1. load libraries

2. Load the filtered list on mean expression


# Load the DE results from CSV
df <- read.csv("2-Pseudobulk_Deseq2_LRT_filtered_on_mean.csv", stringsAsFactors = FALSE)


DE_results_df <- df

3. Summarize Markers

markers <- DE_results_df

summarize_markers <- function(markers) {
  num_pval0 <- sum(markers$p_val_adj == 0)
  num_pval1 <- sum(markers$p_val_adj == 1)
  num_upregulated <- sum(markers$avg_logFC > 1.5)
  num_downregulated <- sum(markers$avg_logFC < -1)
  num_significant <- sum(markers$p_val_adj < 0.05)
  
  
  cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
  cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
  cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
  cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
  cat("Number of significant genes (p_val_adj < 0.05):", num_significant, "\n")
}

cat("Markers Summary at 0.05:\n")
Markers Summary at 0.05:
summarize_markers(markers)
Number of genes with p_val_adj = 0: 0 
Number of genes with p_val_adj = 1: 12 
Number of upregulated genes (avg_logFC > 1.5): 824 
Number of downregulated genes (avg_logFC < -1): 531 
Number of significant genes (p_val_adj < 0.05): 2929 
markers2 <- DE_results_df
summarize_markers <- function(markers) {
  num_pval0 <- sum(markers$p_val_adj == 0)
  num_pval1 <- sum(markers$p_val_adj == 1)
  num_upregulated <- sum(markers$avg_logFC > 1.5)
  num_downregulated <- sum(markers$avg_logFC < -1)
  num_significant <- sum(markers$p_val_adj < 1e-4)
  
  cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
  cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
  cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
  cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
  cat("Number of significant genes (p_val_adj < 1e-4):", num_significant, "\n")
}

cat("Markers Summary at 1e-4:\n")
Markers Summary at 1e-4:
summarize_markers(markers2)
Number of genes with p_val_adj = 0: 0 
Number of genes with p_val_adj = 1: 12 
Number of upregulated genes (avg_logFC > 1.5): 824 
Number of downregulated genes (avg_logFC < -1): 531 
Number of significant genes (p_val_adj < 1e-4): 975 
markers3 <- DE_results_df
summarize_markers <- function(markers) {
  num_pval0 <- sum(markers$p_val_adj == 0)
  num_pval1 <- sum(markers$p_val_adj == 1)
  num_upregulated <- sum(markers$avg_logFC > 1.5)
  num_downregulated <- sum(markers$avg_logFC < -1)
  num_significant <- sum(markers$p_val_adj < 1e-6)
  
  cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
  cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
  cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
  cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
  cat("Number of significant genes (p_val_adj < 1e-6):", num_significant, "\n")
}

cat("Markers Summary at 1e-6:\n")
Markers Summary at 1e-6:
summarize_markers(markers3)
Number of genes with p_val_adj = 0: 0 
Number of genes with p_val_adj = 1: 12 
Number of upregulated genes (avg_logFC > 1.5): 824 
Number of downregulated genes (avg_logFC < -1): 531 
Number of significant genes (p_val_adj < 1e-6): 540 
markers4 <- DE_results_df
summarize_markers <- function(markers) {
  num_pval0 <- sum(markers$p_val_adj == 0)
  num_pval1 <- sum(markers$p_val_adj == 1)
  num_upregulated <- sum(markers$avg_logFC > 1.5)
  num_downregulated <- sum(markers$avg_logFC < -1)
  num_significant <- sum(markers$p_val_adj < 1e-10)
  
  cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
  cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
  cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
  cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
  cat("Number of significant genes (p_val_adj < 1e-10):", num_significant, "\n")
  }

cat("Markers Summary at 1e-10:\n")
Markers Summary at 1e-10:
summarize_markers(markers4)
Number of genes with p_val_adj = 0: 0 
Number of genes with p_val_adj = 1: 12 
Number of upregulated genes (avg_logFC > 1.5): 824 
Number of downregulated genes (avg_logFC < -1): 531 
Number of significant genes (p_val_adj < 1e-10): 268 
markers5 <- DE_results_df
summarize_markers <- function(markers) {
  num_pval0 <- sum(markers$p_val_adj == 0)
  num_pval1 <- sum(markers$p_val_adj == 1)
  num_upregulated <- sum(markers$avg_logFC > 1.5)
  num_downregulated <- sum(markers$avg_logFC < -1)
  num_significant <- sum(markers$p_val_adj < 1e-15)
  
  cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
  cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
  cat("Number of upregulated genes (avg_logFC > 1.5):", num_upregulated, "\n")
  cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
  cat("Number of significant genes (p_val_adj < 1e-15):", num_significant, "\n")
}

cat("Markers Summary at 1e-15:\n")
Markers Summary at 1e-15:
summarize_markers(markers5)
Number of genes with p_val_adj = 0: 0 
Number of genes with p_val_adj = 1: 12 
Number of upregulated genes (avg_logFC > 1.5): 824 
Number of downregulated genes (avg_logFC < -1): 531 
Number of significant genes (p_val_adj < 1e-15): 153 

4. Volcano Plots

library(ggplot2)
library(dplyr)

Attaching package: ‘dplyr’

The following object is masked from ‘package:Biobase’:

    combine

The following objects are masked from ‘package:GenomicRanges’:

    intersect, setdiff, union

The following object is masked from ‘package:GenomeInfoDb’:

    intersect

The following objects are masked from ‘package:IRanges’:

    collapse, desc, intersect, setdiff, slice, union

The following objects are masked from ‘package:S4Vectors’:

    first, intersect, rename, setdiff, setequal, union

The following objects are masked from ‘package:BiocGenerics’:

    combine, intersect, setdiff, union

The following object is masked from ‘package:matrixStats’:

    count

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union
library(ggrepel)


# Ensure correct column names
colnames(DE_results_df)
 [1] "cell_type"     "gene"          "avg_logFC"     "Malignant.pct" "Control.pct"   "Malignant.exp" "Control.exp"   "p_val"        
 [9] "p_val_adj"     "de_family"     "de_method"     "de_type"      
# Define significance categories
volcano_data <- DE_results_df %>%
  mutate(
    significance = case_when(
      p_val_adj < 1e-20 & avg_logFC > 2 ~ "Most Upregulated",
      p_val_adj < 1e-20 & avg_logFC < -2 ~ "Most Downregulated",
      p_val_adj < 0.05 & avg_logFC > 2 ~ "Upregulated",
      p_val_adj < 0.05 & avg_logFC < -2 ~ "Downregulated",
      TRUE ~ "Not Significant"
    )
  )

# Select only very significant genes for labeling
top_genes <- volcano_data %>%
  filter(p_val_adj < 0.05 & (avg_logFC > 2 | avg_logFC < -2))

ggplot(volcano_data, aes(x = avg_logFC, y = -log10(p_val_adj), color = significance)) +
  
  # Main points
  geom_point(alpha = 0.7, size = 2.5) +
  
  # Highlight highly significant genes with larger points
  geom_point(data = top_genes, aes(x = avg_logFC, y = -log10(p_val_adj)), 
             color = "black", size = 3, shape = 21, fill = "black") +

  # Custom color scheme
  scale_color_manual(values = c(
    "Most Upregulated" = "darkred",
    "Most Downregulated" = "darkblue",
    "Upregulated" = "red",
    "Downregulated" = "blue",
    "Not Significant" = "grey"
  )) +

  # Add gene labels (only for highly significant genes)
  geom_text_repel(data = top_genes, aes(label = gene),  
                  size = 4, box.padding = 0.5, max.overlaps = 10, segment.color = NA) +
  
  # Add threshold lines
  geom_vline(xintercept = c(-2, 2), linetype = "dashed", color = "black") +  
  geom_hline(yintercept = -log10(0.05), linetype = "dashed", color = "black") +  

  # Improve theme
  theme_minimal(base_size = 14) +
  labs(title = "Volcano Plot: Pseudobulk DESeq2 Analysis",
       x = "Log2 Fold Change",
       y = "-Log10 Adjusted P-Value",
       color = "Significance") +

  ylim(0, 50)  # Avoid extreme scaling issues

NA
NA

EnhancedVolcano plot


library(dplyr)
library(EnhancedVolcano)

# Assuming you have a data frame named Malignant_CD4Tcells_vs_Normal_CD4Tcells
# Filter genes based on lowest p-values but include all genes
filtered_genes <- markers %>%
  arrange(p_val_adj, desc(abs(avg_logFC)))

# Create the EnhancedVolcano plot with the filtered data
EnhancedVolcano(
  filtered_genes, 
  lab = ifelse(filtered_genes$p_val_adj <= 1e-6 & abs(filtered_genes$avg_logFC) >= 1.5, filtered_genes$gene, NA),
  x = "avg_logFC", 
  y = "p_val_adj",
  title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
  pCutoff = 1e-6,
  FCcutoff = 1.0,
  legendPosition = 'right', 
  labCol = 'black',
  labFace = 'bold',
  boxedLabels = FALSE,  # Set to FALSE to remove boxed labels
  pointSize = 3.0,
  labSize = 5.0,
  col = c('grey70', 'black', 'blue', 'red'),  # Customize point colors
  selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0]  # Only label significant genes
)

NA
NA
NA

EnhancedVolcano plot


library(ggplot2)
library(EnhancedVolcano)
library(dplyr)

# Define the output directory
output_dir <- "Malignant_vs_Control_300"
dir.create(output_dir, showWarnings = FALSE)

 Malignant_CD4Tcells_vs_Normal_CD4Tcells <- filtered_genes

# First Volcano Plot
p1 <- EnhancedVolcano(
  Malignant_CD4Tcells_vs_Normal_CD4Tcells,
  lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
  x = "avg_logFC",
  y = "p_val_adj",
  title = "Malignant_CD4Tcells_vs_Normal_CD4Tcells",
  pCutoff = 1e-4,
  FCcutoff = 1.0
)
print(p1)  # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot1.png"), plot = p1, width = 14, height = 10, dpi = 300)

# Second Volcano Plot with selected genes
p2 <- EnhancedVolcano(
  Malignant_CD4Tcells_vs_Normal_CD4Tcells, 
  lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
  x = "avg_logFC", 
  y = "p_val_adj",
  selectLab = c('EPCAM', 'BCAT1', 'KIR3DL2', 'FOXM1', 'TWIST1', 'TNFSF9', 
                              'CD80',  'IL1B', 'RPS4Y1', "TOX", "CD52", "TWIST1", "CCR4", "CCR7","PDCD1",
                              'IL7R', 'TCF7',  'MKI67', 'CD70', "DPP4",
                              'IL2RA','TRBV6-2', 'TRBV10-3', 'TRBV4-2', 'TRBV9', 'TRBV7-9', 
                              'TRAV12-1', 'CD8B', 'FCGR3A', 'GNLY', 'FOXP3', 'SELL', 
                              'GIMAP1', 'RIPOR2', 'LEF1', 'HOXC9', 'SP5',
                              'CCL17', 'ETV4', 'THY1', 'FOXA2', 'ITGAD', 'S100P', 'TBX4', 
                              'ID1', 'XCL1', 'SOX2', 'CD27', 'CD28','PLS3','CD70','RAB25' , 'TRBV27', 'TRBV2'),
  title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
  xlab = bquote(~Log[2]~ 'fold change'),
  pCutoff = 0.05,
  FCcutoff = 1.5, 
  pointSize = 3.0,
  labSize = 5.0,
  boxedLabels = TRUE,
  colAlpha = 0.5,
  legendPosition = 'right',
  legendLabSize = 10,
  legendIconSize = 4.0,
  drawConnectors = TRUE,
  widthConnectors = 0.5,
  colConnectors = 'grey50',
  arrowheads = FALSE,
  max.overlaps = 30
)
print(p2)  # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot2.png"), plot = p2, width = 14, height = 10, dpi = 300)

# Filtering genes
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
  arrange(p_val_adj, desc(abs(avg_logFC)))

# Third Volcano Plot - Filtering by p-value and logFC
p3 <- EnhancedVolcano(
  filtered_genes, 
  lab = ifelse(filtered_genes$p_val_adj <= 1e-4 & abs(filtered_genes$avg_logFC) >= 1.0, filtered_genes$gene, NA),
  x = "avg_logFC", 
  y = "p_val_adj",
  title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
  pCutoff = 1e-4,
  FCcutoff = 1.0,
  legendPosition = 'right', 
  labCol = 'black',
  labFace = 'bold',
  boxedLabels = FALSE,  # Remove boxed labels
  pointSize = 3.0,
  labSize = 5.0,
  col = c('grey70', 'black', 'blue', 'red'),  # Customize point colors
  selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0]
)
print(p3)  # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot3.png"), plot = p3, width = 14, height = 10, dpi = 300)

# Fourth Volcano Plot - More refined filtering
p4 <- EnhancedVolcano(
  filtered_genes, 
  lab = ifelse(filtered_genes$p_val_adj <= 1e-4 & abs(filtered_genes$avg_logFC) >= 1.0, filtered_genes$gene, NA),
  x = "avg_logFC", 
  y = "p_val_adj",
  title = "Malignant CD4 T cells (cell lines) vs Normal CD4 T cells",
  subtitle = "Highlighting differentially expressed genes",
  pCutoff = 1e-4,
  FCcutoff = 1.0,
  legendPosition = 'right',
  colAlpha = 0.8,  # Slight transparency for non-significant points
  col = c('grey70', 'black', 'blue', 'red'),  # Custom color scheme
  gridlines.major = TRUE,
  gridlines.minor = FALSE,
  selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0]
)
print(p4)  # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot4.png"), plot = p4, width = 14, height = 10, dpi = 300)

message("All volcano plots have been displayed and saved successfully in the 'Malignant_vs_Control' folder.")
All volcano plots have been displayed and saved successfully in the 'Malignant_vs_Control' folder.

5. Enrichment Analysis-All_Pathways

# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(ReactomePA)
library(DOSE) # For GSEA analysis
library(ggplot2) # Ensure ggplot2 is available for plotting
library(dplyr)

# Define the output folder where the results will be saved
output_folder <- "Malignant_vs_Control_300/"

# Create the output folder if it doesn't exist
if (!dir.exists(output_folder)) {
  dir.create(output_folder)
}

# Define the number of upregulated and downregulated genes to select
UP_genes <- 300
Down_genes <- 300

# Define threshold for differential expression selection (modified thresholds)
logFC_up_threshold <- 1.5          # Upregulated logFC threshold
logFC_down_threshold <- -1         # Downregulated logFC threshold

# Load your differential expression results (modify based on actual data structure)
# Malignant_CD4Tcells_vs_Normal_CD4Tcells <- read.csv("Your_DE_Results_File.csv")

# Filter the genes based on avg_logFC and arrange by p_val_adj
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
  filter(avg_logFC > logFC_up_threshold | avg_logFC < logFC_down_threshold) %>%
  arrange(p_val_adj)

# Separate upregulated and downregulated genes
upregulated_genes <- filtered_genes %>%
  filter(avg_logFC > logFC_up_threshold)

downregulated_genes <- filtered_genes %>%
  filter(avg_logFC < logFC_down_threshold)

# Check if there are fewer than the specified number of upregulated genes
if (nrow(upregulated_genes) < UP_genes) {
  top_upregulated_genes <- upregulated_genes
  cat("Number of upregulated genes selected:", nrow(top_upregulated_genes), "\n")
  cat("p_val_adj value for the last selected upregulated gene:", tail(top_upregulated_genes$p_val_adj, 1), "\n")
} else {
  # Select the specified number of upregulated genes
  top_upregulated_genes <- upregulated_genes %>%
    head(UP_genes)
  cat("Number of upregulated genes selected:", nrow(top_upregulated_genes), "\n")
  cat("p_val_adj value for the last selected upregulated gene:", tail(top_upregulated_genes$p_val_adj, 1), "\n")
}
Number of upregulated genes selected: 300 
p_val_adj value for the last selected upregulated gene: 1.751475e-06 
# Check if there are fewer than the specified number of downregulated genes
if (nrow(downregulated_genes) < Down_genes) {
  top_downregulated_genes <- downregulated_genes
  cat("Number of downregulated genes selected:", nrow(top_downregulated_genes), "\n")
  cat("p_val_adj value for the last selected downregulated gene:", tail(top_downregulated_genes$p_val_adj, 1), "\n")
} else {
  # Select the specified number of downregulated genes
  top_downregulated_genes <- downregulated_genes %>%
    head(Down_genes)
  cat("Number of downregulated genes selected:", nrow(top_downregulated_genes), "\n")
  cat("p_val_adj value for the last selected downregulated gene:", tail(top_downregulated_genes$p_val_adj, 1), "\n")
}
Number of downregulated genes selected: 300 
p_val_adj value for the last selected downregulated gene: 0.02051237 
# Combine the top upregulated and downregulated genes
top_genes <- bind_rows(top_upregulated_genes, top_downregulated_genes)

# Check for missing genes (NAs) in the gene column and remove them
top_genes <- na.omit(top_genes)

# Save upregulated and downregulated gene results to CSV
write.csv(top_upregulated_genes, paste0(output_folder, "upregulated_genes.csv"), row.names = FALSE)
write.csv(top_downregulated_genes, paste0(output_folder, "downregulated_genes.csv"), row.names = FALSE)

# Convert gene symbols to Entrez IDs for enrichment analysis, with checks for missing values
upregulated_entrez <- bitr(top_upregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 2.33% of input gene IDs are fail to map...
downregulated_entrez <- bitr(top_downregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 4.33% of input gene IDs are fail to map...
# Check for missing Entrez IDs and retain gene names
missing_upregulated <- top_upregulated_genes$gene[!top_upregulated_genes$gene %in% upregulated_entrez$SYMBOL]
missing_downregulated <- top_downregulated_genes$gene[!top_downregulated_genes$gene %in% downregulated_entrez$SYMBOL]

# Print out the missing gene symbols for debugging
cat("Missing upregulated genes:\n", missing_upregulated, "\n")
Missing upregulated genes:
 AL662797.1 HIST1H3B H2AFX H2AFZ HIST1H1A AC006064.4 AC011603.2 
cat("Missing downregulated genes:\n", missing_downregulated, "\n")
Missing downregulated genes:
 TMEM8A C5orf17 MATR3.1 AC245407.2 FP671120.4 AC243960.1 LINC01578 AL589693.1 AC139720.1 AL138963.4 MT-ND3 TARSL2 AC119396.1 
# Merge the Entrez IDs back with the original data frames to retain gene names
top_upregulated_genes <- merge(top_upregulated_genes, upregulated_entrez, by.x = "gene", by.y = "SYMBOL", all.x = TRUE)
top_downregulated_genes <- merge(top_downregulated_genes, downregulated_entrez, by.x = "gene", by.y = "SYMBOL", all.x = TRUE)

# Remove genes that couldn't be mapped to Entrez IDs
top_upregulated_genes <- top_upregulated_genes[!is.na(top_upregulated_genes$ENTREZID), ]
top_downregulated_genes <- top_downregulated_genes[!is.na(top_downregulated_genes$ENTREZID), ]

# Extract Entrez IDs for enrichment analysis
upregulated_entrez <- top_upregulated_genes$ENTREZID
downregulated_entrez <- top_downregulated_genes$ENTREZID

# Define a function to safely run enrichment, plot results, and save them
safe_enrichGO <- function(gene_list, title, filename) {
  if (length(gene_list) > 0) {
    result <- enrichGO(gene = gene_list, OrgDb = org.Hs.eg.db, keyType = "SYMBOL",
                       ont = "BP", pAdjustMethod = "BH", pvalueCutoff = 0.05, readable = TRUE)
    if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
      p <- dotplot(result, showCategory = 10, title = title)
      print(p)  
      ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
      write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
    } else {
      message(paste("No significant enrichment found for:", title))
    }
  } else {
    message(paste("No genes found for:", title))
  }
}

safe_enrichKEGG <- function(entrez_list, title, filename) {
  if (length(entrez_list) > 0) {
    result <- enrichKEGG(gene = entrez_list, organism = "hsa", pvalueCutoff = 0.05)
    if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
      result <- setReadable(result, OrgDb = org.Hs.eg.db, keyType = "ENTREZID")
      p <- dotplot(result, showCategory = 10, title = title)
      print(p)
      ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
      write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
    } else {
      message(paste("No significant KEGG pathways found for:", title))
    }
  } else {
    message(paste("No genes found for:", title))
  }
}

safe_enrichReactome <- function(entrez_list, title, filename) {
  if (length(entrez_list) > 0) {
    result <- enrichPathway(gene = entrez_list, organism = "human", pvalueCutoff = 0.05)
    if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
      result <- setReadable(result, OrgDb = org.Hs.eg.db, keyType = "ENTREZID")
      p <- dotplot(result, showCategory = 10, title = title)
      print(p)
      ggsave(paste0(output_folder, gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
      write.csv(as.data.frame(result), file = paste0(output_folder, filename), row.names = FALSE)
    } else {
      message(paste("No significant Reactome pathways found for:", title))
    }
  } else {
    message(paste("No genes found for:", title))
  }
}

# Perform enrichment analyses, generate plots, and save results
safe_enrichGO(top_upregulated_genes$gene, "GO Enrichment for Upregulated Genes", "upregulated_GO_results.csv")

safe_enrichGO(top_downregulated_genes$gene, "GO Enrichment for Downregulated Genes", "downregulated_GO_results.csv")


safe_enrichKEGG(upregulated_entrez, "KEGG Pathway Enrichment for Upregulated Genes", "upregulated_KEGG_results.csv")

safe_enrichKEGG(downregulated_entrez, "KEGG Pathway Enrichment for Downregulated Genes", "downregulated_KEGG_results.csv")
No significant KEGG pathways found for: KEGG Pathway Enrichment for Downregulated Genes
safe_enrichReactome(upregulated_entrez, "Reactome Pathway Enrichment for Upregulated Genes", "upregulated_Reactome_results.csv")

safe_enrichReactome(downregulated_entrez, "Reactome Pathway Enrichment for Downregulated Genes", "downregulated_Reactome_results.csv")

Enrichment Analysis_Hallmark


# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)
library(ggplot2)
library(dplyr)

# Define the output folder where the results will be saved
output_folder <- "Malignant_vs_Control_300/"

# Load Hallmark gene sets from msigdbr
hallmark_sets <- msigdbr(species = "Homo sapiens", collection = "H")  # "H" is for Hallmark gene sets
The 'msigdbdf' package must be installed to access the full dataset.
# Convert gene symbols to uppercase for consistency
top_upregulated_genes$gene <- toupper(top_upregulated_genes$gene)
top_downregulated_genes$gene <- toupper(top_downregulated_genes$gene)

# Check for overlap between your upregulated/downregulated genes and Hallmark gene sets
upregulated_in_hallmark <- intersect(top_upregulated_genes$gene, hallmark_sets$gene_symbol)
downregulated_in_hallmark <- intersect(top_downregulated_genes$gene, hallmark_sets$gene_symbol)

# Print the number of overlapping genes for both upregulated and downregulated genes
cat("Number of upregulated genes in Hallmark gene sets:", length(upregulated_in_hallmark), "\n")
Number of upregulated genes in Hallmark gene sets: 167 
cat("Number of downregulated genes in Hallmark gene sets:", length(downregulated_in_hallmark), "\n")
Number of downregulated genes in Hallmark gene sets: 66 
# If there are genes to analyze, proceed with enrichment analysis
if (length(upregulated_in_hallmark) > 0) {
  # Perform enrichment analysis for upregulated genes using Hallmark gene sets
  hallmark_up <- enricher(gene = upregulated_in_hallmark, 
                          TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")],  # Ensure TERM2GENE uses correct columns
                          pvalueCutoff = 0.05)
  # Check if results exist
  if (!is.null(hallmark_up) && nrow(hallmark_up) > 0) {
    # Visualize results if available
    up_dotplot <- dotplot(hallmark_up, showCategory = 20, title = "Hallmark Pathway Enrichment for Upregulated Genes")
    
    # Display the plot in the notebook
    print(up_dotplot)
    
    # Save the dotplot to a PNG file
    ggsave(paste0(output_folder, "hallmark_upregulated_dotplot.png"), plot = up_dotplot, width = 10, height = 8)
    
    # Optionally, save the results as CSV
    write.csv(as.data.frame(hallmark_up), file = paste0(output_folder, "hallmark_upregulated_enrichment.csv"), row.names = FALSE)
  } else {
    cat("No significant enrichment found for upregulated genes.\n")
  }
} else {
  cat("No upregulated genes overlap with Hallmark gene sets.\n")
}


if (length(downregulated_in_hallmark) > 0) {
  # Perform enrichment analysis for downregulated genes using Hallmark gene sets
  hallmark_down <- enricher(gene = downregulated_in_hallmark, 
                            TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")],  # Ensure TERM2GENE uses correct columns
                            pvalueCutoff = 0.05)
  # Check if results exist
  if (!is.null(hallmark_down) && nrow(hallmark_down) > 0) {
    # Visualize results if available
    down_dotplot <- dotplot(hallmark_down, showCategory = 20, title = "Hallmark Pathway Enrichment for Downregulated Genes")
    
    # Display the plot in the notebook
    print(down_dotplot)
    
    # Save the dotplot to a PNG file
    ggsave(paste0(output_folder, "hallmark_downregulated_dotplot.png"), plot = down_dotplot, width = 10, height = 8)
    
    # Optionally, save the results as CSV
    write.csv(as.data.frame(hallmark_down), file = paste0(output_folder, "hallmark_downregulated_enrichment.csv"), row.names = FALSE)
  } else {
    cat("No significant enrichment found for downregulated genes.\n")
  }
} else {
  cat("No downregulated genes overlap with Hallmark gene sets.\n")
}

NA
NA
LS0tCnRpdGxlOiAiUHNldWRvQnVsayBBbmFseXNpcyB1c2luZyBMaWJyYSBEZXNlcTItTFJUX29uX2xpc3RfZmlsdHJlZF9vbl9tZWFuIgphdXRob3I6IE5hc2lyIE1haG1vb2QgQWJiYXNpCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OgogICMgcGRmX2RvY3VtZW50OiBkZWZhdWx0CiAgIyB3b3JkX2RvY3VtZW50OiBkZWZhdWx0CiAgIyBodG1sX2RvY3VtZW50OiBkZWZhdWx0CiAgI3JtZGZvcm1hdHM6OnJlYWR0aGVkb3duCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCi0tLQoKIyAxLiBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KCiMgTG9hZCBsaWJyYXJpZXMKbGlicmFyeShTZXVyYXQpCmxpYnJhcnkoTWF0cml4KQpsaWJyYXJ5KFNpbmdsZUNlbGxFeHBlcmltZW50KQpsaWJyYXJ5KERFU2VxMikKbGlicmFyeShMaWJyYSkKCmBgYAoKIyAyLiBMb2FkIHRoZSBmaWx0ZXJlZCBsaXN0IG9uIG1lYW4gZXhwcmVzc2lvbgpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKIyBMb2FkIHRoZSBERSByZXN1bHRzIGZyb20gQ1NWCmRmIDwtIHJlYWQuY3N2KCIyLVBzZXVkb2J1bGtfRGVzZXEyX0xSVF9maWx0ZXJlZF9vbl9tZWFuLmNzdiIsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkKCgpERV9yZXN1bHRzX2RmIDwtIGRmCgpgYGAKCiMgMy4gU3VtbWFyaXplIE1hcmtlcnMKYGBge3IgLCBmaWcuaGVpZ2h0PTEyLCBmaWcud2lkdGg9MTR9Cm1hcmtlcnMgPC0gREVfcmVzdWx0c19kZgoKc3VtbWFyaXplX21hcmtlcnMgPC0gZnVuY3Rpb24obWFya2VycykgewogIG51bV9wdmFsMCA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPT0gMCkKICBudW1fcHZhbDEgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDEpCiAgbnVtX3VwcmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA+IDEuNSkKICBudW1fZG93bnJlZ3VsYXRlZCA8LSBzdW0obWFya2VycyRhdmdfbG9nRkMgPCAtMSkKICBudW1fc2lnbmlmaWNhbnQgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqIDwgMC4wNSkKICAKICAKICBjYXQoIk51bWJlciBvZiBnZW5lcyB3aXRoIHBfdmFsX2FkaiA9IDA6IiwgbnVtX3B2YWwwLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMToiLCBudW1fcHZhbDEsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgKGF2Z19sb2dGQyA+IDEuNSk6IiwgbnVtX3VwcmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgKGF2Z19sb2dGQyA8IC0xKToiLCBudW1fZG93bnJlZ3VsYXRlZCwgIlxuIikKICBjYXQoIk51bWJlciBvZiBzaWduaWZpY2FudCBnZW5lcyAocF92YWxfYWRqIDwgMC4wNSk6IiwgbnVtX3NpZ25pZmljYW50LCAiXG4iKQp9CgpjYXQoIk1hcmtlcnMgU3VtbWFyeSBhdCAwLjA1OlxuIikKCnN1bW1hcml6ZV9tYXJrZXJzKG1hcmtlcnMpCgptYXJrZXJzMiA8LSBERV9yZXN1bHRzX2RmCnN1bW1hcml6ZV9tYXJrZXJzIDwtIGZ1bmN0aW9uKG1hcmtlcnMpIHsKICBudW1fcHZhbDAgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDApCiAgbnVtX3B2YWwxIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAxKQogIG51bV91cHJlZ3VsYXRlZCA8LSBzdW0obWFya2VycyRhdmdfbG9nRkMgPiAxLjUpCiAgbnVtX2Rvd25yZWd1bGF0ZWQgPC0gc3VtKG1hcmtlcnMkYXZnX2xvZ0ZDIDwgLTEpCiAgbnVtX3NpZ25pZmljYW50IDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA8IDFlLTQpCiAgCiAgY2F0KCJOdW1iZXIgb2YgZ2VuZXMgd2l0aCBwX3ZhbF9hZGogPSAwOiIsIG51bV9wdmFsMCwgIlxuIikKICBjYXQoIk51bWJlciBvZiBnZW5lcyB3aXRoIHBfdmFsX2FkaiA9IDE6IiwgbnVtX3B2YWwxLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzIChhdmdfbG9nRkMgPiAxLjUpOiIsIG51bV91cHJlZ3VsYXRlZCwgIlxuIikKICBjYXQoIk51bWJlciBvZiBkb3ducmVndWxhdGVkIGdlbmVzIChhdmdfbG9nRkMgPCAtMSk6IiwgbnVtX2Rvd25yZWd1bGF0ZWQsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2Ygc2lnbmlmaWNhbnQgZ2VuZXMgKHBfdmFsX2FkaiA8IDFlLTQpOiIsIG51bV9zaWduaWZpY2FudCwgIlxuIikKfQoKY2F0KCJNYXJrZXJzIFN1bW1hcnkgYXQgMWUtNDpcbiIpCgpzdW1tYXJpemVfbWFya2VycyhtYXJrZXJzMikKCm1hcmtlcnMzIDwtIERFX3Jlc3VsdHNfZGYKc3VtbWFyaXplX21hcmtlcnMgPC0gZnVuY3Rpb24obWFya2VycykgewogIG51bV9wdmFsMCA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPT0gMCkKICBudW1fcHZhbDEgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDEpCiAgbnVtX3VwcmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA+IDEuNSkKICBudW1fZG93bnJlZ3VsYXRlZCA8LSBzdW0obWFya2VycyRhdmdfbG9nRkMgPCAtMSkKICBudW1fc2lnbmlmaWNhbnQgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqIDwgMWUtNikKICAKICBjYXQoIk51bWJlciBvZiBnZW5lcyB3aXRoIHBfdmFsX2FkaiA9IDA6IiwgbnVtX3B2YWwwLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMToiLCBudW1fcHZhbDEsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgKGF2Z19sb2dGQyA+IDEuNSk6IiwgbnVtX3VwcmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgKGF2Z19sb2dGQyA8IC0xKToiLCBudW1fZG93bnJlZ3VsYXRlZCwgIlxuIikKICBjYXQoIk51bWJlciBvZiBzaWduaWZpY2FudCBnZW5lcyAocF92YWxfYWRqIDwgMWUtNik6IiwgbnVtX3NpZ25pZmljYW50LCAiXG4iKQp9CgpjYXQoIk1hcmtlcnMgU3VtbWFyeSBhdCAxZS02OlxuIikKc3VtbWFyaXplX21hcmtlcnMobWFya2VyczMpCgptYXJrZXJzNCA8LSBERV9yZXN1bHRzX2RmCnN1bW1hcml6ZV9tYXJrZXJzIDwtIGZ1bmN0aW9uKG1hcmtlcnMpIHsKICBudW1fcHZhbDAgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDApCiAgbnVtX3B2YWwxIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAxKQogIG51bV91cHJlZ3VsYXRlZCA8LSBzdW0obWFya2VycyRhdmdfbG9nRkMgPiAxLjUpCiAgbnVtX2Rvd25yZWd1bGF0ZWQgPC0gc3VtKG1hcmtlcnMkYXZnX2xvZ0ZDIDwgLTEpCiAgbnVtX3NpZ25pZmljYW50IDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA8IDFlLTEwKQogIAogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMDoiLCBudW1fcHZhbDAsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZ2VuZXMgd2l0aCBwX3ZhbF9hZGogPSAxOiIsIG51bV9wdmFsMSwgIlxuIikKICBjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDID4gMS41KToiLCBudW1fdXByZWd1bGF0ZWQsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDIDwgLTEpOiIsIG51bV9kb3ducmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIHNpZ25pZmljYW50IGdlbmVzIChwX3ZhbF9hZGogPCAxZS0xMCk6IiwgbnVtX3NpZ25pZmljYW50LCAiXG4iKQogIH0KCmNhdCgiTWFya2VycyBTdW1tYXJ5IGF0IDFlLTEwOlxuIikKCnN1bW1hcml6ZV9tYXJrZXJzKG1hcmtlcnM0KQoKbWFya2VyczUgPC0gREVfcmVzdWx0c19kZgpzdW1tYXJpemVfbWFya2VycyA8LSBmdW5jdGlvbihtYXJrZXJzKSB7CiAgbnVtX3B2YWwwIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAwKQogIG51bV9wdmFsMSA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPT0gMSkKICBudW1fdXByZWd1bGF0ZWQgPC0gc3VtKG1hcmtlcnMkYXZnX2xvZ0ZDID4gMS41KQogIG51bV9kb3ducmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA8IC0xKQogIG51bV9zaWduaWZpY2FudCA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPCAxZS0xNSkKICAKICBjYXQoIk51bWJlciBvZiBnZW5lcyB3aXRoIHBfdmFsX2FkaiA9IDA6IiwgbnVtX3B2YWwwLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMToiLCBudW1fcHZhbDEsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgKGF2Z19sb2dGQyA+IDEuNSk6IiwgbnVtX3VwcmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgKGF2Z19sb2dGQyA8IC0xKToiLCBudW1fZG93bnJlZ3VsYXRlZCwgIlxuIikKICBjYXQoIk51bWJlciBvZiBzaWduaWZpY2FudCBnZW5lcyAocF92YWxfYWRqIDwgMWUtMTUpOiIsIG51bV9zaWduaWZpY2FudCwgIlxuIikKfQoKY2F0KCJNYXJrZXJzIFN1bW1hcnkgYXQgMWUtMTU6XG4iKQoKc3VtbWFyaXplX21hcmtlcnMobWFya2VyczUpCgoKCmBgYAoKCgojIDQuIFZvbGNhbm8gUGxvdHMKYGBge3IgLCBmaWcuaGVpZ2h0PTE0LCBmaWcud2lkdGg9MTh9CmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShkcGx5cikKbGlicmFyeShnZ3JlcGVsKQoKCiMgRW5zdXJlIGNvcnJlY3QgY29sdW1uIG5hbWVzCmNvbG5hbWVzKERFX3Jlc3VsdHNfZGYpCgojIERlZmluZSBzaWduaWZpY2FuY2UgY2F0ZWdvcmllcwp2b2xjYW5vX2RhdGEgPC0gREVfcmVzdWx0c19kZiAlPiUKICBtdXRhdGUoCiAgICBzaWduaWZpY2FuY2UgPSBjYXNlX3doZW4oCiAgICAgIHBfdmFsX2FkaiA8IDFlLTIwICYgYXZnX2xvZ0ZDID4gMiB+ICJNb3N0IFVwcmVndWxhdGVkIiwKICAgICAgcF92YWxfYWRqIDwgMWUtMjAgJiBhdmdfbG9nRkMgPCAtMiB+ICJNb3N0IERvd25yZWd1bGF0ZWQiLAogICAgICBwX3ZhbF9hZGogPCAwLjA1ICYgYXZnX2xvZ0ZDID4gMiB+ICJVcHJlZ3VsYXRlZCIsCiAgICAgIHBfdmFsX2FkaiA8IDAuMDUgJiBhdmdfbG9nRkMgPCAtMiB+ICJEb3ducmVndWxhdGVkIiwKICAgICAgVFJVRSB+ICJOb3QgU2lnbmlmaWNhbnQiCiAgICApCiAgKQoKIyBTZWxlY3Qgb25seSB2ZXJ5IHNpZ25pZmljYW50IGdlbmVzIGZvciBsYWJlbGluZwp0b3BfZ2VuZXMgPC0gdm9sY2Fub19kYXRhICU+JQogIGZpbHRlcihwX3ZhbF9hZGogPCAwLjA1ICYgKGF2Z19sb2dGQyA+IDIgfCBhdmdfbG9nRkMgPCAtMikpCgpnZ3Bsb3Qodm9sY2Fub19kYXRhLCBhZXMoeCA9IGF2Z19sb2dGQywgeSA9IC1sb2cxMChwX3ZhbF9hZGopLCBjb2xvciA9IHNpZ25pZmljYW5jZSkpICsKICAKICAjIE1haW4gcG9pbnRzCiAgZ2VvbV9wb2ludChhbHBoYSA9IDAuNywgc2l6ZSA9IDIuNSkgKwogIAogICMgSGlnaGxpZ2h0IGhpZ2hseSBzaWduaWZpY2FudCBnZW5lcyB3aXRoIGxhcmdlciBwb2ludHMKICBnZW9tX3BvaW50KGRhdGEgPSB0b3BfZ2VuZXMsIGFlcyh4ID0gYXZnX2xvZ0ZDLCB5ID0gLWxvZzEwKHBfdmFsX2FkaikpLCAKICAgICAgICAgICAgIGNvbG9yID0gImJsYWNrIiwgc2l6ZSA9IDMsIHNoYXBlID0gMjEsIGZpbGwgPSAiYmxhY2siKSArCgogICMgQ3VzdG9tIGNvbG9yIHNjaGVtZQogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjKAogICAgIk1vc3QgVXByZWd1bGF0ZWQiID0gImRhcmtyZWQiLAogICAgIk1vc3QgRG93bnJlZ3VsYXRlZCIgPSAiZGFya2JsdWUiLAogICAgIlVwcmVndWxhdGVkIiA9ICJyZWQiLAogICAgIkRvd25yZWd1bGF0ZWQiID0gImJsdWUiLAogICAgIk5vdCBTaWduaWZpY2FudCIgPSAiZ3JleSIKICApKSArCgogICMgQWRkIGdlbmUgbGFiZWxzIChvbmx5IGZvciBoaWdobHkgc2lnbmlmaWNhbnQgZ2VuZXMpCiAgZ2VvbV90ZXh0X3JlcGVsKGRhdGEgPSB0b3BfZ2VuZXMsIGFlcyhsYWJlbCA9IGdlbmUpLCAgCiAgICAgICAgICAgICAgICAgIHNpemUgPSA0LCBib3gucGFkZGluZyA9IDAuNSwgbWF4Lm92ZXJsYXBzID0gMTAsIHNlZ21lbnQuY29sb3IgPSBOQSkgKwogIAogICMgQWRkIHRocmVzaG9sZCBsaW5lcwogIGdlb21fdmxpbmUoeGludGVyY2VwdCA9IGMoLTIsIDIpLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJibGFjayIpICsgIAogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IC1sb2cxMCgwLjA1KSwgbGluZXR5cGUgPSAiZGFzaGVkIiwgY29sb3IgPSAiYmxhY2siKSArICAKCiAgIyBJbXByb3ZlIHRoZW1lCiAgdGhlbWVfbWluaW1hbChiYXNlX3NpemUgPSAxNCkgKwogIGxhYnModGl0bGUgPSAiVm9sY2FubyBQbG90OiBQc2V1ZG9idWxrIERFU2VxMiBBbmFseXNpcyIsCiAgICAgICB4ID0gIkxvZzIgRm9sZCBDaGFuZ2UiLAogICAgICAgeSA9ICItTG9nMTAgQWRqdXN0ZWQgUC1WYWx1ZSIsCiAgICAgICBjb2xvciA9ICJTaWduaWZpY2FuY2UiKSArCgogIHlsaW0oMCwgNTApICAjIEF2b2lkIGV4dHJlbWUgc2NhbGluZyBpc3N1ZXMKCgpgYGAKCgojIyBFbmhhbmNlZFZvbGNhbm8gcGxvdApgYGB7ciAsIGZpZy5oZWlnaHQ9MTIsIGZpZy53aWR0aD0xNn0KCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkoRW5oYW5jZWRWb2xjYW5vKQoKIyBBc3N1bWluZyB5b3UgaGF2ZSBhIGRhdGEgZnJhbWUgbmFtZWQgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzCiMgRmlsdGVyIGdlbmVzIGJhc2VkIG9uIGxvd2VzdCBwLXZhbHVlcyBidXQgaW5jbHVkZSBhbGwgZ2VuZXMKZmlsdGVyZWRfZ2VuZXMgPC0gbWFya2VycyAlPiUKICBhcnJhbmdlKHBfdmFsX2FkaiwgZGVzYyhhYnMoYXZnX2xvZ0ZDKSkpCgojIENyZWF0ZSB0aGUgRW5oYW5jZWRWb2xjYW5vIHBsb3Qgd2l0aCB0aGUgZmlsdGVyZWQgZGF0YQpFbmhhbmNlZFZvbGNhbm8oCiAgZmlsdGVyZWRfZ2VuZXMsIAogIGxhYiA9IGlmZWxzZShmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMWUtNiAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nRkMpID49IDEuNSwgZmlsdGVyZWRfZ2VuZXMkZ2VuZSwgTkEpLAogIHggPSAiYXZnX2xvZ0ZDIiwgCiAgeSA9ICJwX3ZhbF9hZGoiLAogIHRpdGxlID0gIk1hbGlnbmFudCBDRDQgVCBjZWxscyhjZWxsIGxpbmVzKSB2cyBub3JtYWwgQ0Q0IFQgY2VsbHMiLAogIHBDdXRvZmYgPSAxZS02LAogIEZDY3V0b2ZmID0gMS4wLAogIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywgCiAgbGFiQ29sID0gJ2JsYWNrJywKICBsYWJGYWNlID0gJ2JvbGQnLAogIGJveGVkTGFiZWxzID0gRkFMU0UsICAjIFNldCB0byBGQUxTRSB0byByZW1vdmUgYm94ZWQgbGFiZWxzCiAgcG9pbnRTaXplID0gMy4wLAogIGxhYlNpemUgPSA1LjAsCiAgY29sID0gYygnZ3JleTcwJywgJ2JsYWNrJywgJ2JsdWUnLCAncmVkJyksICAjIEN1c3RvbWl6ZSBwb2ludCBjb2xvcnMKICBzZWxlY3RMYWIgPSBmaWx0ZXJlZF9nZW5lcyRnZW5lW2ZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjA1ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2dGQykgPj0gMS4wXSAgIyBPbmx5IGxhYmVsIHNpZ25pZmljYW50IGdlbmVzCikKCgoKYGBgCgoKIyMgRW5oYW5jZWRWb2xjYW5vIHBsb3QKYGBge3IgLCBmaWcuaGVpZ2h0PTEyLCBmaWcud2lkdGg9MTZ9CgpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoRW5oYW5jZWRWb2xjYW5vKQpsaWJyYXJ5KGRwbHlyKQoKIyBEZWZpbmUgdGhlIG91dHB1dCBkaXJlY3RvcnkKb3V0cHV0X2RpciA8LSAiVm9sY2Fub19QbG90X01hbGlnbmFudF92c19Db250cm9sIgpkaXIuY3JlYXRlKG91dHB1dF9kaXIsIHNob3dXYXJuaW5ncyA9IEZBTFNFKQoKIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyA8LSBmaWx0ZXJlZF9nZW5lcwoKIyBGaXJzdCBWb2xjYW5vIFBsb3QKcDEgPC0gRW5oYW5jZWRWb2xjYW5vKAogIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscywKICBsYWIgPSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkZ2VuZSwKICB4ID0gImF2Z19sb2dGQyIsCiAgeSA9ICJwX3ZhbF9hZGoiLAogIHRpdGxlID0gIk1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyIsCiAgcEN1dG9mZiA9IDFlLTQsCiAgRkNjdXRvZmYgPSAxLjAKKQpwcmludChwMSkgICMgRGlzcGxheSBpbiBub3RlYm9vawpnZ3NhdmUoZmlsZW5hbWUgPSBmaWxlLnBhdGgob3V0cHV0X2RpciwgIlZvbGNhbm9QbG90MS5wbmciKSwgcGxvdCA9IHAxLCB3aWR0aCA9IDE0LCBoZWlnaHQgPSAxMCwgZHBpID0gMzAwKQoKIyBTZWNvbmQgVm9sY2FubyBQbG90IHdpdGggc2VsZWN0ZWQgZ2VuZXMKcDIgPC0gRW5oYW5jZWRWb2xjYW5vKAogIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscywgCiAgbGFiID0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGdlbmUsCiAgeCA9ICJhdmdfbG9nRkMiLCAKICB5ID0gInBfdmFsX2FkaiIsCiAgc2VsZWN0TGFiID0gYygnRVBDQU0nLCAnQkNBVDEnLCAnS0lSM0RMMicsICdGT1hNMScsICdUV0lTVDEnLCAnVE5GU0Y5JywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdDRDgwJywgICdJTDFCJywgJ1JQUzRZMScsICJUT1giLCAiQ0Q1MiIsICJUV0lTVDEiLCAiQ0NSNCIsICJDQ1I3IiwiUERDRDEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnSUw3UicsICdUQ0Y3JywgICdNS0k2NycsICdDRDcwJywgIkRQUDQiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnSUwyUkEnLCdUUkJWNi0yJywgJ1RSQlYxMC0zJywgJ1RSQlY0LTInLCAnVFJCVjknLCAnVFJCVjctOScsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnVFJBVjEyLTEnLCAnQ0Q4QicsICdGQ0dSM0EnLCAnR05MWScsICdGT1hQMycsICdTRUxMJywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdHSU1BUDEnLCAnUklQT1IyJywgJ0xFRjEnLCAnSE9YQzknLCAnU1A1JywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0NDTDE3JywgJ0VUVjQnLCAnVEhZMScsICdGT1hBMicsICdJVEdBRCcsICdTMTAwUCcsICdUQlg0JywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdJRDEnLCAnWENMMScsICdTT1gyJywgJ0NEMjcnLCAnQ0QyOCcsJ1BMUzMnLCdDRDcwJywnUkFCMjUnICwgJ1RSQlYyNycsICdUUkJWMicpLAogIHRpdGxlID0gIk1hbGlnbmFudCBDRDQgVCBjZWxscyhjZWxsIGxpbmVzKSB2cyBub3JtYWwgQ0Q0IFQgY2VsbHMiLAogIHhsYWIgPSBicXVvdGUofkxvZ1syXX4gJ2ZvbGQgY2hhbmdlJyksCiAgcEN1dG9mZiA9IDAuMDUsCiAgRkNjdXRvZmYgPSAxLjUsIAogIHBvaW50U2l6ZSA9IDMuMCwKICBsYWJTaXplID0gNS4wLAogIGJveGVkTGFiZWxzID0gVFJVRSwKICBjb2xBbHBoYSA9IDAuNSwKICBsZWdlbmRQb3NpdGlvbiA9ICdyaWdodCcsCiAgbGVnZW5kTGFiU2l6ZSA9IDEwLAogIGxlZ2VuZEljb25TaXplID0gNC4wLAogIGRyYXdDb25uZWN0b3JzID0gVFJVRSwKICB3aWR0aENvbm5lY3RvcnMgPSAwLjUsCiAgY29sQ29ubmVjdG9ycyA9ICdncmV5NTAnLAogIGFycm93aGVhZHMgPSBGQUxTRSwKICBtYXgub3ZlcmxhcHMgPSAzMAopCnByaW50KHAyKSAgIyBEaXNwbGF5IGluIG5vdGVib29rCmdnc2F2ZShmaWxlbmFtZSA9IGZpbGUucGF0aChvdXRwdXRfZGlyLCAiVm9sY2Fub1Bsb3QyLnBuZyIpLCBwbG90ID0gcDIsIHdpZHRoID0gMTQsIGhlaWdodCA9IDEwLCBkcGkgPSAzMDApCgojIEZpbHRlcmluZyBnZW5lcwpmaWx0ZXJlZF9nZW5lcyA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMgJT4lCiAgYXJyYW5nZShwX3ZhbF9hZGosIGRlc2MoYWJzKGF2Z19sb2dGQykpKQoKIyBUaGlyZCBWb2xjYW5vIFBsb3QgLSBGaWx0ZXJpbmcgYnkgcC12YWx1ZSBhbmQgbG9nRkMKcDMgPC0gRW5oYW5jZWRWb2xjYW5vKAogIGZpbHRlcmVkX2dlbmVzLCAKICBsYWIgPSBpZmVsc2UoZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDFlLTQgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZ0ZDKSA+PSAxLjAsIGZpbHRlcmVkX2dlbmVzJGdlbmUsIE5BKSwKICB4ID0gImF2Z19sb2dGQyIsIAogIHkgPSAicF92YWxfYWRqIiwKICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMoY2VsbCBsaW5lcykgdnMgbm9ybWFsIENENCBUIGNlbGxzIiwKICBwQ3V0b2ZmID0gMWUtNCwKICBGQ2N1dG9mZiA9IDEuMCwKICBsZWdlbmRQb3NpdGlvbiA9ICdyaWdodCcsIAogIGxhYkNvbCA9ICdibGFjaycsCiAgbGFiRmFjZSA9ICdib2xkJywKICBib3hlZExhYmVscyA9IEZBTFNFLCAgIyBSZW1vdmUgYm94ZWQgbGFiZWxzCiAgcG9pbnRTaXplID0gMy4wLAogIGxhYlNpemUgPSA1LjAsCiAgY29sID0gYygnZ3JleTcwJywgJ2JsYWNrJywgJ2JsdWUnLCAncmVkJyksICAjIEN1c3RvbWl6ZSBwb2ludCBjb2xvcnMKICBzZWxlY3RMYWIgPSBmaWx0ZXJlZF9nZW5lcyRnZW5lW2ZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjA1ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2dGQykgPj0gMS4wXQopCnByaW50KHAzKSAgIyBEaXNwbGF5IGluIG5vdGVib29rCmdnc2F2ZShmaWxlbmFtZSA9IGZpbGUucGF0aChvdXRwdXRfZGlyLCAiVm9sY2Fub1Bsb3QzLnBuZyIpLCBwbG90ID0gcDMsIHdpZHRoID0gMTQsIGhlaWdodCA9IDEwLCBkcGkgPSAzMDApCgojIEZvdXJ0aCBWb2xjYW5vIFBsb3QgLSBNb3JlIHJlZmluZWQgZmlsdGVyaW5nCnA0IDwtIEVuaGFuY2VkVm9sY2FubygKICBmaWx0ZXJlZF9nZW5lcywgCiAgbGFiID0gaWZlbHNlKGZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAxZS00ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2dGQykgPj0gMS4wLCBmaWx0ZXJlZF9nZW5lcyRnZW5lLCBOQSksCiAgeCA9ICJhdmdfbG9nRkMiLCAKICB5ID0gInBfdmFsX2FkaiIsCiAgdGl0bGUgPSAiTWFsaWduYW50IENENCBUIGNlbGxzIChjZWxsIGxpbmVzKSB2cyBOb3JtYWwgQ0Q0IFQgY2VsbHMiLAogIHN1YnRpdGxlID0gIkhpZ2hsaWdodGluZyBkaWZmZXJlbnRpYWxseSBleHByZXNzZWQgZ2VuZXMiLAogIHBDdXRvZmYgPSAxZS00LAogIEZDY3V0b2ZmID0gMS4wLAogIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywKICBjb2xBbHBoYSA9IDAuOCwgICMgU2xpZ2h0IHRyYW5zcGFyZW5jeSBmb3Igbm9uLXNpZ25pZmljYW50IHBvaW50cwogIGNvbCA9IGMoJ2dyZXk3MCcsICdibGFjaycsICdibHVlJywgJ3JlZCcpLCAgIyBDdXN0b20gY29sb3Igc2NoZW1lCiAgZ3JpZGxpbmVzLm1ham9yID0gVFJVRSwKICBncmlkbGluZXMubWlub3IgPSBGQUxTRSwKICBzZWxlY3RMYWIgPSBmaWx0ZXJlZF9nZW5lcyRnZW5lW2ZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjA1ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2dGQykgPj0gMS4wXQopCnByaW50KHA0KSAgIyBEaXNwbGF5IGluIG5vdGVib29rCmdnc2F2ZShmaWxlbmFtZSA9IGZpbGUucGF0aChvdXRwdXRfZGlyLCAiVm9sY2Fub1Bsb3Q0LnBuZyIpLCBwbG90ID0gcDQsIHdpZHRoID0gMTQsIGhlaWdodCA9IDEwLCBkcGkgPSAzMDApCgptZXNzYWdlKCJBbGwgdm9sY2FubyBwbG90cyBoYXZlIGJlZW4gZGlzcGxheWVkIGFuZCBzYXZlZCBzdWNjZXNzZnVsbHkgaW4gdGhlICdNYWxpZ25hbnRfdnNfQ29udHJvbCcgZm9sZGVyLiIpCgoKCmBgYAojIDUuIEVucmljaG1lbnQgQW5hbHlzaXMtQWxsX1BhdGh3YXlzCmBgYHtyICwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CiMgTG9hZCBuZWNlc3NhcnkgbGlicmFyaWVzCmxpYnJhcnkoY2x1c3RlclByb2ZpbGVyKQpsaWJyYXJ5KG9yZy5Icy5lZy5kYikKbGlicmFyeShlbnJpY2hwbG90KQpsaWJyYXJ5KFJlYWN0b21lUEEpCmxpYnJhcnkoRE9TRSkgIyBGb3IgR1NFQSBhbmFseXNpcwpsaWJyYXJ5KGdncGxvdDIpICMgRW5zdXJlIGdncGxvdDIgaXMgYXZhaWxhYmxlIGZvciBwbG90dGluZwpsaWJyYXJ5KGRwbHlyKQoKIyBEZWZpbmUgdGhlIG91dHB1dCBmb2xkZXIgd2hlcmUgdGhlIHJlc3VsdHMgd2lsbCBiZSBzYXZlZApvdXRwdXRfZm9sZGVyIDwtICJNYWxpZ25hbnRfdnNfQ29udHJvbF8zMDAvIgoKIyBDcmVhdGUgdGhlIG91dHB1dCBmb2xkZXIgaWYgaXQgZG9lc24ndCBleGlzdAppZiAoIWRpci5leGlzdHMob3V0cHV0X2ZvbGRlcikpIHsKICBkaXIuY3JlYXRlKG91dHB1dF9mb2xkZXIpCn0KCiMgRGVmaW5lIHRoZSBudW1iZXIgb2YgdXByZWd1bGF0ZWQgYW5kIGRvd25yZWd1bGF0ZWQgZ2VuZXMgdG8gc2VsZWN0ClVQX2dlbmVzIDwtIDMwMApEb3duX2dlbmVzIDwtIDMwMAoKIyBEZWZpbmUgdGhyZXNob2xkIGZvciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBzZWxlY3Rpb24gKG1vZGlmaWVkIHRocmVzaG9sZHMpCmxvZ0ZDX3VwX3RocmVzaG9sZCA8LSAxLjUgICAgICAgICAgIyBVcHJlZ3VsYXRlZCBsb2dGQyB0aHJlc2hvbGQKbG9nRkNfZG93bl90aHJlc2hvbGQgPC0gLTEgICAgICAgICAjIERvd25yZWd1bGF0ZWQgbG9nRkMgdGhyZXNob2xkCgojIExvYWQgeW91ciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiByZXN1bHRzIChtb2RpZnkgYmFzZWQgb24gYWN0dWFsIGRhdGEgc3RydWN0dXJlKQojIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyA8LSByZWFkLmNzdigiWW91cl9ERV9SZXN1bHRzX0ZpbGUuY3N2IikKCiMgRmlsdGVyIHRoZSBnZW5lcyBiYXNlZCBvbiBhdmdfbG9nRkMgYW5kIGFycmFuZ2UgYnkgcF92YWxfYWRqCmZpbHRlcmVkX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyAlPiUKICBmaWx0ZXIoYXZnX2xvZ0ZDID4gbG9nRkNfdXBfdGhyZXNob2xkIHwgYXZnX2xvZ0ZDIDwgbG9nRkNfZG93bl90aHJlc2hvbGQpICU+JQogIGFycmFuZ2UocF92YWxfYWRqKQoKIyBTZXBhcmF0ZSB1cHJlZ3VsYXRlZCBhbmQgZG93bnJlZ3VsYXRlZCBnZW5lcwp1cHJlZ3VsYXRlZF9nZW5lcyA8LSBmaWx0ZXJlZF9nZW5lcyAlPiUKICBmaWx0ZXIoYXZnX2xvZ0ZDID4gbG9nRkNfdXBfdGhyZXNob2xkKQoKZG93bnJlZ3VsYXRlZF9nZW5lcyA8LSBmaWx0ZXJlZF9nZW5lcyAlPiUKICBmaWx0ZXIoYXZnX2xvZ0ZDIDwgbG9nRkNfZG93bl90aHJlc2hvbGQpCgojIENoZWNrIGlmIHRoZXJlIGFyZSBmZXdlciB0aGFuIHRoZSBzcGVjaWZpZWQgbnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzCmlmIChucm93KHVwcmVndWxhdGVkX2dlbmVzKSA8IFVQX2dlbmVzKSB7CiAgdG9wX3VwcmVndWxhdGVkX2dlbmVzIDwtIHVwcmVndWxhdGVkX2dlbmVzCiAgY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgc2VsZWN0ZWQ6IiwgbnJvdyh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMpLCAiXG4iKQogIGNhdCgicF92YWxfYWRqIHZhbHVlIGZvciB0aGUgbGFzdCBzZWxlY3RlZCB1cHJlZ3VsYXRlZCBnZW5lOiIsIHRhaWwodG9wX3VwcmVndWxhdGVkX2dlbmVzJHBfdmFsX2FkaiwgMSksICJcbiIpCn0gZWxzZSB7CiAgIyBTZWxlY3QgdGhlIHNwZWNpZmllZCBudW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMKICB0b3BfdXByZWd1bGF0ZWRfZ2VuZXMgPC0gdXByZWd1bGF0ZWRfZ2VuZXMgJT4lCiAgICBoZWFkKFVQX2dlbmVzKQogIGNhdCgiTnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzIHNlbGVjdGVkOiIsIG5yb3codG9wX3VwcmVndWxhdGVkX2dlbmVzKSwgIlxuIikKICBjYXQoInBfdmFsX2FkaiB2YWx1ZSBmb3IgdGhlIGxhc3Qgc2VsZWN0ZWQgdXByZWd1bGF0ZWQgZ2VuZToiLCB0YWlsKHRvcF91cHJlZ3VsYXRlZF9nZW5lcyRwX3ZhbF9hZGosIDEpLCAiXG4iKQp9CgojIENoZWNrIGlmIHRoZXJlIGFyZSBmZXdlciB0aGFuIHRoZSBzcGVjaWZpZWQgbnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMKaWYgKG5yb3coZG93bnJlZ3VsYXRlZF9nZW5lcykgPCBEb3duX2dlbmVzKSB7CiAgdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMgPC0gZG93bnJlZ3VsYXRlZF9nZW5lcwogIGNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgc2VsZWN0ZWQ6IiwgbnJvdyh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyksICJcbiIpCiAgY2F0KCJwX3ZhbF9hZGogdmFsdWUgZm9yIHRoZSBsYXN0IHNlbGVjdGVkIGRvd25yZWd1bGF0ZWQgZ2VuZToiLCB0YWlsKHRvcF9kb3ducmVndWxhdGVkX2dlbmVzJHBfdmFsX2FkaiwgMSksICJcbiIpCn0gZWxzZSB7CiAgIyBTZWxlY3QgdGhlIHNwZWNpZmllZCBudW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcwogIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzIDwtIGRvd25yZWd1bGF0ZWRfZ2VuZXMgJT4lCiAgICBoZWFkKERvd25fZ2VuZXMpCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyBzZWxlY3RlZDoiLCBucm93KHRvcF9kb3ducmVndWxhdGVkX2dlbmVzKSwgIlxuIikKICBjYXQoInBfdmFsX2FkaiB2YWx1ZSBmb3IgdGhlIGxhc3Qgc2VsZWN0ZWQgZG93bnJlZ3VsYXRlZCBnZW5lOiIsIHRhaWwodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkcF92YWxfYWRqLCAxKSwgIlxuIikKfQoKIyBDb21iaW5lIHRoZSB0b3AgdXByZWd1bGF0ZWQgYW5kIGRvd25yZWd1bGF0ZWQgZ2VuZXMKdG9wX2dlbmVzIDwtIGJpbmRfcm93cyh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMsIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzKQoKIyBDaGVjayBmb3IgbWlzc2luZyBnZW5lcyAoTkFzKSBpbiB0aGUgZ2VuZSBjb2x1bW4gYW5kIHJlbW92ZSB0aGVtCnRvcF9nZW5lcyA8LSBuYS5vbWl0KHRvcF9nZW5lcykKCiMgU2F2ZSB1cHJlZ3VsYXRlZCBhbmQgZG93bnJlZ3VsYXRlZCBnZW5lIHJlc3VsdHMgdG8gQ1NWCndyaXRlLmNzdih0b3BfdXByZWd1bGF0ZWRfZ2VuZXMsIHBhc3RlMChvdXRwdXRfZm9sZGVyLCAidXByZWd1bGF0ZWRfZ2VuZXMuY3N2IiksIHJvdy5uYW1lcyA9IEZBTFNFKQp3cml0ZS5jc3YodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMsIHBhc3RlMChvdXRwdXRfZm9sZGVyLCAiZG93bnJlZ3VsYXRlZF9nZW5lcy5jc3YiKSwgcm93Lm5hbWVzID0gRkFMU0UpCgojIENvbnZlcnQgZ2VuZSBzeW1ib2xzIHRvIEVudHJleiBJRHMgZm9yIGVucmljaG1lbnQgYW5hbHlzaXMsIHdpdGggY2hlY2tzIGZvciBtaXNzaW5nIHZhbHVlcwp1cHJlZ3VsYXRlZF9lbnRyZXogPC0gYml0cih0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgZnJvbVR5cGUgPSAiU1lNQk9MIiwgdG9UeXBlID0gIkVOVFJFWklEIiwgT3JnRGIgPSBvcmcuSHMuZWcuZGIpCmRvd25yZWd1bGF0ZWRfZW50cmV6IDwtIGJpdHIodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgZnJvbVR5cGUgPSAiU1lNQk9MIiwgdG9UeXBlID0gIkVOVFJFWklEIiwgT3JnRGIgPSBvcmcuSHMuZWcuZGIpCgojIENoZWNrIGZvciBtaXNzaW5nIEVudHJleiBJRHMgYW5kIHJldGFpbiBnZW5lIG5hbWVzCm1pc3NpbmdfdXByZWd1bGF0ZWQgPC0gdG9wX3VwcmVndWxhdGVkX2dlbmVzJGdlbmVbIXRvcF91cHJlZ3VsYXRlZF9nZW5lcyRnZW5lICVpbiUgdXByZWd1bGF0ZWRfZW50cmV6JFNZTUJPTF0KbWlzc2luZ19kb3ducmVndWxhdGVkIDwtIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzJGdlbmVbIXRvcF9kb3ducmVndWxhdGVkX2dlbmVzJGdlbmUgJWluJSBkb3ducmVndWxhdGVkX2VudHJleiRTWU1CT0xdCgojIFByaW50IG91dCB0aGUgbWlzc2luZyBnZW5lIHN5bWJvbHMgZm9yIGRlYnVnZ2luZwpjYXQoIk1pc3NpbmcgdXByZWd1bGF0ZWQgZ2VuZXM6XG4iLCBtaXNzaW5nX3VwcmVndWxhdGVkLCAiXG4iKQpjYXQoIk1pc3NpbmcgZG93bnJlZ3VsYXRlZCBnZW5lczpcbiIsIG1pc3NpbmdfZG93bnJlZ3VsYXRlZCwgIlxuIikKCiMgTWVyZ2UgdGhlIEVudHJleiBJRHMgYmFjayB3aXRoIHRoZSBvcmlnaW5hbCBkYXRhIGZyYW1lcyB0byByZXRhaW4gZ2VuZSBuYW1lcwp0b3BfdXByZWd1bGF0ZWRfZ2VuZXMgPC0gbWVyZ2UodG9wX3VwcmVndWxhdGVkX2dlbmVzLCB1cHJlZ3VsYXRlZF9lbnRyZXosIGJ5LnggPSAiZ2VuZSIsIGJ5LnkgPSAiU1lNQk9MIiwgYWxsLnggPSBUUlVFKQp0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyA8LSBtZXJnZSh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcywgZG93bnJlZ3VsYXRlZF9lbnRyZXosIGJ5LnggPSAiZ2VuZSIsIGJ5LnkgPSAiU1lNQk9MIiwgYWxsLnggPSBUUlVFKQoKIyBSZW1vdmUgZ2VuZXMgdGhhdCBjb3VsZG4ndCBiZSBtYXBwZWQgdG8gRW50cmV6IElEcwp0b3BfdXByZWd1bGF0ZWRfZ2VuZXMgPC0gdG9wX3VwcmVndWxhdGVkX2dlbmVzWyFpcy5uYSh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkRU5UUkVaSUQpLCBdCnRvcF9kb3ducmVndWxhdGVkX2dlbmVzIDwtIHRvcF9kb3ducmVndWxhdGVkX2dlbmVzWyFpcy5uYSh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRFTlRSRVpJRCksIF0KCiMgRXh0cmFjdCBFbnRyZXogSURzIGZvciBlbnJpY2htZW50IGFuYWx5c2lzCnVwcmVndWxhdGVkX2VudHJleiA8LSB0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkRU5UUkVaSUQKZG93bnJlZ3VsYXRlZF9lbnRyZXogPC0gdG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkRU5UUkVaSUQKCiMgRGVmaW5lIGEgZnVuY3Rpb24gdG8gc2FmZWx5IHJ1biBlbnJpY2htZW50LCBwbG90IHJlc3VsdHMsIGFuZCBzYXZlIHRoZW0Kc2FmZV9lbnJpY2hHTyA8LSBmdW5jdGlvbihnZW5lX2xpc3QsIHRpdGxlLCBmaWxlbmFtZSkgewogIGlmIChsZW5ndGgoZ2VuZV9saXN0KSA+IDApIHsKICAgIHJlc3VsdCA8LSBlbnJpY2hHTyhnZW5lID0gZ2VuZV9saXN0LCBPcmdEYiA9IG9yZy5Icy5lZy5kYiwga2V5VHlwZSA9ICJTWU1CT0wiLAogICAgICAgICAgICAgICAgICAgICAgIG9udCA9ICJCUCIsIHBBZGp1c3RNZXRob2QgPSAiQkgiLCBwdmFsdWVDdXRvZmYgPSAwLjA1LCByZWFkYWJsZSA9IFRSVUUpCiAgICBpZiAoIWlzLm51bGwocmVzdWx0KSAmJiBucm93KGFzLmRhdGEuZnJhbWUocmVzdWx0KSkgPiAwKSB7CiAgICAgIHAgPC0gZG90cGxvdChyZXN1bHQsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9IHRpdGxlKQogICAgICBwcmludChwKSAgCiAgICAgIGdnc2F2ZShwYXN0ZTAob3V0cHV0X2ZvbGRlciwgZ3N1YigiLmNzdiIsICJfZG90cGxvdC5wbmciLCBmaWxlbmFtZSkpLCBwbG90ID0gcCwgd2lkdGggPSA4LCBoZWlnaHQgPSA2KQogICAgICB3cml0ZS5jc3YoYXMuZGF0YS5mcmFtZShyZXN1bHQpLCBmaWxlID0gcGFzdGUwKG91dHB1dF9mb2xkZXIsIGZpbGVuYW1lKSwgcm93Lm5hbWVzID0gRkFMU0UpCiAgICB9IGVsc2UgewogICAgICBtZXNzYWdlKHBhc3RlKCJObyBzaWduaWZpY2FudCBlbnJpY2htZW50IGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgICB9CiAgfSBlbHNlIHsKICAgIG1lc3NhZ2UocGFzdGUoIk5vIGdlbmVzIGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgfQp9CgpzYWZlX2VucmljaEtFR0cgPC0gZnVuY3Rpb24oZW50cmV6X2xpc3QsIHRpdGxlLCBmaWxlbmFtZSkgewogIGlmIChsZW5ndGgoZW50cmV6X2xpc3QpID4gMCkgewogICAgcmVzdWx0IDwtIGVucmljaEtFR0coZ2VuZSA9IGVudHJlel9saXN0LCBvcmdhbmlzbSA9ICJoc2EiLCBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICAgaWYgKCFpcy5udWxsKHJlc3VsdCkgJiYgbnJvdyhhcy5kYXRhLmZyYW1lKHJlc3VsdCkpID4gMCkgewogICAgICByZXN1bHQgPC0gc2V0UmVhZGFibGUocmVzdWx0LCBPcmdEYiA9IG9yZy5Icy5lZy5kYiwga2V5VHlwZSA9ICJFTlRSRVpJRCIpCiAgICAgIHAgPC0gZG90cGxvdChyZXN1bHQsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9IHRpdGxlKQogICAgICBwcmludChwKQogICAgICBnZ3NhdmUocGFzdGUwKG91dHB1dF9mb2xkZXIsIGdzdWIoIi5jc3YiLCAiX2RvdHBsb3QucG5nIiwgZmlsZW5hbWUpKSwgcGxvdCA9IHAsIHdpZHRoID0gOCwgaGVpZ2h0ID0gNikKICAgICAgd3JpdGUuY3N2KGFzLmRhdGEuZnJhbWUocmVzdWx0KSwgZmlsZSA9IHBhc3RlMChvdXRwdXRfZm9sZGVyLCBmaWxlbmFtZSksIHJvdy5uYW1lcyA9IEZBTFNFKQogICAgfSBlbHNlIHsKICAgICAgbWVzc2FnZShwYXN0ZSgiTm8gc2lnbmlmaWNhbnQgS0VHRyBwYXRod2F5cyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogICAgfQogIH0gZWxzZSB7CiAgICBtZXNzYWdlKHBhc3RlKCJObyBnZW5lcyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogIH0KfQoKc2FmZV9lbnJpY2hSZWFjdG9tZSA8LSBmdW5jdGlvbihlbnRyZXpfbGlzdCwgdGl0bGUsIGZpbGVuYW1lKSB7CiAgaWYgKGxlbmd0aChlbnRyZXpfbGlzdCkgPiAwKSB7CiAgICByZXN1bHQgPC0gZW5yaWNoUGF0aHdheShnZW5lID0gZW50cmV6X2xpc3QsIG9yZ2FuaXNtID0gImh1bWFuIiwgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAgIGlmICghaXMubnVsbChyZXN1bHQpICYmIG5yb3coYXMuZGF0YS5mcmFtZShyZXN1bHQpKSA+IDApIHsKICAgICAgcmVzdWx0IDwtIHNldFJlYWRhYmxlKHJlc3VsdCwgT3JnRGIgPSBvcmcuSHMuZWcuZGIsIGtleVR5cGUgPSAiRU5UUkVaSUQiKQogICAgICBwIDwtIGRvdHBsb3QocmVzdWx0LCBzaG93Q2F0ZWdvcnkgPSAxMCwgdGl0bGUgPSB0aXRsZSkKICAgICAgcHJpbnQocCkKICAgICAgZ2dzYXZlKHBhc3RlMChvdXRwdXRfZm9sZGVyLCBnc3ViKCIuY3N2IiwgIl9kb3RwbG90LnBuZyIsIGZpbGVuYW1lKSksIHBsb3QgPSBwLCB3aWR0aCA9IDgsIGhlaWdodCA9IDYpCiAgICAgIHdyaXRlLmNzdihhcy5kYXRhLmZyYW1lKHJlc3VsdCksIGZpbGUgPSBwYXN0ZTAob3V0cHV0X2ZvbGRlciwgZmlsZW5hbWUpLCByb3cubmFtZXMgPSBGQUxTRSkKICAgIH0gZWxzZSB7CiAgICAgIG1lc3NhZ2UocGFzdGUoIk5vIHNpZ25pZmljYW50IFJlYWN0b21lIHBhdGh3YXlzIGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgICB9CiAgfSBlbHNlIHsKICAgIG1lc3NhZ2UocGFzdGUoIk5vIGdlbmVzIGZvdW5kIGZvcjoiLCB0aXRsZSkpCiAgfQp9CgojIFBlcmZvcm0gZW5yaWNobWVudCBhbmFseXNlcywgZ2VuZXJhdGUgcGxvdHMsIGFuZCBzYXZlIHJlc3VsdHMKc2FmZV9lbnJpY2hHTyh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgIkdPIEVucmljaG1lbnQgZm9yIFVwcmVndWxhdGVkIEdlbmVzIiwgInVwcmVndWxhdGVkX0dPX3Jlc3VsdHMuY3N2IikKc2FmZV9lbnJpY2hHTyh0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lLCAiR08gRW5yaWNobWVudCBmb3IgRG93bnJlZ3VsYXRlZCBHZW5lcyIsICJkb3ducmVndWxhdGVkX0dPX3Jlc3VsdHMuY3N2IikKCnNhZmVfZW5yaWNoS0VHRyh1cHJlZ3VsYXRlZF9lbnRyZXosICJLRUdHIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiLCAidXByZWd1bGF0ZWRfS0VHR19yZXN1bHRzLmNzdiIpCnNhZmVfZW5yaWNoS0VHRyhkb3ducmVndWxhdGVkX2VudHJleiwgIktFR0cgUGF0aHdheSBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIiwgImRvd25yZWd1bGF0ZWRfS0VHR19yZXN1bHRzLmNzdiIpCgpzYWZlX2VucmljaFJlYWN0b21lKHVwcmVndWxhdGVkX2VudHJleiwgIlJlYWN0b21lIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiLCAidXByZWd1bGF0ZWRfUmVhY3RvbWVfcmVzdWx0cy5jc3YiKQpzYWZlX2VucmljaFJlYWN0b21lKGRvd25yZWd1bGF0ZWRfZW50cmV6LCAiUmVhY3RvbWUgUGF0aHdheSBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIiwgImRvd25yZWd1bGF0ZWRfUmVhY3RvbWVfcmVzdWx0cy5jc3YiKQoKYGBgCgojIyBFbnJpY2htZW50IEFuYWx5c2lzX0hhbGxtYXJrCmBgYHtyICwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CgojIExvYWQgbmVjZXNzYXJ5IGxpYnJhcmllcwpsaWJyYXJ5KGNsdXN0ZXJQcm9maWxlcikKbGlicmFyeShvcmcuSHMuZWcuZGIpCmxpYnJhcnkobXNpZ2RicikKbGlicmFyeShlbnJpY2hwbG90KQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZHBseXIpCgojIERlZmluZSB0aGUgb3V0cHV0IGZvbGRlciB3aGVyZSB0aGUgcmVzdWx0cyB3aWxsIGJlIHNhdmVkCm91dHB1dF9mb2xkZXIgPC0gIk1hbGlnbmFudF92c19Db250cm9sXzMwMC8iCgojIExvYWQgSGFsbG1hcmsgZ2VuZSBzZXRzIGZyb20gbXNpZ2RicgpoYWxsbWFya19zZXRzIDwtIG1zaWdkYnIoc3BlY2llcyA9ICJIb21vIHNhcGllbnMiLCBjb2xsZWN0aW9uID0gIkgiKSAgIyAiSCIgaXMgZm9yIEhhbGxtYXJrIGdlbmUgc2V0cwoKIyBDb252ZXJ0IGdlbmUgc3ltYm9scyB0byB1cHBlcmNhc2UgZm9yIGNvbnNpc3RlbmN5CnRvcF91cHJlZ3VsYXRlZF9nZW5lcyRnZW5lIDwtIHRvdXBwZXIodG9wX3VwcmVndWxhdGVkX2dlbmVzJGdlbmUpCnRvcF9kb3ducmVndWxhdGVkX2dlbmVzJGdlbmUgPC0gdG91cHBlcih0b3BfZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lKQoKIyBDaGVjayBmb3Igb3ZlcmxhcCBiZXR3ZWVuIHlvdXIgdXByZWd1bGF0ZWQvZG93bnJlZ3VsYXRlZCBnZW5lcyBhbmQgSGFsbG1hcmsgZ2VuZSBzZXRzCnVwcmVndWxhdGVkX2luX2hhbGxtYXJrIDwtIGludGVyc2VjdCh0b3BfdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgaGFsbG1hcmtfc2V0cyRnZW5lX3N5bWJvbCkKZG93bnJlZ3VsYXRlZF9pbl9oYWxsbWFyayA8LSBpbnRlcnNlY3QodG9wX2Rvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgaGFsbG1hcmtfc2V0cyRnZW5lX3N5bWJvbCkKCiMgUHJpbnQgdGhlIG51bWJlciBvZiBvdmVybGFwcGluZyBnZW5lcyBmb3IgYm90aCB1cHJlZ3VsYXRlZCBhbmQgZG93bnJlZ3VsYXRlZCBnZW5lcwpjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyBpbiBIYWxsbWFyayBnZW5lIHNldHM6IiwgbGVuZ3RoKHVwcmVndWxhdGVkX2luX2hhbGxtYXJrKSwgIlxuIikKY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyBpbiBIYWxsbWFyayBnZW5lIHNldHM6IiwgbGVuZ3RoKGRvd25yZWd1bGF0ZWRfaW5faGFsbG1hcmspLCAiXG4iKQoKIyBJZiB0aGVyZSBhcmUgZ2VuZXMgdG8gYW5hbHl6ZSwgcHJvY2VlZCB3aXRoIGVucmljaG1lbnQgYW5hbHlzaXMKaWYgKGxlbmd0aCh1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyaykgPiAwKSB7CiAgIyBQZXJmb3JtIGVucmljaG1lbnQgYW5hbHlzaXMgZm9yIHVwcmVndWxhdGVkIGdlbmVzIHVzaW5nIEhhbGxtYXJrIGdlbmUgc2V0cwogIGhhbGxtYXJrX3VwIDwtIGVucmljaGVyKGdlbmUgPSB1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyaywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgVEVSTTJHRU5FID0gaGFsbG1hcmtfc2V0c1ssIGMoImdzX25hbWUiLCAiZ2VuZV9zeW1ib2wiKV0sICAjIEVuc3VyZSBURVJNMkdFTkUgdXNlcyBjb3JyZWN0IGNvbHVtbnMKICAgICAgICAgICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICMgQ2hlY2sgaWYgcmVzdWx0cyBleGlzdAogIGlmICghaXMubnVsbChoYWxsbWFya191cCkgJiYgbnJvdyhoYWxsbWFya191cCkgPiAwKSB7CiAgICAjIFZpc3VhbGl6ZSByZXN1bHRzIGlmIGF2YWlsYWJsZQogICAgdXBfZG90cGxvdCA8LSBkb3RwbG90KGhhbGxtYXJrX3VwLCBzaG93Q2F0ZWdvcnkgPSAyMCwgdGl0bGUgPSAiSGFsbG1hcmsgUGF0aHdheSBFbnJpY2htZW50IGZvciBVcHJlZ3VsYXRlZCBHZW5lcyIpCiAgICAKICAgICMgRGlzcGxheSB0aGUgcGxvdCBpbiB0aGUgbm90ZWJvb2sKICAgIHByaW50KHVwX2RvdHBsb3QpCiAgICAKICAgICMgU2F2ZSB0aGUgZG90cGxvdCB0byBhIFBORyBmaWxlCiAgICBnZ3NhdmUocGFzdGUwKG91dHB1dF9mb2xkZXIsICJoYWxsbWFya191cHJlZ3VsYXRlZF9kb3RwbG90LnBuZyIpLCBwbG90ID0gdXBfZG90cGxvdCwgd2lkdGggPSAxMCwgaGVpZ2h0ID0gOCkKICAgIAogICAgIyBPcHRpb25hbGx5LCBzYXZlIHRoZSByZXN1bHRzIGFzIENTVgogICAgd3JpdGUuY3N2KGFzLmRhdGEuZnJhbWUoaGFsbG1hcmtfdXApLCBmaWxlID0gcGFzdGUwKG91dHB1dF9mb2xkZXIsICJoYWxsbWFya191cHJlZ3VsYXRlZF9lbnJpY2htZW50LmNzdiIpLCByb3cubmFtZXMgPSBGQUxTRSkKICB9IGVsc2UgewogICAgY2F0KCJObyBzaWduaWZpY2FudCBlbnJpY2htZW50IGZvdW5kIGZvciB1cHJlZ3VsYXRlZCBnZW5lcy5cbiIpCiAgfQp9IGVsc2UgewogIGNhdCgiTm8gdXByZWd1bGF0ZWQgZ2VuZXMgb3ZlcmxhcCB3aXRoIEhhbGxtYXJrIGdlbmUgc2V0cy5cbiIpCn0KCmlmIChsZW5ndGgoZG93bnJlZ3VsYXRlZF9pbl9oYWxsbWFyaykgPiAwKSB7CiAgIyBQZXJmb3JtIGVucmljaG1lbnQgYW5hbHlzaXMgZm9yIGRvd25yZWd1bGF0ZWQgZ2VuZXMgdXNpbmcgSGFsbG1hcmsgZ2VuZSBzZXRzCiAgaGFsbG1hcmtfZG93biA8LSBlbnJpY2hlcihnZW5lID0gZG93bnJlZ3VsYXRlZF9pbl9oYWxsbWFyaywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBURVJNMkdFTkUgPSBoYWxsbWFya19zZXRzWywgYygiZ3NfbmFtZSIsICJnZW5lX3N5bWJvbCIpXSwgICMgRW5zdXJlIFRFUk0yR0VORSB1c2VzIGNvcnJlY3QgY29sdW1ucwogICAgICAgICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAjIENoZWNrIGlmIHJlc3VsdHMgZXhpc3QKICBpZiAoIWlzLm51bGwoaGFsbG1hcmtfZG93bikgJiYgbnJvdyhoYWxsbWFya19kb3duKSA+IDApIHsKICAgICMgVmlzdWFsaXplIHJlc3VsdHMgaWYgYXZhaWxhYmxlCiAgICBkb3duX2RvdHBsb3QgPC0gZG90cGxvdChoYWxsbWFya19kb3duLCBzaG93Q2F0ZWdvcnkgPSAyMCwgdGl0bGUgPSAiSGFsbG1hcmsgUGF0aHdheSBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIikKICAgIAogICAgIyBEaXNwbGF5IHRoZSBwbG90IGluIHRoZSBub3RlYm9vawogICAgcHJpbnQoZG93bl9kb3RwbG90KQogICAgCiAgICAjIFNhdmUgdGhlIGRvdHBsb3QgdG8gYSBQTkcgZmlsZQogICAgZ2dzYXZlKHBhc3RlMChvdXRwdXRfZm9sZGVyLCAiaGFsbG1hcmtfZG93bnJlZ3VsYXRlZF9kb3RwbG90LnBuZyIpLCBwbG90ID0gZG93bl9kb3RwbG90LCB3aWR0aCA9IDEwLCBoZWlnaHQgPSA4KQogICAgCiAgICAjIE9wdGlvbmFsbHksIHNhdmUgdGhlIHJlc3VsdHMgYXMgQ1NWCiAgICB3cml0ZS5jc3YoYXMuZGF0YS5mcmFtZShoYWxsbWFya19kb3duKSwgZmlsZSA9IHBhc3RlMChvdXRwdXRfZm9sZGVyLCAiaGFsbG1hcmtfZG93bnJlZ3VsYXRlZF9lbnJpY2htZW50LmNzdiIpLCByb3cubmFtZXMgPSBGQUxTRSkKICB9IGVsc2UgewogICAgY2F0KCJObyBzaWduaWZpY2FudCBlbnJpY2htZW50IGZvdW5kIGZvciBkb3ducmVndWxhdGVkIGdlbmVzLlxuIikKICB9Cn0gZWxzZSB7CiAgY2F0KCJObyBkb3ducmVndWxhdGVkIGdlbmVzIG92ZXJsYXAgd2l0aCBIYWxsbWFyayBnZW5lIHNldHMuXG4iKQp9CgoKYGBgCgoKCg==