Correr la paqueteria

Ctrl+Alt+I / Cmd+Opt+I

Intalación de paquetes

Pacman: llama a otros paquetes y si no estƔn los instala

if(!require(pacman))
  install.packages("pacman")
## Loading required package: pacman

Llamar a pacman

library("pacman")

Llamar paqueteria necesaria

p_load("vroom",
       "dplyr",
       "ggplot2",
       "tidyr",
       "ggrepel",
       "plotly")

Llamar a la base de datos

Melting_curves <- vroom(file = "https://raw.githubusercontent.com/ManuelLaraMVZ/resultados_PCR_practica/refs/heads/main/Disoci_ejemplo1.csv")
## Rows: 55 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (6): Temperature, A1, B1, C1, D1, E1
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Melting_curves
## # A tibble: 55 Ɨ 6
##    Temperature    A1    B1    C1    D1     E1
##          <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
##  1        65    1.96  1.98  2.11  2.11 0.0869
##  2        65.5  1.94  1.99  2.06  2.08 0.0834
##  3        66    1.89  1.93  2.03  2.07 0.0932
##  4        66.5  1.86  1.89  1.98  2.02 0.0676
##  5        67    1.82  1.89  1.94  1.98 0.0738
##  6        67.5  1.77  1.83  1.90  1.93 0.0766
##  7        68    1.74  1.78  1.86  1.87 0.0686
##  8        68.5  1.70  1.76  1.79  1.84 0.0689
##  9        69    1.65  1.71  1.79  1.80 0.0665
## 10        69.5  1.60  1.64  1.75  1.76 0.0744
## # ℹ 45 more rows

Modificar la base de datos

Melting_curves2 <- Melting_curves %>% 
    mutate(Temperatura = Temperature, DDR = A1, JRWF = B1, PPOF = C1, MLL = D1, H2O = E1) %>% 
  select(-Temperature:-E1)

Melting_curves2
## # A tibble: 55 Ɨ 6
##    Temperatura   DDR  JRWF  PPOF   MLL    H2O
##          <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
##  1        65    1.96  1.98  2.11  2.11 0.0869
##  2        65.5  1.94  1.99  2.06  2.08 0.0834
##  3        66    1.89  1.93  2.03  2.07 0.0932
##  4        66.5  1.86  1.89  1.98  2.02 0.0676
##  5        67    1.82  1.89  1.94  1.98 0.0738
##  6        67.5  1.77  1.83  1.90  1.93 0.0766
##  7        68    1.74  1.78  1.86  1.87 0.0686
##  8        68.5  1.70  1.76  1.79  1.84 0.0689
##  9        69    1.65  1.71  1.79  1.80 0.0665
## 10        69.5  1.60  1.64  1.75  1.76 0.0744
## # ℹ 45 more rows

Agrupación de datos

Melting_curves3 <- Melting_curves2 %>% 
  pivot_longer(cols = -Temperatura,
               names_to = "Muestras",
               values_to = "Fluorescencias")
Melting_curves3
## # A tibble: 275 Ɨ 3
##    Temperatura Muestras Fluorescencias
##          <dbl> <chr>             <dbl>
##  1        65   DDR              1.96  
##  2        65   JRWF             1.98  
##  3        65   PPOF             2.11  
##  4        65   MLL              2.11  
##  5        65   H2O              0.0869
##  6        65.5 DDR              1.94  
##  7        65.5 JRWF             1.99  
##  8        65.5 PPOF             2.06  
##  9        65.5 MLL              2.08  
## 10        65.5 H2O              0.0834
## # ℹ 265 more rows

Grafica

Grafica_melting <- ggplot(Melting_curves3,
                          aes( x = Temperatura,
                               y = Fluorescencias,
                               color = Muestras)) +
  geom_line(linewidth = 1.5)+
  theme_classic(  )+
  labs(title = "Curvas de disociación",
       subtitle = "Todas las muestras",
       caption = "Diseñó: Manuel Lara",
       x = "Temperatura (° C)",
       y = "Fluorescencia (u.a.)")+
    theme(axis.line = element_line (size = 1.2, color = "black"),
        axis.title = element_text(face = "bold"),
        axis.text = element_text(face = "bold"),
        legend.title = element_text(face = "bold"),
        legend.text = element_text(face = "bold"))
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Grafica_melting

Derivadas de las curvas de disociación

Derivadas <- Melting_curves2 %>% 
  mutate(across(DDR:H2O, 
                ~ -c(NA, diff(.x)/diff(Melting_curves2$Temperatura)), .names = "d_{.col}")) %>% 
  select(-DDR: -H2O) %>% 
  slice(-1)

Derivadas
## # A tibble: 54 Ɨ 6
##    Temperatura  d_DDR   d_JRWF   d_PPOF  d_MLL     d_H2O
##          <dbl>  <dbl>    <dbl>    <dbl>  <dbl>     <dbl>
##  1        65.5 0.0365 -0.0147   0.0940  0.0711  0.00703 
##  2        66   0.102   0.108    0.0614  0.0146 -0.0197  
##  3        66.5 0.0695  0.0883   0.112   0.108   0.0512  
##  4        67   0.0652  0.00898  0.0646  0.0772 -0.0123  
##  5        67.5 0.109   0.114    0.0903  0.0923 -0.00567 
##  6        68   0.0666  0.0994   0.0707  0.122   0.0162  
##  7        68.5 0.0774  0.0335   0.139   0.0558 -0.000754
##  8        69   0.0860  0.0979  -0.00165 0.0850  0.00488 
##  9        69.5 0.111   0.146    0.0908  0.0844 -0.0159  
## 10        70   0.0582  0.0279   0.130   0.0864  0.00967 
## # ℹ 44 more rows

Reordenar los datos

Derivadas2 <- Derivadas %>% 
  pivot_longer(cols= -Temperatura,
               names_to = "Muestras",
               values_to = "Derivadas")
Derivadas2
## # A tibble: 270 Ɨ 3
##    Temperatura Muestras Derivadas
##          <dbl> <chr>        <dbl>
##  1        65.5 d_DDR      0.0365 
##  2        65.5 d_JRWF    -0.0147 
##  3        65.5 d_PPOF     0.0940 
##  4        65.5 d_MLL      0.0711 
##  5        65.5 d_H2O      0.00703
##  6        66   d_DDR      0.102  
##  7        66   d_JRWF     0.108  
##  8        66   d_PPOF     0.0614 
##  9        66   d_MLL      0.0146 
## 10        66   d_H2O     -0.0197 
## # ℹ 260 more rows

GrƔficas Derivadas

Grafica_derivada <- ggplot(Derivadas2,
                           aes(x = Temperatura,
                               y = Derivadas,
                               color = Muestras))+
    geom_line(linewidth = 1.5)+
    theme_classic(  )+
  labs(title = "Curvas de la derivada de disociacion",
       subtitle = "Todas las muestras",
       caption = "Diseñó: Manuel Lara",
       x = "Temperatura (° C)",
       y = expression(-Delta~F / Delta~T))+
    theme(axis.line = element_line (size = 1.2, color = "black"),
        axis.title = element_text(face = "bold"),
        axis.text = element_text(face = "bold"),
        legend.title = element_text(face = "bold"),
        legend.text = element_text(face = "bold"))+
  scale_x_continuous(breaks = seq(min(Derivadas2$Temperatura),
                                  max(Derivadas2$Temperatura),
                                  by = 2.5)) 
Grafica_derivada

Construir una grafica 3D

Grafica_derivada_3D <- plot_ly(Derivadas2,
                               x = ~Temperatura,
                               y = ~Muestras,
                               z = ~Derivadas,
                               color = ~factor(Muestras),
                               type = "scatter3d",
                               mode = "lines",
                               line = list(width = 6)) %>%
  layout(title = "Curvas de derivada en 3D",
         scene = list(
           xaxis = list(title = "Temperatura (°C)"),
           yaxis = list(title = "Muestras"),
           zaxis = list(title = "-ΔT/ΔF")  # Aquí el cambio
         ))

Grafica_derivada_3D

Grafica del equipo

Grafica_derivada_equipo <- ggplot(Derivadas,
                                  aes(x = Temperatura))+
  geom_line(aes(y = d_MLL, color = "d_MLL"), linewidth = 1.5) +
  geom_line(aes(y = d_H2O, color = "d_H2O"), linewidth = 1.5) +
  scale_color_manual(values = c("d_MLL" = "#1e2f7c", "d_H2O" = "#900C3F")) +
  theme_classic()+
  labs(title = "Derivada de Disociación",
       subtitle = "Tejido: Cerebro",
       caption = "Diseñó: Manuel Lara",
       x = "Temperatura",
       y = expression(-Delta~F / Delta~T))+
    theme(axis.line = element_line (size = 1.2, color = "black"),
        axis.title = element_text(face = "bold"),
        axis.text = element_text(face = "bold"),
        legend.title = element_text(face = "bold"),
        legend.text = element_text(face = "bold"))+
  scale_x_continuous(breaks = seq(min(Derivadas2$Temperatura),
                                  max(Derivadas2$Temperatura),
                                  by = 2.5)) 

Grafica_derivada_equipo

Etiquetas

Pico <- max(Derivadas$d_MLL)
Pico
## [1] 0.738565

Temperatura

Tm <- Derivadas %>% 
  filter(d_MLL == Pico) %>% 
  select(Temperatura, d_MLL)

Tm
## # A tibble: 1 Ɨ 2
##   Temperatura d_MLL
##         <dbl> <dbl>
## 1          82 0.739

Grafica con etiqueta

Grafica_derivada_equipo2 <- Grafica_derivada_equipo+
  geom_vline(xintercept = Tm$Temperatura, 
             color = "#FF5733", 
             linetype = "dashed", 
             linewidth = 1)+
  geom_label_repel(data = Tm,
                   aes(x = Temperatura,
                       y = d_MLL,
                       label = paste("Tm = ", round(Temperatura), "° C")),
                   nudge_x = 4,
                   nudge_y = -0.03,
                   max.overlaps = 100, 
                   color = "black",
                   fill = "#9eaffa")

Grafica_derivada_equipo2