 4.036174 0.9837099
#> UHM1217.20900_S119_se UHM1218.20901_S131_se UHM1219.20902_S143_se
#> 1 0.8743698 1.335362 11.10729
#> UHM1220.20903_S155_se UHM1221.20904_S167_se UHM1222.20905_S179_se
#> 1 5.285741 1.764381 0.1263933
#> UHM1223.20906_S191_se UHM1225.20907_S108_se UHM1227.20908_S120_se
#> 1 5.568339 3.864301 1.597037
#> UHM1228.20909_S132_se UHM1237.20910_S144_se UHM1240.20662_S137_se
#> 1 6.284217 1.477172 0.1007078
#> UHM1246.20911_S156_se UHM1247.20912_S168_se UHM1248.20671_S150_se
#> 1 0.6342834 1.990356 0.06359799
#> UHM1256.20666_S185_se UHM1260.20692_S117_se UHM1270.20673_S174_se
#> 1 0.2266789 1.300806 0.1082699
#> UHM1271.20493_S128_se UHM1272.20494_S140_se UHM1274.20650_S183_se
#> 1 0.7761439 0.2493652 0.4156337
#> UHM1275.20693_S129_se UHM1282.20695_S153_se UHM1287.20639_S146_se
#> 1 2.193664 2.609385 0.3499425
#> UHM1291.20512_S166_se UHM1296.20646_S135_se UHM1319.20657_S172_se
#> 1 0.8863299 10.31247 2.879137
#> UHM1324.20509_S130_se UHM1327.20641_S170_se UHM1328.20668_S114_se
#> 1 0.3803347 37.43247 0.06181609
#> UHM1334.20513_S178_se UHM1338.20495_S152_se UHM1341.20698_S189_se
#> 1 1.50095 0.09153669 0.06181771
#> UHM1356.20637_S122_se UHM1380.20676_S115_se UHM1383.20690_S188_se
#> 1 0.06252035 4.24916 2.51781
#> UHM1385.20659_S101_se UHM1399.20852_S113_se UHM1400.20853_S125_se
#> 1 0.06633589 0.1611493 0.1000247
#> UHM1401.20854_S137_se UHM1402.20855_S149_se UHM1403.20856_S161_se
#> 1 0.1308138 0.001686056 0.1719835
#> UHM1405.20857_S173_se UHM1406.20858_S185_se UHM1414.20859_S102_se
#> 1 0.8817556 0.1117547 2.336201
#> UHM1419.20860_S114_se UHM1427.20485_S127_se UHM1428.20486_S139_se
#> 1 0.266047 0.07818625 20.54577
#> UHM1429.20487_S151_se UHM1430.20488_S163_se UHM1432.20489_S175_se
#> 1 14.44072 5.887336 6.069398
#> UHM1435.20484_S115_se UHM162.20656_S160_se UHM198.20681_S175_se
#> 1 1.858566 0.7809172 1.030209
#> UHM200.20670_S138_se UHM203.20685_S128_se UHM204.20505_S177_se
#> 1 1.75845 1.049117 0.2656047
#> UHM206.20506_S189_se UHM207.20689_S176_se UHM208.20507_S106_se
#> 1 0.06819016 1.408385 0.6676809
#> UHM211.20502_S141_se UHM215.20504_S165_se UHM216.20525_S132_se
#> 1 0.06514386 0.1037392 0.0629502
#> UHM219.20526_S144_se UHM236.20527_S156_se UHM238.20503_S153_se
#> 1 0.06179593 0.06352444 0.1329495
#> UHM245.20634_S181_se UHM252.20654_S136_se UHM267.20496_S164_se
#> 1 0.2607619 1.454295 0.4682985
#> UHM274.20677_S127_se UHM276.20682_S187_se UHM280.20497_S176_se
#> 1 0.561269 0.2339592 0.1658356
#> UHM286.20521_S179_se UHM289.20522_S191_se UHM294.20523_S108_se
#> 1 1.391511 0.2287771 0.147772
#> UHM298.20696_S165_se UHM325.20644_S111_se UHM337.20508_S118_se
#> 1 11.21993 2.533267 0.2342334
#> UHM354.20631_S145_se UHM356.20511_S154_se UHM369.20869_S127_se
#> 1 0.06809192 0.1914717 0
#> UHM370.20870_S139_se UHM372.20871_S151_se UHM373.20872_S163_se
#> 1 1.710234 0.8288528 2.916491
#> UHM374.20873_S175_se UHM375.20874_S187_se UHM377.20875_S104_se
#> 1 9.222234 0.7796326 1.514006
#> UHM382.20876_S116_se UHM386.20877_S128_se UHM387.20878_S140_se
#> 1 13.09726 5.648149 4.236245
#> UHM414.20679_S151_se UHM418.20861_S126_se UHM422.20862_S138_se
#> 1 9.10824 3.03125 0.1342672
#> UHM425.20863_S150_se UHM426.20630_S133_se UHM428.20640_S158_se
#> 1 1.463171 0.06656507 7.349032
#> UHM429.20655_S148_se UHM435.20643_S99_se UHM437.20864_S162_se
#> 1 0.104925 0.2840242 2.736018
#> UHM439.20660_S113_se UHM443.20524_S120_se UHM445.20665_S173_se
#> 1 2.339722 0.560874 44.04382
#> UHM447.20879_S152_se UHM448.20865_S174_se UHM452.20880_S164_se
#> 1 18.23697 0.4784416 0.9605517
#> UHM454.20866_S186_se UHM455.20881_S176_se UHM458.20882_S188_se
#> 1 1.346326 1.907612 12.34188
#> UHM459.20883_S105_se UHM461.20867_S103_se UHM467.20868_S115_se
#> 1 6.377612 0.3665434 3.409238
#> UHM470.20629_S121_se UHM476.20510_S142_se UHM478.20645_S123_se
#> 1 1.117876 0.4779817 0.0909757
#> UHM479.20647_S147_se UHM481.20499_S105_se UHM482.20686_S140_se
#> 1 0.06181558 0.06946245 0.06222822
#> UHM483.20699_S106_se UHM519.20678_S139_se UHM520.20669_S126_se
#> 1 9.010636 0.5114049 50.23159
#> UHM836.20481_S174_se UHM837.20482_S186_se UHM838.20483_S103_se
#> 1 0.1122496 0.06189345 19.72467
#> UHM891.20480_S162_se UHM892.20628_S109_se UHM893.20691_S105_se
#> 1 15.43696 3.30163 64.47805
#> UHM894.20636_S110_se UHM895.20632_S157_se UHM896.20697_S177_se
#> 1 24.6217 1.569102 21.35569
#> UHM897.20687_S152_se UHM898.20490_S187_se UHM899.20684_S116_se
#> 1 9.184941 4.939509 1.294683
#> UHM900.20491_S104_se UHM901.20638_S134_se UHM902.20680_S163_se
#> 1 23.56037 2.680444 0.9027645
#> UHM903.20683_S104_se UHM904.20663_S149_se UHM905.20694_S141_se
#> 1 0.4675442 4.516596 9.841217
#> UHM906.20661_S125_se UHM907.20688_S164_se UHM908.20492_S116_se
#> 1 30.1709 0.2575295 0.6658332
#> UHM909.20653_S124_se UHM910.20658_S184_se UHM965.20633_S169_se
#> 1 0.1112213 1.769631 0.1122059
#> UHM966.20839_S147_se UHM967.20840_S159_se UHM968.20667_S102_se
#> 1 0.08156947 1.624723 0.06179711
#> UHM969.20841_S171_se UHM971.20842_S183_se UHM973.20674_S186_se
#> 1 10.49934 3.282073 0.2213832
#> UHM974.20528_S168_se UHM975.20843_S100_se UHM977.20844_S112_se
#> 1 0.06179604 1.750053 0.5107622
#> UHM978.20845_S124_se UHM979.20846_S136_se UHM980.20827_S98_se
#> 1 20.49841 1.281947 0.06281574
#> UHM981.20635_S98_se UHM982.20836_S111_se UHM983.20652_S112_se
#> 1 0.2801 5.655986 0.8135467
#> UHM984.20847_S148_se UHM985.20848_S160_se UHM988.20849_S172_se
#> 1 11.15653 0.7855008 0.1297465
#> UHM989.20850_S184_se UHM991.20851_S101_se UHM993.20837_S123_se
#> 1 7.029791 0.1814159 2.206989
#> UHM996.20706_S190_se UHM997.20649_S171_se UHM998.20714_S191_se
#> 1 0.03125791 0.2103003 0.03098282
#> UHM999.20713_S179_se spiked.blank.20529_S180_q25 spiked.blank.20913_S180_q25
#> 1 0.3989999 0 0
#> Std2uL.20721_S180_q25 StdSwab1uL.20720_S168_q25 STP1719.20518_S143_q25
#> 1 0 0 0
#> STP213.20519_S155_q25 STP268.20520_S167_q25 STP544.20515_S107_q25
#> 1 0 0 0
#> STP570.20516_S119_q25 STP579.20517_S131_q25 STP614.20514_S190_q25
#> 1 0 0 0
#> UHM1000.20700_S118_q25 UHM1001.20705_S178_q25 UHM1007.20718_S144_q25
#> 1 0 0 0
#> UHM1009.20710_S143_q25 UHM1010.20717_S132_q25 UHM1011.20702_S142_q25
#> 1 0 0 0
#> UHM1024.20716_S120_q25 UHM1026.20703_S154_q25 UHM1028.20709_S131_q25
#> 1 0 0 0
#> UHM1032.20701_S130_q25 UHM1033.20715_S108_q25 UHM1034.20712_S167_q25
#> 1 0 0 0
#> UHM1035.20707_S107_q25 UHM1036.20708_S119_q25 UHM1052.20711_S155_q25
#> 1 0 0 0
#> UHM1060.20819_S97_q25 UHM1065.20820_S109_q25 UHM1068.20828_S110_q25
#> 1 0 0 0
#> UHM1069.20838_S135_q25 UHM1070.20821_S121_q25 UHM1071.20829_S122_q25
#> 1 0 0 0
#> UHM1072.20830_S134_q25 UHM1073.20831_S146_q25 UHM1075.20822_S133_q25
#> 1 0 0 0
#> UHM1077.20832_S158_q25 UHM1078.20823_S145_q25 UHM1080.20833_S170_q25
#> 1 0 0 0
#> UHM1081.20824_S157_q25 UHM1088.20834_S182_q25 UHM1090.20835_S99_q25
#> 1 0 0 0
#> UHM1093.20825_S169_q25 UHM1095.20826_S181_q25 UHM1097.20719_S156_q25
#> 1 0 0 0
#> UHM1099.20704_S166_q25 UHM1100.20884_S117_q25 UHM1102.20885_S129_q25
#> 1 0 0 0
#> UHM1104.20886_S141_q25 UHM1105.20887_S153_q25 UHM1109.20627_S97_q25
#> 1 0 0 0
#> UHM1110.20664_S161_q25 UHM1113.20888_S165_q25 UHM1114.20889_S177_q25
#> 1 0 0 0
#> UHM1115.20890_S189_q25 UHM1117.20891_S106_q25 UHM1118.20892_S118_q25
#> 1 0 0 0
#> UHM1120.20893_S130_q25 UHM1124.20894_S142_q25 UHM1126.20895_S154_q25
#> 1 0 0 0
#> UHM1128.20896_S166_q25 UHM1140.20651_S100_q25 UHM1145.20897_S178_q25
#> 1 0 0 0
#> UHM1163.20501_S129_q25 UHM1164.20498_S188_q25 UHM1169.20648_S159_q25
#> 1 0 0 0
#> UHM1171.20675_S103_q25 UHM1176.20500_S117_q25 UHM1177.20642_S182_q25
#> 1 0 0 0
#> UHM1182.20672_S162_q25 UHM1210.20898_S190_q25 UHM1212.20899_S107_q25
#> 1 0 0 0
#> UHM1217.20900_S119_q25 UHM1218.20901_S131_q25 UHM1219.20902_S143_q25
#> 1 0 0 0
#> UHM1220.20903_S155_q25 UHM1221.20904_S167_q25 UHM1222.20905_S179_q25
#> 1 0 0 0
#> UHM1223.20906_S191_q25 UHM1225.20907_S108_q25 UHM1227.20908_S120_q25
#> 1 0 0 0
#> UHM1228.20909_S132_q25 UHM1237.20910_S144_q25 UHM1240.20662_S137_q25
#> 1 0 0 0
#> UHM1246.20911_S156_q25 UHM1247.20912_S168_q25 UHM1248.20671_S150_q25
#> 1 0 0 0
#> UHM1256.20666_S185_q25 UHM1260.20692_S117_q25 UHM1270.20673_S174_q25
#> 1 0 0 0
#> UHM1271.20493_S128_q25 UHM1272.20494_S140_q25 UHM1274.20650_S183_q25
#> 1 0 0 0
#> UHM1275.20693_S129_q25 UHM1282.20695_S153_q25 UHM1287.20639_S146_q25
#> 1 0 0 0
#> UHM1291.20512_S166_q25 UHM1296.20646_S135_q25 UHM1319.20657_S172_q25
#> 1 0 0 0
#> UHM1324.20509_S130_q25 UHM1327.20641_S170_q25 UHM1328.20668_S114_q25
#> 1 0 0 0
#> UHM1334.20513_S178_q25 UHM1338.20495_S152_q25 UHM1341.20698_S189_q25
#> 1 0 0 0
#> UHM1356.20637_S122_q25 UHM1380.20676_S115_q25 UHM1383.20690_S188_q25
#> 1 0 0 0
#> UHM1385.20659_S101_q25 UHM1399.20852_S113_q25 UHM1400.20853_S125_q25
#> 1 0 0 0
#> UHM1401.20854_S137_q25 UHM1402.20855_S149_q25 UHM1403.20856_S161_q25
#> 1 0 0 0
#> UHM1405.20857_S173_q25 UHM1406.20858_S185_q25 UHM1414.20859_S102_q25
#> 1 0 0 0
#> UHM1419.20860_S114_q25 UHM1427.20485_S127_q25 UHM1428.20486_S139_q25
#> 1 0 0 0
#> UHM1429.20487_S151_q25 UHM1430.20488_S163_q25 UHM1432.20489_S175_q25
#> 1 0 0 0
#> UHM1435.20484_S115_q25 UHM162.20656_S160_q25 UHM198.20681_S175_q25
#> 1 0 0 0
#> UHM200.20670_S138_q25 UHM203.20685_S128_q25 UHM204.20505_S177_q25
#> 1 0 0 0
#> UHM206.20506_S189_q25 UHM207.20689_S176_q25 UHM208.20507_S106_q25
#> 1 0 0 0
#> UHM211.20502_S141_q25 UHM215.20504_S165_q25 UHM216.20525_S132_q25
#> 1 0 0 0
#> UHM219.20526_S144_q25 UHM236.20527_S156_q25 UHM238.20503_S153_q25
#> 1 0 0 0
#> UHM245.20634_S181_q25 UHM252.20654_S136_q25 UHM267.20496_S164_q25
#> 1 0 0 0
#> UHM274.20677_S127_q25 UHM276.20682_S187_q25 UHM280.20497_S176_q25
#> 1 0 0 0
#> UHM286.20521_S179_q25 UHM289.20522_S191_q25 UHM294.20523_S108_q25
#> 1 0 0 0
#> UHM298.20696_S165_q25 UHM325.20644_S111_q25 UHM337.20508_S118_q25
#> 1 0 0 0
#> UHM354.20631_S145_q25 UHM356.20511_S154_q25 UHM369.20869_S127_q25
#> 1 0 0 0
#> UHM370.20870_S139_q25 UHM372.20871_S151_q25 UHM373.20872_S163_q25
#> 1 0 0 0
#> UHM374.20873_S175_q25 UHM375.20874_S187_q25 UHM377.20875_S104_q25
#> 1 0 0 0
#> UHM382.20876_S116_q25 UHM386.20877_S128_q25 UHM387.20878_S140_q25
#> 1 0 0 0
#> UHM414.20679_S151_q25 UHM418.20861_S126_q25 UHM422.20862_S138_q25
#> 1 0 0 0
#> UHM425.20863_S150_q25 UHM426.20630_S133_q25 UHM428.20640_S158_q25
#> 1 0 0 0
#> UHM429.20655_S148_q25 UHM435.20643_S99_q25 UHM437.20864_S162_q25
#> 1 0 0 0
#> UHM439.20660_S113_q25 UHM443.20524_S120_q25 UHM445.20665_S173_q25
#> 1 0 0 0
#> UHM447.20879_S152_q25 UHM448.20865_S174_q25 UHM452.20880_S164_q25
#> 1 0 0 0
#> UHM454.20866_S186_q25 UHM455.20881_S176_q25 UHM458.20882_S188_q25
#> 1 0 0 0
#> UHM459.20883_S105_q25 UHM461.20867_S103_q25 UHM467.20868_S115_q25
#> 1 0 0 0
#> UHM470.20629_S121_q25 UHM476.20510_S142_q25 UHM478.20645_S123_q25
#> 1 0 0 0
#> UHM479.20647_S147_q25 UHM481.20499_S105_q25 UHM482.20686_S140_q25
#> 1 0 0 0
#> UHM483.20699_S106_q25 UHM519.20678_S139_q25 UHM520.20669_S126_q25
#> 1 0 0 0
#> UHM836.20481_S174_q25 UHM837.20482_S186_q25 UHM838.20483_S103_q25
#> 1 0 0 0
#> UHM891.20480_S162_q25 UHM892.20628_S109_q25 UHM893.20691_S105_q25
#> 1 0 0 0
#> UHM894.20636_S110_q25 UHM895.20632_S157_q25 UHM896.20697_S177_q25
#> 1 0 0 0
#> UHM897.20687_S152_q25 UHM898.20490_S187_q25 UHM899.20684_S116_q25
#> 1 0 0 0
#> UHM900.20491_S104_q25 UHM901.20638_S134_q25 UHM902.20680_S163_q25
#> 1 0 0 0
#> UHM903.20683_S104_q25 UHM904.20663_S149_q25 UHM905.20694_S141_q25
#> 1 0 0 0
#> UHM906.20661_S125_q25 UHM907.20688_S164_q25 UHM908.20492_S116_q25
#> 1 0 0 0
#> UHM909.20653_S124_q25 UHM910.20658_S184_q25 UHM965.20633_S169_q25
#> 1 0 0 0
#> UHM966.20839_S147_q25 UHM967.20840_S159_q25 UHM968.20667_S102_q25
#> 1 0 0 0
#> UHM969.20841_S171_q25 UHM971.20842_S183_q25 UHM973.20674_S186_q25
#> 1 0 0 0
#> UHM974.20528_S168_q25 UHM975.20843_S100_q25 UHM977.20844_S112_q25
#> 1 0 0 0
#> UHM978.20845_S124_q25 UHM979.20846_S136_q25 UHM980.20827_S98_q25
#> 1 0 0 0
#> UHM981.20635_S98_q25 UHM982.20836_S111_q25 UHM983.20652_S112_q25
#> 1 0 0 0
#> UHM984.20847_S148_q25 UHM985.20848_S160_q25 UHM988.20849_S172_q25
#> 1 0 0 0
#> UHM989.20850_S184_q25 UHM991.20851_S101_q25 UHM993.20837_S123_q25
#> 1 0 0 0
#> UHM996.20706_S190_q25 UHM997.20649_S171_q25 UHM998.20714_S191_q25
#> 1 0 0 0
#> UHM999.20713_S179_q25 spiked.blank.20529_S180_median
#> 1 0 0
#> spiked.blank.20913_S180_median Std2uL.20721_S180_median
#> 1 0 0
#> StdSwab1uL.20720_S168_median STP1719.20518_S143_median
#> 1 0 0
#> STP213.20519_S155_median STP268.20520_S167_median STP544.20515_S107_median
#> 1 0 0 0
#> STP570.20516_S119_median STP579.20517_S131_median STP614.20514_S190_median
#> 1 0 0 0
#> UHM1000.20700_S118_median UHM1001.20705_S178_median UHM1007.20718_S144_median
#> 1 0 0 0
#> UHM1009.20710_S143_median UHM1010.20717_S132_median UHM1011.20702_S142_median
#> 1 0 0 0
#> UHM1024.20716_S120_median UHM1026.20703_S154_median UHM1028.20709_S131_median
#> 1 0 0 0
#> UHM1032.20701_S130_median UHM1033.20715_S108_median UHM1034.20712_S167_median
#> 1 0 0 0
#> UHM1035.20707_S107_median UHM1036.20708_S119_median UHM1052.20711_S155_median
#> 1 0 0 0
#> UHM1060.20819_S97_median UHM1065.20820_S109_median UHM1068.20828_S110_median
#> 1 0 0 0
#> UHM1069.20838_S135_median UHM1070.20821_S121_median UHM1071.20829_S122_median
#> 1 0 0 0
#> UHM1072.20830_S134_median UHM1073.20831_S146_median UHM1075.20822_S133_median
#> 1 0 0 0
#> UHM1077.20832_S158_median UHM1078.20823_S145_median UHM1080.20833_S170_median
#> 1 0 0 0
#> UHM1081.20824_S157_median UHM1088.20834_S182_median UHM1090.20835_S99_median
#> 1 0 0 0
#> UHM1093.20825_S169_median UHM1095.20826_S181_median UHM1097.20719_S156_median
#> 1 0 0 0
#> UHM1099.20704_S166_median UHM1100.20884_S117_median UHM1102.20885_S129_median
#> 1 0 0 0
#> UHM1104.20886_S141_median UHM1105.20887_S153_median UHM1109.20627_S97_median
#> 1 0 0 0
#> UHM1110.20664_S161_median UHM1113.20888_S165_median UHM1114.20889_S177_median
#> 1 0 0 0
#> UHM1115.20890_S189_median UHM1117.20891_S106_median UHM1118.20892_S118_median
#> 1 0 0 0
#> UHM1120.20893_S130_median UHM1124.20894_S142_median UHM1126.20895_S154_median
#> 1 0 0 0
#> UHM1128.20896_S166_median UHM1140.20651_S100_median UHM1145.20897_S178_median
#> 1 0 0 0
#> UHM1163.20501_S129_median UHM1164.20498_S188_median UHM1169.20648_S159_median
#> 1 0 0 0
#> UHM1171.20675_S103_median UHM1176.20500_S117_median UHM1177.20642_S182_median
#> 1 0 0 0
#> UHM1182.20672_S162_median UHM1210.20898_S190_median UHM1212.20899_S107_median
#> 1 0 0 0
#> UHM1217.20900_S119_median UHM1218.20901_S131_median UHM1219.20902_S143_median
#> 1 0 0 0
#> UHM1220.20903_S155_median UHM1221.20904_S167_median UHM1222.20905_S179_median
#> 1 0 0 0
#> UHM1223.20906_S191_median UHM1225.20907_S108_median UHM1227.20908_S120_median
#> 1 0 0 0
#> UHM1228.20909_S132_median UHM1237.20910_S144_median UHM1240.20662_S137_median
#> 1 0 0 0
#> UHM1246.20911_S156_median UHM1247.20912_S168_median UHM1248.20671_S150_median
#> 1 0 0 0
#> UHM1256.20666_S185_median UHM1260.20692_S117_median UHM1270.20673_S174_median
#> 1 0 0 0
#> UHM1271.20493_S128_median UHM1272.20494_S140_median UHM1274.20650_S183_median
#> 1 0 0 0
#> UHM1275.20693_S129_median UHM1282.20695_S153_median UHM1287.20639_S146_median
#> 1 0 0 0
#> UHM1291.20512_S166_median UHM1296.20646_S135_median UHM1319.20657_S172_median
#> 1 0 0 0
#> UHM1324.20509_S130_median UHM1327.20641_S170_median UHM1328.20668_S114_median
#> 1 0 0 0
#> UHM1334.20513_S178_median UHM1338.20495_S152_median UHM1341.20698_S189_median
#> 1 0 0 0
#> UHM1356.20637_S122_median UHM1380.20676_S115_median UHM1383.20690_S188_median
#> 1 0 0 0
#> UHM1385.20659_S101_median UHM1399.20852_S113_median UHM1400.20853_S125_median
#> 1 0 0 0
#> UHM1401.20854_S137_median UHM1402.20855_S149_median UHM1403.20856_S161_median
#> 1 0 0 0
#> UHM1405.20857_S173_median UHM1406.20858_S185_median UHM1414.20859_S102_median
#> 1 0 0 0
#> UHM1419.20860_S114_median UHM1427.20485_S127_median UHM1428.20486_S139_median
#> 1 0 0 0
#> UHM1429.20487_S151_median UHM1430.20488_S163_median UHM1432.20489_S175_median
#> 1 0 0 0
#> UHM1435.20484_S115_median UHM162.20656_S160_median UHM198.20681_S175_median
#> 1 0 0 0
#> UHM200.20670_S138_median UHM203.20685_S128_median UHM204.20505_S177_median
#> 1 0 0 0
#> UHM206.20506_S189_median UHM207.20689_S176_median UHM208.20507_S106_median
#> 1 0 0 0
#> UHM211.20502_S141_median UHM215.20504_S165_median UHM216.20525_S132_median
#> 1 0 0 0
#> UHM219.20526_S144_median UHM236.20527_S156_median UHM238.20503_S153_median
#> 1 0 0 0
#> UHM245.20634_S181_median UHM252.20654_S136_median UHM267.20496_S164_median
#> 1 0 0 0
#> UHM274.20677_S127_median UHM276.20682_S187_median UHM280.20497_S176_median
#> 1 0 0 0
#> UHM286.20521_S179_median UHM289.20522_S191_median UHM294.20523_S108_median
#> 1 0 0 0
#> UHM298.20696_S165_median UHM325.20644_S111_median UHM337.20508_S118_median
#> 1 0 0 0
#> UHM354.20631_S145_median UHM356.20511_S154_median UHM369.20869_S127_median
#> 1 0 0 0
#> UHM370.20870_S139_median UHM372.20871_S151_median UHM373.20872_S163_median
#> 1 0 0 0
#> UHM374.20873_S175_median UHM375.20874_S187_median UHM377.20875_S104_median
#> 1 0 0 0
#> UHM382.20876_S116_median UHM386.20877_S128_median UHM387.20878_S140_median
#> 1 0 0 0
#> UHM414.20679_S151_median UHM418.20861_S126_median UHM422.20862_S138_median
#> 1 0 0 0
#> UHM425.20863_S150_median UHM426.20630_S133_median UHM428.20640_S158_median
#> 1 0 0 0
#> UHM429.20655_S148_median UHM435.20643_S99_median UHM437.20864_S162_median
#> 1 0 0 0
#> UHM439.20660_S113_median UHM443.20524_S120_median UHM445.20665_S173_median
#> 1 0 0 0
#> UHM447.20879_S152_median UHM448.20865_S174_median UHM452.20880_S164_median
#> 1 0 0 0
#> UHM454.20866_S186_median UHM455.20881_S176_median UHM458.20882_S188_median
#> 1 0 0 0
#> UHM459.20883_S105_median UHM461.20867_S103_median UHM467.20868_S115_median
#> 1 0 0 0
#> UHM470.20629_S121_median UHM476.20510_S142_median UHM478.20645_S123_median
#> 1 0 0 0
#> UHM479.20647_S147_median UHM481.20499_S105_median UHM482.20686_S140_median
#> 1 0 0 0
#> UHM483.20699_S106_median UHM519.20678_S139_median UHM520.20669_S126_median
#> 1 0 0 0
#> UHM836.20481_S174_median UHM837.20482_S186_median UHM838.20483_S103_median
#> 1 0 0 0
#> UHM891.20480_S162_median UHM892.20628_S109_median UHM893.20691_S105_median
#> 1 0 0 0
#> UHM894.20636_S110_median UHM895.20632_S157_median UHM896.20697_S177_median
#> 1 0 0 0
#> UHM897.20687_S152_median UHM898.20490_S187_median UHM899.20684_S116_median
#> 1 0 0 0
#> UHM900.20491_S104_median UHM901.20638_S134_median UHM902.20680_S163_median
#> 1 0 0 0
#> UHM903.20683_S104_median UHM904.20663_S149_median UHM905.20694_S141_median
#> 1 0 0 0
#> UHM906.20661_S125_median UHM907.20688_S164_median UHM908.20492_S116_median
#> 1 0 0 0
#> UHM909.20653_S124_median UHM910.20658_S184_median UHM965.20633_S169_median
#> 1 0 0 0
#> UHM966.20839_S147_median UHM967.20840_S159_median UHM968.20667_S102_median
#> 1 0 0 0
#> UHM969.20841_S171_median UHM971.20842_S183_median UHM973.20674_S186_median
#> 1 0 0 0
#> UHM974.20528_S168_median UHM975.20843_S100_median UHM977.20844_S112_median
#> 1 0 0 0
#> UHM978.20845_S124_median UHM979.20846_S136_median UHM980.20827_S98_median
#> 1 0 0 0
#> UHM981.20635_S98_median UHM982.20836_S111_median UHM983.20652_S112_median
#> 1 0 0 0
#> UHM984.20847_S148_median UHM985.20848_S160_median UHM988.20849_S172_median
#> 1 0 0 0
#> UHM989.20850_S184_median UHM991.20851_S101_median UHM993.20837_S123_median
#> 1 0 0 0
#> UHM996.20706_S190_median UHM997.20649_S171_median UHM998.20714_S191_median
#> 1 0 0 0
#> UHM999.20713_S179_median spiked.blank.20529_S180_q75
#> 1 0 0
#> spiked.blank.20913_S180_q75 Std2uL.20721_S180_q75 StdSwab1uL.20720_S168_q75
#> 1 0 0 0
#> STP1719.20518_S143_q75 STP213.20519_S155_q75 STP268.20520_S167_q75
#> 1 0 0 0
#> STP544.20515_S107_q75 STP570.20516_S119_q75 STP579.20517_S131_q75
#> 1 0 0 0
#> STP614.20514_S190_q75 UHM1000.20700_S118_q75 UHM1001.20705_S178_q75
#> 1 0 0 0
#> UHM1007.20718_S144_q75 UHM1009.20710_S143_q75 UHM1010.20717_S132_q75
#> 1 0 0 0
#> UHM1011.20702_S142_q75 UHM1024.20716_S120_q75 UHM1026.20703_S154_q75
#> 1 0 0 0
#> UHM1028.20709_S131_q75 UHM1032.20701_S130_q75 UHM1033.20715_S108_q75
#> 1 0 0 0
#> UHM1034.20712_S167_q75 UHM1035.20707_S107_q75 UHM1036.20708_S119_q75
#> 1 0 0 0
#> UHM1052.20711_S155_q75 UHM1060.20819_S97_q75 UHM1065.20820_S109_q75
#> 1 0 0 0
#> UHM1068.20828_S110_q75 UHM1069.20838_S135_q75 UHM1070.20821_S121_q75
#> 1 0 0 0
#> UHM1071.20829_S122_q75 UHM1072.20830_S134_q75 UHM1073.20831_S146_q75
#> 1 0 0 0
#> UHM1075.20822_S133_q75 UHM1077.20832_S158_q75 UHM1078.20823_S145_q75
#> 1 0 0 0
#> UHM1080.20833_S170_q75 UHM1081.20824_S157_q75 UHM1088.20834_S182_q75
#> 1 0 0 0
#> UHM1090.20835_S99_q75 UHM1093.20825_S169_q75 UHM1095.20826_S181_q75
#> 1 0 0 0
#> UHM1097.20719_S156_q75 UHM1099.20704_S166_q75 UHM1100.20884_S117_q75
#> 1 0 0 0
#> UHM1102.20885_S129_q75 UHM1104.20886_S141_q75 UHM1105.20887_S153_q75
#> 1 0 0 0
#> UHM1109.20627_S97_q75 UHM1110.20664_S161_q75 UHM1113.20888_S165_q75
#> 1 0 0 0
#> UHM1114.20889_S177_q75 UHM1115.20890_S189_q75 UHM1117.20891_S106_q75
#> 1 0 0 0
#> UHM1118.20892_S118_q75 UHM1120.20893_S130_q75 UHM1124.20894_S142_q75
#> 1 0 0 0
#> UHM1126.20895_S154_q75 UHM1128.20896_S166_q75 UHM1140.20651_S100_q75
#> 1 0 0 0
#> UHM1145.20897_S178_q75 UHM1163.20501_S129_q75 UHM1164.20498_S188_q75
#> 1 0 0 0
#> UHM1169.20648_S159_q75 UHM1171.20675_S103_q75 UHM1176.20500_S117_q75
#> 1 0 0 0
#> UHM1177.20642_S182_q75 UHM1182.20672_S162_q75 UHM1210.20898_S190_q75
#> 1 0 0 0
#> UHM1212.20899_S107_q75 UHM1217.20900_S119_q75 UHM1218.20901_S131_q75
#> 1 0 0 0
#> UHM1219.20902_S143_q75 UHM1220.20903_S155_q75 UHM1221.20904_S167_q75
#> 1 0 0 0
#> UHM1222.20905_S179_q75 UHM1223.20906_S191_q75 UHM1225.20907_S108_q75
#> 1 0 0 0
#> UHM1227.20908_S120_q75 UHM1228.20909_S132_q75 UHM1237.20910_S144_q75
#> 1 0 0 0
#> UHM1240.20662_S137_q75 UHM1246.20911_S156_q75 UHM1247.20912_S168_q75
#> 1 0 0 0
#> UHM1248.20671_S150_q75 UHM1256.20666_S185_q75 UHM1260.20692_S117_q75
#> 1 0 0 0
#> UHM1270.20673_S174_q75 UHM1271.20493_S128_q75 UHM1272.20494_S140_q75
#> 1 0 0 0
#> UHM1274.20650_S183_q75 UHM1275.20693_S129_q75 UHM1282.20695_S153_q75
#> 1 0 0 0
#> UHM1287.20639_S146_q75 UHM1291.20512_S166_q75 UHM1296.20646_S135_q75
#> 1 0 0 0
#> UHM1319.20657_S172_q75 UHM1324.20509_S130_q75 UHM1327.20641_S170_q75
#> 1 0 0 0
#> UHM1328.20668_S114_q75 UHM1334.20513_S178_q75 UHM1338.20495_S152_q75
#> 1 0 0 0
#> UHM1341.20698_S189_q75 UHM1356.20637_S122_q75 UHM1380.20676_S115_q75
#> 1 0 0 0
#> UHM1383.20690_S188_q75 UHM1385.20659_S101_q75 UHM1399.20852_S113_q75
#> 1 0 0 0
#> UHM1400.20853_S125_q75 UHM1401.20854_S137_q75 UHM1402.20855_S149_q75
#> 1 0 0 0
#> UHM1403.20856_S161_q75 UHM1405.20857_S173_q75 UHM1406.20858_S185_q75
#> 1 0 0 0
#> UHM1414.20859_S102_q75 UHM1419.20860_S114_q75 UHM1427.20485_S127_q75
#> 1 0 0 0
#> UHM1428.20486_S139_q75 UHM1429.20487_S151_q75 UHM1430.20488_S163_q75
#> 1 0 0 0
#> UHM1432.20489_S175_q75 UHM1435.20484_S115_q75 UHM162.20656_S160_q75
#> 1 0 0 0
#> UHM198.20681_S175_q75 UHM200.20670_S138_q75 UHM203.20685_S128_q75
#> 1 0 0 0
#> UHM204.20505_S177_q75 UHM206.20506_S189_q75 UHM207.20689_S176_q75
#> 1 0 0 0
#> UHM208.20507_S106_q75 UHM211.20502_S141_q75 UHM215.20504_S165_q75
#> 1 0 0 0
#> UHM216.20525_S132_q75 UHM219.20526_S144_q75 UHM236.20527_S156_q75
#> 1 0 0 0
#> UHM238.20503_S153_q75 UHM245.20634_S181_q75 UHM252.20654_S136_q75
#> 1 0 0 0
#> UHM267.20496_S164_q75 UHM274.20677_S127_q75 UHM276.20682_S187_q75
#> 1 0 0 0
#> UHM280.20497_S176_q75 UHM286.20521_S179_q75 UHM289.20522_S191_q75
#> 1 0 0 0
#> UHM294.20523_S108_q75 UHM298.20696_S165_q75 UHM325.20644_S111_q75
#> 1 0 0 0
#> UHM337.20508_S118_q75 UHM354.20631_S145_q75 UHM356.20511_S154_q75
#> 1 0 0 0
#> UHM369.20869_S127_q75 UHM370.20870_S139_q75 UHM372.20871_S151_q75
#> 1 0 0 0
#> UHM373.20872_S163_q75 UHM374.20873_S175_q75 UHM375.20874_S187_q75
#> 1 0 0 0
#> UHM377.20875_S104_q75 UHM382.20876_S116_q75 UHM386.20877_S128_q75
#> 1 0 0 0
#> UHM387.20878_S140_q75 UHM414.20679_S151_q75 UHM418.20861_S126_q75
#> 1 0 0 0
#> UHM422.20862_S138_q75 UHM425.20863_S150_q75 UHM426.20630_S133_q75
#> 1 0 0 0
#> UHM428.20640_S158_q75 UHM429.20655_S148_q75 UHM435.20643_S99_q75
#> 1 0 0 0
#> UHM437.20864_S162_q75 UHM439.20660_S113_q75 UHM443.20524_S120_q75
#> 1 0 0 0
#> UHM445.20665_S173_q75 UHM447.20879_S152_q75 UHM448.20865_S174_q75
#> 1 0 0 0
#> UHM452.20880_S164_q75 UHM454.20866_S186_q75 UHM455.20881_S176_q75
#> 1 0 0 0
#> UHM458.20882_S188_q75 UHM459.20883_S105_q75 UHM461.20867_S103_q75
#> 1 0 0 0
#> UHM467.20868_S115_q75 UHM470.20629_S121_q75 UHM476.20510_S142_q75
#> 1 0 0 0
#> UHM478.20645_S123_q75 UHM479.20647_S147_q75 UHM481.20499_S105_q75
#> 1 0 0 0
#> UHM482.20686_S140_q75 UHM483.20699_S106_q75 UHM519.20678_S139_q75
#> 1 0 0 0
#> UHM520.20669_S126_q75 UHM836.20481_S174_q75 UHM837.20482_S186_q75
#> 1 0 0 0
#> UHM838.20483_S103_q75 UHM891.20480_S162_q75 UHM892.20628_S109_q75
#> 1 0 0 0
#> UHM893.20691_S105_q75 UHM894.20636_S110_q75 UHM895.20632_S157_q75
#> 1 0 0 0
#> UHM896.20697_S177_q75 UHM897.20687_S152_q75 UHM898.20490_S187_q75
#> 1 0 0 0
#> UHM899.20684_S116_q75 UHM900.20491_S104_q75 UHM901.20638_S134_q75
#> 1 0 0 0
#> UHM902.20680_S163_q75 UHM903.20683_S104_q75 UHM904.20663_S149_q75
#> 1 0 0 0
#> UHM905.20694_S141_q75 UHM906.20661_S125_q75 UHM907.20688_S164_q75
#> 1 0 0 0
#> UHM908.20492_S116_q75 UHM909.20653_S124_q75 UHM910.20658_S184_q75
#> 1 0 0 0
#> UHM965.20633_S169_q75 UHM966.20839_S147_q75 UHM967.20840_S159_q75
#> 1 0 0 0
#> UHM968.20667_S102_q75 UHM969.20841_S171_q75 UHM971.20842_S183_q75
#> 1 0 0 0
#> UHM973.20674_S186_q75 UHM974.20528_S168_q75 UHM975.20843_S100_q75
#> 1 0 0 0
#> UHM977.20844_S112_q75 UHM978.20845_S124_q75 UHM979.20846_S136_q75
#> 1 0 0 0
#> UHM980.20827_S98_q75 UHM981.20635_S98_q75 UHM982.20836_S111_q75
#> 1 0 0 0
#> UHM983.20652_S112_q75 UHM984.20847_S148_q75 UHM985.20848_S160_q75
#> 1 0 0 0
#> UHM988.20849_S172_q75 UHM989.20850_S184_q75 UHM991.20851_S101_q75
#> 1 0 0 0
#> UHM993.20837_S123_q75 UHM996.20706_S190_q75 UHM997.20649_S171_q75
#> 1 0 0 0
#> UHM998.20714_S191_q75 UHM999.20713_S179_q75
#> 1 0 0
# Back normal
# the scaling factor was computed based on spiked species reads and fixed cell count.
# Multiplying the spiked species read count by this scaling factor restores the exact spiked cell count.
# lets check it
# BackNormal <- calculate_spike_percentage(
# physeq_absolute,
# merged_spiked_species,
# passed_range = c(0.1, 20)
# )
#**Time to filter out unsuccessful spiked samples**
library(phyloseq)
library(dplyr)
library(tibble)
library(microbiome)
filtered_sample_data <- microbiome::meta(physeq_absolute) %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "Sample") %>%
dplyr::mutate(Sample = as.character(Sample)) %>%
dplyr::left_join(Perc, by = "Sample")
filtered_sample_data <- tibble::column_to_rownames(filtered_sample_data, "Sample")
filtered_sample_data <- sample_data(as.data.frame(filtered_sample_data))
# Assign back to phyloseq obj
sample_data(physeq_absolute) <- filtered_sample_data
The goal is to identify the range where, for example, the evenness of your community remains independent of spiked species retrieval—meaning the p-value should not be significant, and the R² value should be low, indicating minimal influence.
# The acceptable range of spiked species retrieval is system-dependent**
# Spiked species become centroid of the community (Distance to Centroid)
# Spiked species become dominant and imbalance the community (Evenness)
# What range of spiked species retrieval is appropriate for your system?
# Calculate Pielou's Evenness using Shannon index and species richness (Observed)
# Load required libraries
library(vegan)
# Calculate Pielou's Evenness using Shannon index and species richness (Observed)
alphab <- estimate_richness(physeq_absolute, measures = c("Observed", "Shannon"))
alphab$Pielou_evenness <- alphab$Shannon / alphab$Observed
# Normalize values
# alphab <- alphab %>%
# mutate(across(c("Observed", "Shannon", "Pielou_evenness"), ~ as.numeric(scale(.))))
metadata <- as.data.frame(microbiome::meta(physeq_absolute))
metadata$Sample <- rownames(metadata)
alphab$Sample <- rownames(alphab)
# Merge alpha diversity metrics into metadata
metadata <- dplyr::left_join(metadata, alphab[, c("Sample", "Observed", "Shannon", "Pielou_evenness")], by = "Sample")
metadata <- metadata %>%
column_to_rownames(var = "Sample")
# Updated metadata back to the phyloseq obj
sample_data(physeq_absolute) <- sample_data(metadata)
if (!"Spiked_Reads" %in% colnames(metadata)) {
stop("Column 'Spiked_Reads' not found in metadata.")
}
# Generate regression plot
plot_object <- regression_plot(
data = metadata,
x_var = "Pielou_evenness",
y_var = "Spiked_Reads",
custom_range = c(0.1, 20, 30, 50, 100),
plot_title = NULL
)
plot_object
#*Calculate the percentage of spiked species retrieval per sample***
absolute_abundance_ITS_OTU_perc <- phyloseq::subset_samples(physeq_absolute, sample.or.blank != "blank")
# Back normal to check the accuracy ## The spiked reads must be the same as the spiked cell numbers
conclusion(absolute_abundance_ITS_OTU_perc,
merged_spiked_species,
max_passed_range=20,
output_path)
#> 📂 Table saved in docx format: merged_data.docx
#> 📂 Merged data saved as CSV: merged_data.csv
#> $summary_stats
#> a flextable object.
#> col_keys: `mean_total_reads_spiked`, `sd_total_reads_spiked`, `median_total_reads_spiked`, `mean_percentage`, `sd_percentage`, `median_percentage`, `passed_count`, `failed_count`
#> header has 1 row(s)
#> body has 1 row(s)
#> original dataset sample:
#> mean_total_reads_spiked sd_total_reads_spiked median_total_reads_spiked
#> 1 75313.93 189227 15200.5
#> mean_percentage sd_percentage median_percentage passed_count failed_count
#> 1 15.60495 22.94053 4.581823 NA NA
#>
#> $full_report
#> Sample Total_Reads Spiked_Reads Percentage Result
#> 1 STP1719.20518_S143 1203 733 60.93100582 failed
#> 2 STP213.20519_S155 6609 733 11.09093660 passed
#> 3 STP268.20520_S167 23689 733 3.09426316 passed
#> 4 STP544.20515_S107 874 733 83.86727689 failed
#> 5 STP570.20516_S119 2053 733 35.70384803 failed
#> 6 STP579.20517_S131 917 733 79.93456925 failed
#> 7 STP614.20514_S190 15689 733 4.67206323 passed
#> 8 UHM1000.20700_S118 70053 366 0.52246156 passed
#> 9 UHM1001.20705_S178 2755 366 13.28493648 passed
#> 10 UHM1007.20718_S144 30851 366 1.18634728 passed
#> 11 UHM1009.20710_S143 5951 366 6.15022685 passed
#> 12 UHM1010.20717_S132 1471 366 24.88103331 failed
#> 13 UHM1011.20702_S142 2198 366 16.65150136 passed
#> 14 UHM1024.20716_S120 766 366 47.78067885 failed
#> 15 UHM1026.20703_S154 2074 367 17.69527483 passed
#> 16 UHM1028.20709_S131 7126 366 5.13612125 passed
#> 17 UHM1032.20701_S130 1768 366 20.70135747 failed
#> 18 UHM1033.20715_S108 506 366 72.33201581 failed
#> 19 UHM1034.20712_S167 42646 366 0.85822820 passed
#> 20 UHM1035.20707_S107 1865 366 19.62466488 passed
#> 21 UHM1036.20708_S119 8497 366 4.30740261 passed
#> 22 UHM1052.20711_S155 3179 366 11.51305442 passed
#> 23 UHM1060.20819_S97 1313 733 55.82635187 failed
#> 24 UHM1065.20820_S109 1514 733 48.41479524 failed
#> 25 UHM1068.20828_S110 5242 733 13.98321251 passed
#> 26 UHM1069.20838_S135 4753 733 15.42183884 passed
#> 27 UHM1070.20821_S121 1700 733 43.11764706 failed
#> 28 UHM1071.20829_S122 7570 733 9.68295905 passed
#> 29 UHM1072.20830_S134 2336 733 31.37842466 failed
#> 30 UHM1073.20831_S146 61350 733 1.19478403 passed
#> 31 UHM1075.20822_S133 7172 733 10.22030117 passed
#> 32 UHM1077.20832_S158 1655 733 44.29003021 failed
#> 33 UHM1078.20823_S145 14847 733 4.93702431 passed
#> 34 UHM1080.20833_S170 11169 733 6.56280777 passed
#> 35 UHM1081.20824_S157 34040 733 2.15334900 passed
#> 36 UHM1088.20834_S182 8425 733 8.70029674 passed
#> 37 UHM1090.20835_S99 3238 733 22.63743051 failed
#> 38 UHM1093.20825_S169 9289 733 7.89105393 passed
#> 39 UHM1095.20826_S181 3945 733 18.58048162 passed
#> 40 UHM1097.20719_S156 834 366 43.88489209 failed
#> 41 UHM1099.20704_S166 1262 366 29.00158479 failed
#> 42 UHM1100.20884_S117 242139 733 0.30271869 passed
#> 43 UHM1102.20885_S129 82409 733 0.88946596 passed
#> 44 UHM1104.20886_S141 17977 733 4.07743227 passed
#> 45 UHM1105.20887_S153 35401 733 2.07056298 passed
#> 46 UHM1109.20627_S97 10498 733 6.98228234 passed
#> 47 UHM1110.20664_S161 1490927 733 0.04916404 failed
#> 48 UHM1113.20888_S165 16940 733 4.32703660 passed
#> 49 UHM1114.20889_S177 14560 733 5.03434066 passed
#> 50 UHM1115.20890_S189 159333 733 0.46004280 passed
#> 51 UHM1117.20891_S106 171299 733 0.42790676 passed
#> 52 UHM1118.20892_S118 25161 733 2.91323874 passed
#> 53 UHM1120.20893_S130 39307 733 1.86480780 passed
#> 54 UHM1124.20894_S142 33641 733 2.17888886 passed
#> 55 UHM1126.20895_S154 58413 733 1.25485765 passed
#> 56 UHM1128.20896_S166 610931 733 0.11998082 passed
#> 57 UHM1140.20651_S100 40483 733 1.81063656 passed
#> 58 UHM1145.20897_S178 68122 733 1.07601069 passed
#> 59 UHM1163.20501_S129 14715 733 4.98131159 passed
#> 60 UHM1164.20498_S188 2417 733 30.32685147 failed
#> 61 UHM1169.20648_S159 2136 733 34.31647940 failed
#> 62 UHM1171.20675_S103 320891 733 0.22842648 passed
#> 63 UHM1176.20500_S117 30776 733 2.38172602 passed
#> 64 UHM1177.20642_S182 1637 733 44.77703115 failed
#> 65 UHM1182.20672_S162 42254 733 1.73474701 passed
#> 66 UHM1210.20898_S190 68488 733 1.07026048 passed
#> 67 UHM1212.20899_S107 19893 733 3.68471322 passed
#> 68 UHM1217.20900_S119 15347 733 4.77617775 passed
#> 69 UHM1218.20901_S131 32130 733 2.28135699 passed
#> 70 UHM1219.20902_S143 201521 733 0.36373380 passed
#> 71 UHM1220.20903_S155 81871 733 0.89531092 passed
#> 72 UHM1221.20904_S167 29070 733 2.52149983 passed
#> 73 UHM1222.20905_S179 3176 733 23.07934509 failed
#> 74 UHM1223.20906_S191 92107 733 0.79581356 passed
#> 75 UHM1225.20907_S108 57441 733 1.27609199 passed
#> 76 UHM1227.20908_S120 28365 733 2.58417063 passed
#> 77 UHM1228.20909_S132 109387 733 0.67009791 passed
#> 78 UHM1237.20910_S144 26057 733 2.81306367 passed
#> 79 UHM1240.20662_S137 2415 733 30.35196687 failed
#> 80 UHM1246.20911_S156 11130 733 6.58580413 passed
#> 81 UHM1247.20912_S168 30259 733 2.42241978 passed
#> 82 UHM1248.20671_S150 1098 733 66.75774135 failed
#> 83 UHM1256.20666_S185 5327 733 13.76009011 passed
#> 84 UHM1260.20692_S117 21261 733 3.44762711 passed
#> 85 UHM1270.20673_S174 2835 733 25.85537919 failed
#> 86 UHM1271.20493_S128 13333 733 5.49763744 passed
#> 87 UHM1272.20494_S140 5301 733 13.82757970 passed
#> 88 UHM1274.20650_S183 8174 733 8.96745779 passed
#> 89 UHM1275.20693_S129 37017 733 1.98017127 passed
#> 90 UHM1282.20695_S153 37437 733 1.95795603 passed
#> 91 UHM1287.20639_S146 7278 733 10.07144820 passed
#> 92 UHM1291.20512_S166 14068 733 5.21040660 passed
#> 93 UHM1296.20646_S135 200764 733 0.36510530 passed
#> 94 UHM1319.20657_S172 50837 733 1.44186321 passed
#> 95 UHM1324.20509_S130 6832 733 10.72892272 passed
#> 96 UHM1327.20641_S170 507439 733 0.14445086 passed
#> 97 UHM1328.20668_S114 796 733 92.08542714 failed
#> 98 UHM1334.20513_S178 19550 733 3.74936061 passed
#> 99 UHM1338.20495_S152 2481 733 29.54453849 failed
#> 100 UHM1341.20698_S189 803 733 91.28268991 failed
#> 101 UHM1356.20637_S122 1081 733 67.80758557 failed
#> 102 UHM1380.20676_S115 83330 733 0.87963519 passed
#> 103 UHM1383.20690_S188 42801 733 1.71257681 passed
#> 104 UHM1385.20659_S101 1368 733 53.58187135 failed
#> 105 UHM1399.20852_S113 4542 733 16.13826508 passed
#> 106 UHM1400.20853_S125 2290 733 32.00873362 failed
#> 107 UHM1401.20854_S137 2390 733 30.66945607 failed
#> 108 UHM1402.20855_S149 20 0 0.00000000 failed
#> 109 UHM1403.20856_S161 4178 733 17.54427956 passed
#> 110 UHM1405.20857_S173 14002 733 5.23496643 passed
#> 111 UHM1406.20858_S185 2058 733 35.61710398 failed
#> 112 UHM1414.20859_S102 35800 733 2.04748603 passed
#> 113 UHM1419.20860_S114 6979 733 10.50293738 passed
#> 114 UHM1427.20485_S127 1500 733 48.86666667 failed
#> 115 UHM1428.20486_S139 530317 733 0.13821922 passed
#> 116 UHM1429.20487_S151 233757 733 0.31357350 passed
#> 117 UHM1430.20488_S163 170156 733 0.43078117 passed
#> 118 UHM1432.20489_S175 145970 733 0.50215798 passed
#> 119 UHM1435.20484_S115 37756 733 1.94141329 passed
#> 120 UHM162.20656_S160 16900 733 4.33727811 passed
#> 121 UHM198.20681_S175 17603 733 4.16406294 passed
#> 122 UHM200.20670_S138 36610 733 2.00218520 passed
#> 123 UHM203.20685_S128 20450 733 3.58435208 passed
#> 124 UHM204.20505_S177 4644 733 15.78380706 passed
#> 125 UHM206.20506_S189 1589 733 46.12964128 failed
#> 126 UHM207.20689_S176 36971 733 1.98263504 passed
#> 127 UHM208.20507_S106 12640 733 5.79905063 passed
#> 128 UHM211.20502_S141 1721 733 42.59151656 failed
#> 129 UHM215.20504_S165 3288 733 22.29318735 failed
#> 130 UHM216.20525_S132 1421 733 51.58339198 failed
#> 131 UHM219.20526_S144 747 733 98.12583668 failed
#> 132 UHM236.20527_S156 1153 733 63.57328708 failed
#> 133 UHM238.20503_S153 3219 733 22.77104691 failed
#> 134 UHM245.20634_S181 5660 733 12.95053004 passed
#> 135 UHM252.20654_S136 30529 733 2.40099577 passed
#> 136 UHM267.20496_S164 14174 733 5.17144067 passed
#> 137 UHM274.20677_S127 10383 733 7.05961668 passed
#> 138 UHM276.20682_S187 7782 733 9.41917245 passed
#> 139 UHM280.20497_S176 4501 733 16.28526994 passed
#> 140 UHM286.20521_S179 18231 733 4.02062421 passed
#> 141 UHM289.20522_S191 4847 733 15.12275634 passed
#> 142 UHM294.20523_S108 4268 733 17.17432052 passed
#> 143 UHM298.20696_S165 171431 733 0.42757728 passed
#> 144 UHM325.20644_S111 43328 733 1.69174668 passed
#> 145 UHM337.20508_S118 5764 733 12.71686329 passed
#> 146 UHM354.20631_S145 1253 733 58.49960096 failed
#> 147 UHM356.20511_S154 3772 733 19.43266172 passed
#> 148 UHM369.20869_S127 0 0 NaN <NA>
#> 149 UHM370.20870_S139 33855 733 2.16511594 passed
#> 150 UHM372.20871_S151 16408 733 4.46733301 passed
#> 151 UHM373.20872_S163 39692 733 1.84671974 passed
#> 152 UHM374.20873_S175 172521 733 0.42487581 passed
#> 153 UHM375.20874_S187 13411 733 5.46566252 passed
#> 154 UHM377.20875_S104 28094 733 2.60909803 passed
#> 155 UHM382.20876_S116 219952 733 0.33325453 passed
#> 156 UHM386.20877_S128 75850 733 0.96638102 passed
#> 157 UHM387.20878_S140 87685 733 0.83594686 passed
#> 158 UHM414.20679_S151 156593 733 0.46809244 passed
#> 159 UHM418.20861_S126 64320 733 1.13961443 passed
#> 160 UHM422.20862_S138 3245 733 22.58859784 failed
#> 161 UHM425.20863_S150 31337 733 2.33908798 passed
#> 162 UHM426.20630_S133 1277 733 57.40015662 failed
#> 163 UHM428.20640_S158 143879 733 0.50945586 passed
#> 164 UHM429.20655_S148 2370 733 30.92827004 failed
#> 165 UHM435.20643_S99 6470 733 11.32921175 passed
#> 166 UHM437.20864_S162 47278 733 1.55040399 passed
#> 167 UHM439.20660_S113 36708 733 1.99683993 passed
#> 168 UHM443.20524_S120 15452 0 0.00000000 failed
#> 169 UHM445.20665_S173 1596109 733 0.04592418 failed
#> 170 UHM447.20879_S152 311393 733 0.23539386 passed
#> 171 UHM448.20865_S174 7439 733 9.85347493 passed
#> 172 UHM452.20880_S164 16254 733 4.50965916 passed
#> 173 UHM454.20866_S186 31733 733 2.30989821 passed
#> 174 UHM455.20881_S176 36439 733 2.01158100 passed
#> 175 UHM458.20882_S188 210285 733 0.34857455 passed
#> 176 UHM459.20883_S105 131999 733 0.55530724 passed
#> 177 UHM461.20867_S103 5986 733 12.24523889 passed
#> 178 UHM467.20868_S115 52866 733 1.38652442 passed
#> 179 UHM470.20629_S121 20818 733 3.52099145 passed
#> 180 UHM476.20510_S142 9551 733 7.67458905 passed
#> 181 UHM478.20645_S123 1549 733 47.32085216 failed
#> 182 UHM479.20647_S147 795 733 92.20125786 failed
#> 183 UHM481.20499_S105 1843 733 39.77211069 failed
#> 184 UHM482.20686_S140 985 733 74.41624365 failed
#> 185 UHM483.20699_S106 189124 733 0.38757640 passed
#> 186 UHM519.20678_S139 17833 733 4.11035720 passed
#> 187 UHM520.20669_S126 622602 733 0.11773171 passed
#> 188 UHM836.20481_S174 2525 733 29.02970297 failed
#> 189 UHM837.20482_S186 815 733 89.93865031 failed
#> 190 UHM838.20483_S103 404227 733 0.18133376 passed
#> 191 UHM891.20480_S162 193049 733 0.37969635 passed
#> 192 UHM892.20628_S109 74507 733 0.98380018 passed
#> 193 UHM893.20691_S105 1056846 733 0.06935731 failed
#> 194 UHM894.20636_S110 407335 733 0.17995016 passed
#> 195 UHM895.20632_S157 46442 733 1.57831273 passed
#> 196 UHM896.20697_S177 557848 733 0.13139780 passed
#> 197 UHM897.20687_S152 195868 733 0.37423163 passed
#> 198 UHM898.20490_S187 86962 733 0.84289690 passed
#> 199 UHM899.20684_S116 26831 0 0.00000000 failed
#> 200 UHM900.20491_S104 426029 733 0.17205402 passed
#> 201 UHM901.20638_S134 64944 733 1.12866470 passed
#> 202 UHM902.20680_S163 15998 733 4.58182273 passed
#> 203 UHM903.20683_S104 7055 733 10.38979447 passed
#> 204 UHM904.20663_S149 90263 733 0.81207139 passed
#> 205 UHM905.20694_S141 189294 733 0.38722833 passed
#> 206 UHM906.20661_S125 738140 733 0.09930366 failed
#> 207 UHM907.20688_S164 5805 733 12.62704565 passed
#> 208 UHM908.20492_S116 12353 733 5.93378127 passed
#> 209 UHM909.20653_S124 1835 733 39.94550409 failed
#> 210 UHM910.20658_S184 27025 733 2.71230342 passed
#> 211 UHM965.20633_S169 5604 733 13.07994290 passed
#> 212 UHM966.20839_S147 2255 733 32.50554324 failed
#> 213 UHM967.20840_S159 37386 733 1.96062697 passed
#> 214 UHM968.20667_S102 752 733 97.47340426 failed
#> 215 UHM969.20841_S171 155356 733 0.47181956 passed
#> 216 UHM971.20842_S183 49417 733 1.48329522 passed
#> 217 UHM973.20674_S186 4471 733 16.39454261 passed
#> 218 UHM974.20528_S168 756 733 96.95767196 failed
#> 219 UHM975.20843_S100 46718 733 1.56898840 passed
#> 220 UHM977.20844_S112 14316 733 5.12014529 passed
#> 221 UHM978.20845_S124 254394 733 0.28813573 passed
#> 222 UHM979.20846_S136 29271 733 2.50418503 passed
#> 223 UHM980.20827_S98 1201 733 61.03247294 failed
#> 224 UHM981.20635_S98 4288 733 17.09421642 passed
#> 225 UHM982.20836_S111 121746 733 0.60207317 passed
#> 226 UHM983.20652_S112 17181 733 4.26634073 passed
#> 227 UHM984.20847_S148 208665 733 0.35128076 passed
#> 228 UHM985.20848_S160 15054 733 4.86913777 passed
#> 229 UHM988.20849_S172 3510 733 20.88319088 failed
#> 230 UHM989.20850_S184 103723 733 0.70668993 passed
#> 231 UHM991.20851_S101 4440 733 16.50900901 passed
#> 232 UHM993.20837_S123 67439 733 1.08690817 passed
#> 233 UHM996.20706_S190 687 366 53.27510917 failed
#> 234 UHM997.20649_S171 7992 733 9.17167167 passed
#> 235 UHM998.20714_S191 519 366 70.52023121 failed
#> 236 UHM999.20713_S179 19728 366 1.85523114 passed
#>
#> $phy_tree
#>
#> Phylogenetic tree with 10451 tips and 10450 internal nodes.
#>
#> Tip labels:
#> b0d8709d00c52cd6f95e80208ec58bed, 8802fa20235c7208c28a77bf31b16ab0, 7f78e32ee8be7c4e84c2468a78e56ed1, e6a1c236f2da2bb42b7863b40b151857, 4bb6692c6d9f4a818a80b78eefb05ee8, 4dccbfe4f811fe0d5871482a35c0256e, ...
#> Node labels:
#> root, 0.860, 0.301, 0.963, 0.957, 0.566, ...
#>
#> Rooted; includes branch length(s).
physeq_absolute <- absolute$obj_adj
pps_Abs <- get_long_format_data(physeq_absolute)
# calculation for relative abundance needs sum of total reads
# total_reads <- sum(pps_Abs$Abundance)
# Generate an alluvial plot using the extended palette
alluvial_plot_abs <- alluvial_plot(
data = pps_Abs,
axes = c( "Host.genus","Ecoregion.III", "Diet"),
abundance_threshold = 10000,
fill_variable = "Family",
silent = TRUE,
abundance_type = "absolute",
top_taxa = 15,
text_size = 4,
legend_ncol = 1,
custom_colors = DspikeIn::color_palette$light_MG # Use the extended palette from your package
)
alluvial_plot_abs
you may select to transform your data befor moving forward with Differential Abundance
ps <- physeq_ITSOTU
# TC Normalization
result_TC <- normalization_set(ps, method = "TC", groups = "Host.species")
normalized_ps_TC <- result_TC$dat.normed
scaling_factors_TC <- result_TC$scaling.factor
# UQ Normalization
data("physeq_ITSOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_UQ <- normalization_set(ps, method = "UQ", groups = "Host.species")
normalized_ps_UQ <- result_UQ$dat.normed
scaling_factors_UQ <- result_UQ$scaling.factor
# Median Normalization
data("physeq_ITSOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_med <- normalization_set(ps, method = "med", groups = "Host.species")
normalized_ps_med <- result_med$dat.normed
scaling_factors_med <- result_med$scaling.factor
# DESeq Normalization
data("physeq_ITSOTU", package = "DspikeIn")
ps <- physeq_16SOTU
ps_n <- remove_zero_negative_count_samples(ps)
result_DESeq <- normalization_set(ps_n, method = "DESeq", groups = "Animal.type")
normalized_ps_DESeq <- result_DESeq$dat.normed
scaling_factors_DESeq <- result_DESeq$scaling.factor
# Poisson Normalization
data("physeq_ITSOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_Poisson <- normalization_set(ps, method = "Poisson", groups = "Host.genus")
normalized_ps_Poisson <- result_Poisson$dat.normed
scaling_factors_Poisson <- result_Poisson$scaling.factor
# Quantile Normalization
data("physeq_ITSOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_QN <- normalization_set(ps, method = "QN")
normalized_ps_QN <- result_QN$dat.normed
scaling_factors_QN <- result_QN$scaling.factor
# TMM Normalization
data("physeq_ITSOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_TMM <- normalization_set(ps, method = "TMM", groups = "Animal.type")
normalized_ps_TMM <- result_TMM$dat.normed
scaling_factors_TMM <- result_TMM$scaling.factor
# CLR Normalization
data("physeq_ITSOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_clr <- normalization_set(ps, method = "clr")
normalized_ps_clr <- result_clr$dat.normed
scaling_factors_clr <- result_clr$scaling.factor
# Rarefying
data("physeq_ITSOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_rar <- normalization_set(ps, method = "rar")
normalized_ps_rar <- result_rar$dat.normed
scaling_factors_rar <- result_rar$scaling.factor
# CSS Normalization
data("physeq_ITSOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_css <- normalization_set(ps, method = "css")
normalized_ps_css <- result_css$dat.normed
scaling_factors_css <- result_css$scaling.factor
# TSS Normalization
data("physeq_ITSOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_tss <- normalization_set(ps, method = "tss")
normalized_ps_tss <- result_tss$dat.normed
scaling_factors_tss <- result_tss$scaling.factor
# RLE Normalization
data("physeq_ITSOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_rle <- normalization_set(ps, method = "rle")
normalized_ps_rle <- result_rle$dat.normed
scaling_factors_rle <- result_rle$scaling.factor
Ridge plot
ridge_physeq <- ridge_plot_it(physeq_ITSOTU, taxrank = "Family", top_n = 10)+ scale_fill_manual(values = DspikeIn::color_palette$cool_MG)
ridge_physeq
ps <- physeq_ITSOTU
result_css <- normalization_set(ps, method = "css")
#> Removing 1 samples with zero, negative counts, or NA values.
normalized_ps_css <- result_css$dat.normed
ridge_physeq <- ridge_plot_it(normalized_ps_css, taxrank = "Family", top_n = 10)+ scale_fill_manual(values = DspikeIn::color_palette$cool_MG)
ridge_physeq
remove the spike-in sp before further analysis
absolute <- phyloseq::subset_taxa(physeq_absolute, Genus!="Dekkera")
Caudate_abs <- phyloseq::subset_samples(absolute, Clade.Order == "Caudate" )
Three_Genara_abs <- phyloseq::subset_samples(Caudate_abs, Host.genus %in% c("Desmognathus", "Plethodon", "Eurycea"))
Three_Genara_abs_BlueRidge<- phyloseq::subset_samples(Three_Genara_abs,Ecoregion.III=="Blue Ridge" )
Desmog_Blue_Ins_ITS_abs<- phyloseq::subset_samples(Three_Genara_abs_BlueRidge,Host.genus=="Desmognathus")
results_DESeq2 <- perform_and_visualize_DA(
obj = Desmog_Blue_Ins_ITS_abs,
method = "DESeq2",
group_var = "Host.taxon",
contrast = c("Desmognathus monticola", "Desmognathus imitator" ),
output_csv_path = "DA_DESeq2.csv",
target_glom = "Genus",
significance_level = 0.05
)
head(results_DESeq2$results)
#> # A tibble: 6 × 17
#> baseMean logFC lfcSE stat pvalue padj FDR Significance group OTU
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <fct> <chr>
#> 1 2 1.03e-14 0.544 1.90e-14 1.00 1 1 Not Signifi… Desm… 71c9…
#> 2 1 1.76e-23 0.748 2.35e-23 1 1 1 Not Signifi… Desm… 1bfe…
#> 3 1 1.76e-23 0.748 2.35e-23 1 1 1 Not Signifi… Desm… 9757…
#> 4 5.02 -3.56e- 2 0.357 -9.99e- 2 0.920 1 1 Not Signifi… Desm… d8b7…
#> 5 1 1.76e-23 0.748 2.35e-23 1 1 1 Not Signifi… Desm… f80a…
#> 6 3 8.42e-15 0.452 1.86e-14 1.00 1 1 Not Signifi… Desm… 097f…
#> # ℹ 7 more variables: Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>,
#> # Family <chr>, Genus <chr>, Species <chr>
results_DESeq2$obj_significant
#> phyloseq-class experiment-level object
#> otu_table() OTU Table: [ 4 taxa and 42 samples ]:
#> sample_data() Sample Data: [ 42 samples by 39 sample variables ]:
#> tax_table() Taxonomy Table: [ 4 taxa by 7 taxonomic ranks ]:
#> phy_tree() Phylogenetic Tree: [ 4 tips and 3 internal nodes ]:
#> refseq() DNAStringSet: [ 4 reference sequences ]
#> taxa are rows
results_DESeq2$plot
# Relative abundance
# data("physeq_ITSOTU",package = "DspikeIn")
relative <- tidy_phyloseq_tse(physeq_ITSOTU)
relative <- phyloseq::subset_taxa(physeq_ITSOTU, Genus!="Dekkera")
Caudate_rel <- phyloseq::subset_samples(relative, Clade.Order == "Caudate" )
Three_Genara_rel <- phyloseq::subset_samples(Caudate_rel, Host.genus %in% c("Desmognathus", "Plethodon", "Eurycea"))
Three_Genara_rel_BlueRidge<- phyloseq::subset_samples(Three_Genara_rel,Ecoregion.III=="Blue Ridge" )
Desmog_Blue_Ins_ITS_rel<- phyloseq::subset_samples(Three_Genara_rel_BlueRidge,Host.genus=="Desmognathus")
results_DESeq2_rel <- perform_and_visualize_DA(
obj = Desmog_Blue_Ins_ITS_rel,
method = "DESeq2",
group_var = "Host.taxon",
contrast = c("Desmognathus monticola", "Desmognathus imitator" ),
output_csv_path = "DA_DESeq2.csv",
target_glom = "Genus",
significance_level = 0.05
)
results_DESeq2_rel$plot
results_DESeq2_rel$results # sig taxa
#> # A tibble: 1,077 × 17
#> baseMean logFC lfcSE stat pvalue padj FDR Significance group
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <fct>
#> 1 3 7.47e-15 0.430 1.74e-14 1.00 1 1 Not Significant Desmog…
#> 2 1 1.73e-23 0.745 2.32e-23 1 1 1 Not Significant Desmog…
#> 3 1 1.73e-23 0.745 2.32e-23 1 1 1 Not Significant Desmog…
#> 4 1 1.73e-23 0.745 2.32e-23 1 1 1 Not Significant Desmog…
#> 5 5.02 -3.56e- 2 0.334 -1.07e- 1 0.915 1 1 Not Significant Desmog…
#> 6 1 1.73e-23 0.745 2.32e-23 1 1 1 Not Significant Desmog…
#> 7 1 1.73e-23 0.745 2.32e-23 1 1 1 Not Significant Desmog…
#> 8 3 7.47e-15 0.430 1.74e-14 1.00 1 1 Not Significant Desmog…
#> 9 3 7.47e-15 0.430 1.74e-14 1.00 1 1 Not Significant Desmog…
#> 10 4 4.87e-15 0.374 1.30e-14 1.00 1 1 Not Significant Desmog…
#> # ℹ 1,067 more rows
#> # ℹ 8 more variables: OTU <chr>, Kingdom <chr>, Phylum <chr>, Class <chr>,
#> # Order <chr>, Family <chr>, Genus <chr>, Species <chr>
results_DESeq2_rel$bar_bplot
#> NULL
# ===========================================================
# Visualization of community composition
# ===========================================================
relative_Des <- physeq_ITSOTU %>%
phyloseq::subset_taxa(Genus != "Dekkera") %>%
phyloseq::subset_samples(Clade.Order == "Caudate") %>%
phyloseq::subset_samples(Host.genus %in% c("Desmognathus", "Plethodon", "Eurycea")) %>%
phyloseq::subset_samples(Ecoregion.III == "Blue Ridge") %>%
phyloseq::subset_samples(Host.genus == "Desmognathus")
taxa_barplot(
relative_Des,
target_glom = "Genus",
custom_tax_names = NULL,
normalize = TRUE,
treatment_variable = "Animal.ecomode",
abundance_type = "relative",
x_angle = 25,
fill_variable = "Genus",
facet_variable = "Diet",
top_n_taxa = 15,
palette = DspikeIn::color_palette$cool_MG,
legend_size = 11,
legend_columns = 1,
x_scale = "free",
xlab = NULL
)
#> $barplot
#>
#> $taxa_data
#> phyloseq-class experiment-level object
#> otu_table() OTU Table: [ 16 taxa and 42 samples ]:
#> sample_data() Sample Data: [ 42 samples by 32 sample variables ]:
#> tax_table() Taxonomy Table: [ 16 taxa by 7 taxonomic ranks ]:
#> taxa are rows
# ===========================================================
# 1. Initialization and loading NetWorks for Comparision
# ===========================================================
#library(SpiecEasi)
#library(ggnet)
library(igraph)
library(tidyr)
library(dplyr)
library(ggpubr)
# To create a microbial co-occurrence network, you can refer to the SpiecEasi package available at:
# SpiecEasi GitHub Repository https://github.com/zdk123/SpiecEasi
# herp.Bas.rel.f is a merged phyloseq object for both bacterial and fungal domains
# herp.spiec <- spiec.easi(herp.Bas.rel.f, method='mb', lambda.min.ratio=1e-3, nlambda=250,pulsar.select=TRUE )
# write_graph(herp.spiec, "Complete.graphml", "graphml")
Complete <- load_graphml("Complete.graphml")
NoBasid <- load_graphml("NoBasid.graphml")
NoHubs <- load_graphml("NoHubs.graphml")
# ===========================================================
# 2. Metrics Calculation
# ===========================================================
result_Complete <- node_level_metrics(Complete)
result_NoHubs <- node_level_metrics(NoHubs)
result_NoBasid <- node_level_metrics(NoBasid)
Complete_metrics<-result_Complete$metrics
Nohub_metrics<-result_NoHubs$metrics
Nobasid_metrics<-result_NoBasid$metrics
Complete_metrics <- data.frame(lapply(Complete_metrics, as.character), stringsAsFactors = FALSE)
Nohub_metrics <- data.frame(lapply(Nohub_metrics, as.character), stringsAsFactors = FALSE)
Nobasid_metrics <- data.frame(lapply(Nobasid_metrics, as.character), stringsAsFactors = FALSE)
print(vcount(Complete)) # Number of nodes
#> [1] 308
print(ecount(Complete)) # Number of edges
#> [1] 1144
print(vcount(NoBasid))
#> [1] 307
print(ecount(NoBasid))
#> [1] 1187
print(vcount(NoHubs))
#> [1] 286
print(ecount(NoHubs))
#> [1] 916
metrics_scaled <- bind_rows(
Complete_metrics %>% mutate(Network = "Complete"),
Nohub_metrics %>% mutate(Network = "NoHubs"),
Nobasid_metrics %>% mutate(Network = "NoBasid")
) %>%
dplyr::mutate(dplyr::across(where(is.numeric), scale))
metrics_long_scaled <- metrics_scaled %>%
tidyr::pivot_longer(cols = -c(Node, Network), names_to = "Metric", values_to = "Value")
bind the metrics to plot them
# ===========================================================
# 3. Visualization
# ===========================================================
# Remove missing values
metrics_long_scaled <- na.omit(metrics_long_scaled)
# We visualize only six metrics
selected_metrics <- c("Degree", "Closeness", "Betweenness",
"EigenvectorCentrality", "PageRank", "Transitivity")
metrics_long_filtered <- metrics_long_scaled %>%
filter(Metric %in% selected_metrics) %>%
mutate(
Value = as.numeric(as.character(Value)),
Network = recode(Network,
"Complete" = "Complete Network",
"NoHubs" = "Network & Module Hubs Removed",
"NoBasid" = "Basidiobolus Subnetwork Removed") ) %>%
na.omit() # Remove any NA
metrics_long_filtered$Network <- factor(metrics_long_filtered$Network,
levels = c("Complete Network",
"Network & Module Hubs Removed",
"Basidiobolus Subnetwork Removed"))
# DspikeIn::color_palette$light_MG
network_colors <- c(
"Complete Network" = "#F1E0C5",
"Network & Module Hubs Removed" = "#D2A5A1",
"Basidiobolus Subnetwork Removed" = "#B2C3A8"
)
# statistical comparisons a vs b
comparisons <- list(
c("Complete Network", "Network & Module Hubs Removed"),
c("Complete Network", "Basidiobolus Subnetwork Removed"),
c("Network & Module Hubs Removed", "Basidiobolus Subnetwork Removed")
)
networks_in_data <- unique(metrics_long_filtered$Network)
comparisons <- comparisons[sapply(comparisons, function(pair) all(pair %in% networks_in_data))]
ggplot(metrics_long_filtered, aes(x = Network, y = Value, fill = Network)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(aes(color = Network),
position = position_jitter(0.2), alpha = 0.2, size = 1.5) +
scale_fill_manual(values = network_colors) +
scale_color_manual(values = network_colors) +
facet_wrap(~ Metric, scales = "free_y", labeller = label_wrap_gen(width = 20)) +
ggpubr::stat_compare_means(method = "wilcox.test", label = "p.signif", comparisons = comparisons) +
theme_minimal() +
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 10, angle = 10, hjust = 0.8),
strip.text = element_text(size = 12, margin = margin(t = 15, b = 5)),
legend.position = "top",
legend.text = element_text(size = 13),
legend.title = element_text(size = 13, face = "bold"),
plot.title = element_text(size = 13, face = "bold")
) +
labs(title = "Selected Node Metrics Across Networks", fill = "Network Type", color = "Network Type")
Complete <- load_graphml("Complete.graphml")
result2 <- extract_neighbors(graph = Complete,
target_node = "OTU69:Basidiobolus_sp", mode = "all")
print(result2$summary)
#> Type Node
#> 1 First Neighbor OTU8:Mortierella_sp
#> 2 First Neighbor OTU13:Mortierella_sp
#> 3 First Neighbor OTU15:Mortierella_sp
#> 4 First Neighbor OTU16:Ascomycota_sp
#> 5 First Neighbor OTU18:Helotiales_sp
#> 6 First Neighbor OTU19:Margaritispora_monticola
#> 7 First Neighbor OTU20:Scytalidium_sp
#> 8 First Neighbor OTU27:Penicillium_glaucoalbidum
#> 9 First Neighbor OTU40:Tremella_sp
#> 10 First Neighbor OTU50:Taphrina_sp
#> 11 First Neighbor OTU135:uncultured_bacterium
#> 12 First Neighbor OTU146:uncultured_bacterium
#> 13 First Neighbor OTU153:uncultured_bacterium
#> 14 First Neighbor OTU230:uncultured_bacterium
#> 15 First Neighbor OTU247:uncultured_Firmicutes
#> 16 First Neighbor OTU287:uncultured_bacterium
#> 17 First Neighbor OTU300:Robinsoniella_peoriensis
#> 18 First Neighbor OTU312:uncultured_Verrucomicrobia
#> 19 Second Neighbor OTU4:Mortierella_pulchella
#> 20 Second Neighbor OTU12:Mortierella_gemmifera
#> 21 Second Neighbor OTU36:Inocybe_sp
#> 22 Second Neighbor OTU7:Mortierella_pulchella
#> 23 Second Neighbor OTU66:Tausonia_pullulans
#> 24 Second Neighbor OTU141:uncultured_bacterium
#> 25 Second Neighbor OTU268:uncultured_bacterium
#> 26 Second Neighbor OTU1:Lilapila_jurana
#> 27 Second Neighbor OTU11:Podila_humilis
#> 28 Second Neighbor OTU22:Sclerotiniaceae_sp
#> 29 Second Neighbor OTU51:Tremellales_sp
#> 30 Second Neighbor OTU42:Armillaria_borealis
#> 31 Second Neighbor OTU44:Kuehneromyces_rostratus
#> 32 Second Neighbor OTU67:Rhodosporidiobolus_colostri
#> 33 Second Neighbor OTU86:Fungi_sp
#> 34 Second Neighbor OTU28:Penicillium_glaucoalbidum
#> 35 Second Neighbor OTU29:Cladophialophora_sp
#> 36 Second Neighbor OTU85:Mucorales_sp
#> 37 Second Neighbor OTU25:Cryptosporiopsis_sp
#> 38 Second Neighbor OTU34:Paraboeremia_selaginellae
#> 39 Second Neighbor OTU61:Rozellomycota_sp
#> 40 Second Neighbor OTU82:Mycoacia_fuscoatra
#> 41 Second Neighbor OTU151:Ruminococcaceae_bacterium
#> 42 Second Neighbor OTU198:uncultured_bacterium
#> 43 Second Neighbor OTU289:uncultured_Bacteroidetes
#> 44 Second Neighbor OTU10:Dissophora_globulifera
#> 45 Second Neighbor OTU31:Clonostachys_krabiensis
#> 46 Second Neighbor OTU45:Ganoderma_carnosum
#> 47 Second Neighbor OTU78:Rozellomycota_sp
#> 48 Second Neighbor OTU79:Rozellomycota_sp
#> 49 Second Neighbor OTU14:Mortierella_sp
#> 50 Second Neighbor OTU39:Fungi_sp
#> 51 Second Neighbor OTU64:Curvibasidium_cygneicollum
#> 52 Second Neighbor OTU60:Chytriomycetaceae_sp
#> 53 Second Neighbor OTU68:Fungi_sp
#> 54 Second Neighbor OTU70:Rozellomycota_sp
#> 55 Second Neighbor OTU54:Papiliotrema_flavescens
#> 56 Second Neighbor OTU55:Papiliotrema_sp
#> 57 Second Neighbor OTU62:Tremellales_sp
#> 58 Second Neighbor OTU73:Chytridiomycota_sp
#> 59 Second Neighbor OTU105:uncultured_bacterium
#> 60 Second Neighbor OTU200:uncultured_bacterium
#> 61 Second Neighbor OTU224:Breznakia_pachnodae
#> 62 Second Neighbor OTU310:uncultured_bacterium
#> 63 Second Neighbor OTU100:uncultured_proteobacterium
#> 64 Second Neighbor OTU107:uncultured_bacterium
#> 65 Second Neighbor OTU123:anaerobic_digester
#> 66 Second Neighbor OTU124:uncultured_bacterium
#> 67 Second Neighbor OTU199:uncultured_bacterium
#> 68 Second Neighbor OTU206:uncultured_bacterium
#> 69 Second Neighbor OTU238:uncultured_bacterium
#> 70 Second Neighbor OTU261:uncultured_bacterium
#> 71 Second Neighbor OTU269:uncultured_Bacteroidetes
#> 72 Second Neighbor OTU270:Alistipes_sp.
#> 73 Second Neighbor OTU290:uncultured_bacterium
#> 74 Second Neighbor OTU104:uncultured_bacterium
#> 75 Second Neighbor OTU112:uncultured_bacterium
#> 76 Second Neighbor OTU120:uncultured_bacterium
#> 77 Second Neighbor OTU148:uncultured_bacterium
#> 78 Second Neighbor OTU175:uncultured_Firmicutes
#> 79 Second Neighbor OTU215:uncultured_bacterium
#> 80 Second Neighbor OTU236:uncultured_bacterium
#> 81 Second Neighbor OTU239:uncultured_bacterium
#> 82 Second Neighbor OTU251:uncultured_bacterium
#> 83 Second Neighbor OTU254:uncultured_Rikenella
#> 84 Second Neighbor OTU164:uncultured_Anaerotruncus
#> 85 Second Neighbor OTU165:uncultured_bacterium
#> 86 Second Neighbor OTU204:uncultured_organism
#> 87 Second Neighbor OTU205:uncultured_bacterium
#> 88 Second Neighbor OTU292:uncultured_bacterium
#> 89 Second Neighbor OTU309:Akkermansia_glycaniphila
#> 90 Second Neighbor OTU197:uncultured_bacterium
#> 91 Second Neighbor OTU285:uncultured_bacterium
#> 92 Second Neighbor OTU91:uncultured_Conexibacteraceae
#> 93 Second Neighbor OTU181:uncultured_bacterium
#> 94 Second Neighbor OTU194:Christensenella_minuta
#> 95 Second Neighbor OTU235:Paenibacillus_taiwanensis
#> 96 Second Neighbor OTU243:Bacteroides_sp.
#> 97 Second Neighbor OTU280:uncultured_bacterium
#> 98 Second Neighbor OTU282:uncultured_bacterium
#> 99 Second Neighbor OTU291:uncultured_bacterium
#> 100 Second Neighbor OTU172:uncultured_Firmicutes
#> 101 Second Neighbor OTU183:uncultured_Clostridiales
#> 102 Second Neighbor OTU185:unidentified
#> 103 Second Neighbor OTU196:uncultured_bacterium
#> 104 Second Neighbor OTU203:uncultured_bacterium
#> 105 Second Neighbor OTU226:Erysipelotrichaceae_bacterium
#> 106 Second Neighbor OTU253:uncultured_bacterium
#> 107 Second Neighbor OTU277:Mucinivorans_hirudinis
#> 108 Second Neighbor OTU297:uncultured_bacterium
#> 109 Second Neighbor OTU306:uncultured_bacterium
#> 110 Second Neighbor OTU106:Mucinivorans_hirudinis
#> 111 Second Neighbor OTU111:Coprobacter_secundus
#> 112 Second Neighbor OTU126:Actinomycetales_bacterium
#> 113 Second Neighbor OTU154:Hydrogenoanaerobacterium_saccharovorans
#> 114 Second Neighbor OTU166:uncultured_bacterium
#> 115 Second Neighbor OTU187:bacterium_endosymbiont
#> 116 Second Neighbor OTU208:uncultured_bacterium
#> 117 Second Neighbor OTU210:uncultured_bacterium
#> 118 Second Neighbor OTU262:uncultured_bacterium
# Load required libraries
library(igraph)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggrepel)
# Compute Node-Level Metrics
completeMetrics <- node_level_metrics(Complete)
NoHubsMetrics <- node_level_metrics(NoHubs)
NoBasidMetrics <- node_level_metrics(NoBasid)
# Ensure each dataset has a "Network" column before combining
completeMetrics$metrics <- completeMetrics$metrics %>% mutate(Network = "Complete Network")
NoHubsMetrics$metrics <- NoHubsMetrics$metrics %>% mutate(Network = "Network & Module Hubs Removed")
NoBasidMetrics$metrics <- NoBasidMetrics$metrics %>% mutate(Network = "Basidiobolus Subnetwork Removed")
# Combine All Data
combined_data <- bind_rows(
completeMetrics$metrics,
NoHubsMetrics$metrics,
NoBasidMetrics$metrics
)
# Add Node Identifier if missing
if (!"Node" %in% colnames(combined_data)) {
combined_data <- combined_data %>% mutate(Node = rownames(.))
}
# Convert `Network` into Factor
combined_data$Network <- factor(combined_data$Network, levels = c(
"Complete Network",
"Network & Module Hubs Removed",
"Basidiobolus Subnetwork Removed"
))
# Convert Data to Long Format
metrics_long <- combined_data %>%
pivot_longer(cols = c("Redundancy", "Efficiency", "Betweenness"),
names_to = "Metric", values_to = "Value")
# Define Custom Colors and Shapes
network_colors <- c(
"Complete Network" = "#F1E0C5",
"Network & Module Hubs Removed" = "#D2A5A1",
"Basidiobolus Subnetwork Removed" = "#B2C3A8"
)
network_shapes <- c(
"Complete Network" = 21,
"Network & Module Hubs Removed" = 22,
"Basidiobolus Subnetwork Removed" = 23
)
# Determine Top 30% of Nodes to Label/Optional
metrics_long <- metrics_long %>%
group_by(Network, Metric) %>%
mutate(Label = ifelse(rank(-Value, ties.method = "random") / n() <= 0.3, Node, NA))
#?quadrant_plot() can creat plot for indivisual network
# plot <- quadrant_plot(metrics, x_metric = "Degree", y_metric = "Efficiency")
# Create comparision Plots
create_metric_plot <- function(metric_name, data, title) {
data_filtered <- data %>% filter(Metric == metric_name)
median_degree <- median(data_filtered$Degree, na.rm = TRUE)
median_value <- median(data_filtered$Value, na.rm = TRUE)
ggplot(data_filtered, aes(x = Degree, y = Value, fill = Network)) +
geom_point(aes(shape = Network), size = 3, stroke = 1, color = "black") +
geom_text_repel(aes(label = Label), size = 3, max.overlaps = 50) +
scale_fill_manual(values = network_colors) +
scale_shape_manual(values = network_shapes) +
geom_vline(xintercept = median_degree, linetype = "dashed", color = "black", size = 1) +
geom_hline(yintercept = median_value, linetype = "dashed", color = "black", size = 1) +
labs(
title = title,
x = "Degree",
y = metric_name,
fill = "Network",
shape = "Network"
) +
theme_minimal() +
theme(
plot.title = element_text(
hjust = 0.5, size = 16, face = "bold",
margin = margin(t = 10, b = 20) # Moves the title downward
),
axis.title = element_text(size = 14, face = "bold"),
legend.position = "top",
legend.title = element_text(size = 14, face = "bold"),
legend.text = element_text(size = 12)
)
}
# Generate Plots
plot_redundancy <- create_metric_plot("Redundancy", metrics_long, "Redundancy vs. Degree Across Networks")
plot_efficiency <- create_metric_plot("Efficiency", metrics_long, "Efficiency vs. Degree Across Networks")
plot_betweenness <- create_metric_plot("Betweenness", metrics_long, "Betweenness vs. Degree Across Networks")
# Save Plots
#ggsave("plot_redundancy_20percent.png", plot_redundancy, width = 8, height = 6)
#ggsave("plot_efficiency_20percent.png", plot_efficiency, width = 8, height = 6)
#ggsave("plot_betweenness_20percent.png", plot_betweenness, width = 8, height = 6)
# Print Plots
print(plot_redundancy)
# Compute degree metrics and visualize the network
# Options: `"stress"` (default), `"graphopt"`, `"fr"`
result <- degree_network(graph_path = Complete, save_metrics = TRUE)
print(result$metrics)
print(result$plot)
# Compute network weights for different graph structures
NH <- weight_Network(graph_path = "NoHubs.graphml")
NB <- weight_Network(graph_path = "NoBasid.graphml")
C <- weight_Network(graph_path = "Complete.graphml")
# Extract metrics from the computed network weights
CompleteM <- C$metrics
NoHubsM <- NH$metrics
NoBasidM <- NB$metrics
# Combine metrics into a single dataframe for comparison
df <- bind_rows(
CompleteM %>% mutate(Group = "CompleteM"),
NoHubsM %>% mutate(Group = "NoHubsM"),
NoBasidM %>% mutate(Group = "NoBasidM")
) %>%
pivot_longer(cols = -Group, names_to = "Metric", values_to = "Value")
# Aggregate the total values by metric and group
df_bar <- df %>%
group_by(Metric, Group) %>%
summarise(Total_Value = sum(Value), .groups = "drop")
# Plot the metrics comparison
ggplot(df_bar, aes(x = Metric, y = log1p(Total_Value), fill = Group)) +
geom_bar(stat = "identity", position = "dodge", alpha = 0.8) +
theme_minimal(base_size = 14) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_manual(values = c("#F1E0C5", "#D2A5A1", "#B2C3A8")) +
labs(title = "Total Network Metrics Comparison",
x = "Metric",
y = "Total Value (log-scaled)",
fill = "Group")
Spike-in volume Protocol; To get support for the whole-cell spike-in protocol, please contact Donnald Walker at Donald.Walker@mtsu.edu.
The species Tetragenococcus halophilus (bacterial spike; ATCC33315) and Dekkera bruxellensis (fungal spike; WLP4642-White Labs) were selected as taxa to spike into gut microbiome samples as they were not found in an extensive collection of wildlife skin (GenBank BioProjects: PRJNA1114724, PRJNA 1114659) or gut microbiome samples. Stock cell suspensions of both microbes were grown in either static tryptic soy broth (T. halophilus) or potato dextrose broth (D. bruxellensis) for 72 hours then serially diluted and optical density (OD600) determined on a ClarioStar plate reader. Cell suspensions with an optical density of 1.0, 0.1, 0.01, 0.001 were DNA extracted using the Qiagen DNeasy Powersoil Pro Kit. These DNA isolations were used as standards to determine the proper spike in volume of cells to represent 0.1-10% of a sample (Rao et al., 2021b) Fecal pellets (3.1 ± 1.6 mg; range = 1 – 5.1 mg) from an ongoing live animal study using wood frogs (Lithobates sylvaticus) were used to standardize the input material for the development of this protocol. A total of (n=9) samples were used to validate the spike in protocol. Each fecal sample was homogenized in 1mL of sterile molecular grade water then 250uL of fecal slurry was DNA extracted as above with and without spiked cells. Two approaches were used to evaluate the target spike-in of 0.1-10%, the range of effective spike-in percentage described in (Rao et al., 2021b), including 1) an expected increase of qPCR cycle threshold (Ct) value that is proportional to the amount of spiked cells and 2) the expected increase in copy number of T. halophilus and D. bruxellensis in spiked vs. unspiked samples. A standard curve was generated using a synthetic fragment of DNA for the 16S-V4 rRNA and ITS1 rDNA regions of T. halophilus and D. bruxellensis, respectively. The standard curve was used to convert Ct values into log copy number for statistical analyses (detailed approach in[2, 3]) using the formula y = -0.2426x + 10.584 for T. halophilus and y = -0.3071x + 10.349 for D. bruxellensis, where x is the average Ct for each unknown sample. Quantitative PCR (qPCR) was used to compare known copy numbers from synthetic DNA sequences of T. halophilus and D. bruxellensis to DNA extractions of T. halophilus and D. bruxellensis independently, and wood frog fecal samples with and without spiked cells. SYBR qPCR assays were run at 20ul total volume including 10ul 2X Quantabio PerfeCTa SYBR Green Fastmix, 1ul of 10uM forward and reverse primers, 1ul of ArcticEnzymes dsDNAse master mix clean up kit, and either 1ul of DNA for D. bruxellensis or 3ul for T. halophilus. Different volumes of DNA were chosen for amplification of bacteria and fungi due to previous optimization of library preparation and sequencing steps [3]. The 515F [4] and 806R [5] primers were chosen to amplify bacteria and ITS1FI2 [6] and ITS2 for fungi, as these are the same primers used during amplicon library preparation and sequencing. Cycling conditions on an Agilent AriaMX consisted of 95 C for 3 mins followed by 40 cycles of 95 C for 15 sec, 60 C for 30 sec and 72 C for 30 sec. Following amplification, a melt curve was generated under the following conditions including 95 C for 30 sec, and a melt from 60 C to 90 C increasing in resolution of 0.5 C in increments of a 5 sec soak time. To validate the spike in protocol we selected two sets of fecal samples including 360 samples from a diverse species pool of frogs, lizards, salamanders and snakes and a more targeted approach of 122 fecal samples from three genera of salamanders from the Plethodontidae. (Supplemental Table #). FFecal samples were not weighed in the field, rather, a complete fecal pellet was diluted in an equal volume of sterile water and standardized volume of fecal slurry (250µL) extracted for independent samples.. A volume of 1ul T. halophilus (1847 copies) and 1ul D. bruxellensis (733 copies) were spiked into each fecal sample then DNA was extracted as above, libraries constructed, and amplicon sequenced on an Illumina MiSeq as in [7] .