Correr la paqueteria
Ctrl+Alt+I / Cmd+Opt+I
Intalación de paquetes
Pacman: llama a otros paquetes y si no estƔn los instala
if(!require(pacman))
install.packages("pacman")
## Loading required package: pacman
Llamar a pacman
library("pacman")
Llamar paqueteria necesaria
p_load("vroom",
"dplyr",
"ggplot2",
"tidyr",
"ggrepel",
"plotly")
Llamar a la base de datos
Melting_curves <- vroom(file = "https://raw.githubusercontent.com/ManuelLaraMVZ/resultados_PCR_practica/refs/heads/main/Disoci_ejemplo1.csv")
## Rows: 55 Columns: 6
## āā Column specification āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
## Delimiter: ","
## dbl (6): Temperature, A1, B1, C1, D1, E1
##
## ā¹ Use `spec()` to retrieve the full column specification for this data.
## ā¹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Melting_curves
## # A tibble: 55 Ć 6
## Temperature A1 B1 C1 D1 E1
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 65 1.96 1.98 2.11 2.11 0.0869
## 2 65.5 1.94 1.99 2.06 2.08 0.0834
## 3 66 1.89 1.93 2.03 2.07 0.0932
## 4 66.5 1.86 1.89 1.98 2.02 0.0676
## 5 67 1.82 1.89 1.94 1.98 0.0738
## 6 67.5 1.77 1.83 1.90 1.93 0.0766
## 7 68 1.74 1.78 1.86 1.87 0.0686
## 8 68.5 1.70 1.76 1.79 1.84 0.0689
## 9 69 1.65 1.71 1.79 1.80 0.0665
## 10 69.5 1.60 1.64 1.75 1.76 0.0744
## # ā¹ 45 more rows
Modificar la base de datos
Melting_curves2 <- Melting_curves %>%
mutate(Temperatura = Temperature, DDR = A1, JRWF = B1, PPOF = C1, MLL = D1, H2O = E1) %>%
select(-Temperature:-E1)
Melting_curves2
## # A tibble: 55 Ć 6
## Temperatura DDR JRWF PPOF MLL H2O
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 65 1.96 1.98 2.11 2.11 0.0869
## 2 65.5 1.94 1.99 2.06 2.08 0.0834
## 3 66 1.89 1.93 2.03 2.07 0.0932
## 4 66.5 1.86 1.89 1.98 2.02 0.0676
## 5 67 1.82 1.89 1.94 1.98 0.0738
## 6 67.5 1.77 1.83 1.90 1.93 0.0766
## 7 68 1.74 1.78 1.86 1.87 0.0686
## 8 68.5 1.70 1.76 1.79 1.84 0.0689
## 9 69 1.65 1.71 1.79 1.80 0.0665
## 10 69.5 1.60 1.64 1.75 1.76 0.0744
## # ā¹ 45 more rows
Agrupación de datos
Melting_curves3 <- Melting_curves2 %>%
pivot_longer(cols = -Temperatura,
names_to = "Muestras",
values_to = "Fluorescencias")
Melting_curves3
## # A tibble: 275 Ć 3
## Temperatura Muestras Fluorescencias
## <dbl> <chr> <dbl>
## 1 65 DDR 1.96
## 2 65 JRWF 1.98
## 3 65 PPOF 2.11
## 4 65 MLL 2.11
## 5 65 H2O 0.0869
## 6 65.5 DDR 1.94
## 7 65.5 JRWF 1.99
## 8 65.5 PPOF 2.06
## 9 65.5 MLL 2.08
## 10 65.5 H2O 0.0834
## # ā¹ 265 more rows
Grafica
Grafica_melting <- ggplot(Melting_curves3,
aes( x = Temperatura,
y = Fluorescencias,
color = Muestras)) +
geom_line(linewidth = 1.5)+
theme_classic( )+
labs(title = "Curvas de disociación",
subtitle = "Todas las muestras",
caption = "Diseñó: Manuel Lara",
x = "Temperatura (° C)",
y = "Fluorescencia (u.a.)")+
theme(axis.line = element_line (size = 1.2, color = "black"),
axis.title = element_text(face = "bold"),
axis.text = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.text = element_text(face = "bold"))
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ā¹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Grafica_melting
Derivadas de las curvas de disociación
Derivadas <- Melting_curves2 %>%
mutate(across(DDR:H2O,
~ -c(NA, diff(.x)/diff(Melting_curves2$Temperatura)), .names = "d_{.col}")) %>%
select(-DDR: -H2O) %>%
slice(-1)
Derivadas
## # A tibble: 54 Ć 6
## Temperatura d_DDR d_JRWF d_PPOF d_MLL d_H2O
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 65.5 0.0365 -0.0147 0.0940 0.0711 0.00703
## 2 66 0.102 0.108 0.0614 0.0146 -0.0197
## 3 66.5 0.0695 0.0883 0.112 0.108 0.0512
## 4 67 0.0652 0.00898 0.0646 0.0772 -0.0123
## 5 67.5 0.109 0.114 0.0903 0.0923 -0.00567
## 6 68 0.0666 0.0994 0.0707 0.122 0.0162
## 7 68.5 0.0774 0.0335 0.139 0.0558 -0.000754
## 8 69 0.0860 0.0979 -0.00165 0.0850 0.00488
## 9 69.5 0.111 0.146 0.0908 0.0844 -0.0159
## 10 70 0.0582 0.0279 0.130 0.0864 0.00967
## # ā¹ 44 more rows
Reordenar los datos
Derivadas2 <- Derivadas %>%
pivot_longer(cols= -Temperatura,
names_to = "Muestras",
values_to = "Derivadas")
Derivadas2
## # A tibble: 270 Ć 3
## Temperatura Muestras Derivadas
## <dbl> <chr> <dbl>
## 1 65.5 d_DDR 0.0365
## 2 65.5 d_JRWF -0.0147
## 3 65.5 d_PPOF 0.0940
## 4 65.5 d_MLL 0.0711
## 5 65.5 d_H2O 0.00703
## 6 66 d_DDR 0.102
## 7 66 d_JRWF 0.108
## 8 66 d_PPOF 0.0614
## 9 66 d_MLL 0.0146
## 10 66 d_H2O -0.0197
## # ā¹ 260 more rows
GrƔficas Derivadas
Grafica_derivada <- ggplot(Derivadas2,
aes(x = Temperatura,
y = Derivadas,
color = Muestras))+
geom_line(linewidth = 1.5)+
theme_classic( )+
labs(title = "Curvas de la derivada de disociacion",
subtitle = "Todas las muestras",
caption = "Diseñó: Manuel Lara",
x = "Temperatura (° C)",
y = expression(-Delta~F / Delta~T))+
theme(axis.line = element_line (size = 1.2, color = "black"),
axis.title = element_text(face = "bold"),
axis.text = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.text = element_text(face = "bold"))+
scale_x_continuous(breaks = seq(min(Derivadas2$Temperatura),
max(Derivadas2$Temperatura),
by = 2.5))
Grafica_derivada
Construir una grafica 3D
Grafica_derivada_3D <- plot_ly(Derivadas2,
x = ~Temperatura,
y = ~Muestras,
z = ~Derivadas,
color = ~factor(Muestras),
type = "scatter3d",
mode = "lines",
line = list(width = 6)) %>%
layout(title = "Curvas de derivada en 3D",
scene = list(
xaxis = list(title = "Temperatura (°C)"),
yaxis = list(title = "Muestras"),
zaxis = list(title = "-ĪT/ĪF") # AquĆ el cambio
))
Grafica_derivada_3D
Grafica del equipo
Grafica_derivada_equipo <- ggplot(Derivadas,
aes(x = Temperatura))+
geom_line(aes(y = d_MLL, color = "d_MLL"), linewidth = 1.5) +
geom_line(aes(y = d_H2O, color = "d_H2O"), linewidth = 1.5) +
scale_color_manual(values = c("d_MLL" = "#1e2f7c", "d_H2O" = "#900C3F")) +
theme_classic()+
labs(title = "Derivada de Disociación",
subtitle = "Tejido: Cerebro",
caption = "Diseñó: Manuel Lara",
x = "Temperatura",
y = expression(-Delta~F / Delta~T))+
theme(axis.line = element_line (size = 1.2, color = "black"),
axis.title = element_text(face = "bold"),
axis.text = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.text = element_text(face = "bold"))+
scale_x_continuous(breaks = seq(min(Derivadas2$Temperatura),
max(Derivadas2$Temperatura),
by = 2.5))
Grafica_derivada_equipo
Etiquetas
Pico <- max(Derivadas$d_MLL)
Pico
## [1] 0.738565
Temperatura
Tm <- Derivadas %>%
filter(d_MLL == Pico) %>%
select(Temperatura, d_MLL)
Tm
## # A tibble: 1 Ć 2
## Temperatura d_MLL
## <dbl> <dbl>
## 1 82 0.739
Grafica con etiqueta
Grafica_derivada_equipo2 <- Grafica_derivada_equipo+
geom_vline(xintercept = Tm$Temperatura,
color = "#FF5733",
linetype = "dashed",
linewidth = 1)+
geom_label_repel(data = Tm,
aes(x = Temperatura,
y = d_MLL,
label = paste("Tm = ", round(Temperatura), "° C")),
nudge_x = 4,
nudge_y = -0.03,
max.overlaps = 100,
color = "black",
fill = "#9eaffa")
Grafica_derivada_equipo2