R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

library(readr)
wisc_bc_data <- read_csv("C:/Users/ijiol/OneDrive/Documents/R projects/R for Advanced Topics/Datasets/wisc_bc_data.csv")
## Rows: 569 Columns: 32
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (1): diagnosis
## dbl (31): id, radius_mean, texture_mean, perimeter_mean, area_mean, smoothne...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#View(wisc_bc_data)
WBC <- wisc_bc_data
dim(WBC)
## [1] 569  32
head(WBC)
## # A tibble: 6 × 32
##         id diagnosis radius_mean texture_mean perimeter_mean area_mean
##      <dbl> <chr>           <dbl>        <dbl>          <dbl>     <dbl>
## 1   842302 M                18.0         10.4          123.      1001 
## 2   842517 M                20.6         17.8          133.      1326 
## 3 84300903 M                19.7         21.2          130       1203 
## 4 84348301 M                11.4         20.4           77.6      386.
## 5 84358402 M                20.3         14.3          135.      1297 
## 6   843786 M                12.4         15.7           82.6      477.
## # ℹ 26 more variables: smoothness_mean <dbl>, compactness_mean <dbl>,
## #   concavity_mean <dbl>, `concave points_mean` <dbl>, symmetry_mean <dbl>,
## #   fractal_dimension_mean <dbl>, radius_se <dbl>, texture_se <dbl>,
## #   perimeter_se <dbl>, area_se <dbl>, smoothness_se <dbl>,
## #   compactness_se <dbl>, concavity_se <dbl>, `concave points_se` <dbl>,
## #   symmetry_se <dbl>, fractal_dimension_se <dbl>, radius_worst <dbl>,
## #   texture_worst <dbl>, perimeter_worst <dbl>, area_worst <dbl>, …
str(WBC)
## spc_tbl_ [569 × 32] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ id                     : num [1:569] 842302 842517 84300903 84348301 84358402 ...
##  $ diagnosis              : chr [1:569] "M" "M" "M" "M" ...
##  $ radius_mean            : num [1:569] 18 20.6 19.7 11.4 20.3 ...
##  $ texture_mean           : num [1:569] 10.4 17.8 21.2 20.4 14.3 ...
##  $ perimeter_mean         : num [1:569] 122.8 132.9 130 77.6 135.1 ...
##  $ area_mean              : num [1:569] 1001 1326 1203 386 1297 ...
##  $ smoothness_mean        : num [1:569] 0.1184 0.0847 0.1096 0.1425 0.1003 ...
##  $ compactness_mean       : num [1:569] 0.2776 0.0786 0.1599 0.2839 0.1328 ...
##  $ concavity_mean         : num [1:569] 0.3001 0.0869 0.1974 0.2414 0.198 ...
##  $ concave points_mean    : num [1:569] 0.1471 0.0702 0.1279 0.1052 0.1043 ...
##  $ symmetry_mean          : num [1:569] 0.242 0.181 0.207 0.26 0.181 ...
##  $ fractal_dimension_mean : num [1:569] 0.0787 0.0567 0.06 0.0974 0.0588 ...
##  $ radius_se              : num [1:569] 1.095 0.543 0.746 0.496 0.757 ...
##  $ texture_se             : num [1:569] 0.905 0.734 0.787 1.156 0.781 ...
##  $ perimeter_se           : num [1:569] 8.59 3.4 4.58 3.44 5.44 ...
##  $ area_se                : num [1:569] 153.4 74.1 94 27.2 94.4 ...
##  $ smoothness_se          : num [1:569] 0.0064 0.00522 0.00615 0.00911 0.01149 ...
##  $ compactness_se         : num [1:569] 0.049 0.0131 0.0401 0.0746 0.0246 ...
##  $ concavity_se           : num [1:569] 0.0537 0.0186 0.0383 0.0566 0.0569 ...
##  $ concave points_se      : num [1:569] 0.0159 0.0134 0.0206 0.0187 0.0188 ...
##  $ symmetry_se            : num [1:569] 0.03 0.0139 0.0225 0.0596 0.0176 ...
##  $ fractal_dimension_se   : num [1:569] 0.00619 0.00353 0.00457 0.00921 0.00511 ...
##  $ radius_worst           : num [1:569] 25.4 25 23.6 14.9 22.5 ...
##  $ texture_worst          : num [1:569] 17.3 23.4 25.5 26.5 16.7 ...
##  $ perimeter_worst        : num [1:569] 184.6 158.8 152.5 98.9 152.2 ...
##  $ area_worst             : num [1:569] 2019 1956 1709 568 1575 ...
##  $ smoothness_worst       : num [1:569] 0.162 0.124 0.144 0.21 0.137 ...
##  $ compactness_worst      : num [1:569] 0.666 0.187 0.424 0.866 0.205 ...
##  $ concavity_worst        : num [1:569] 0.712 0.242 0.45 0.687 0.4 ...
##  $ concave points_worst   : num [1:569] 0.265 0.186 0.243 0.258 0.163 ...
##  $ symmetry_worst         : num [1:569] 0.46 0.275 0.361 0.664 0.236 ...
##  $ fractal_dimension_worst: num [1:569] 0.1189 0.089 0.0876 0.173 0.0768 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   id = col_double(),
##   ..   diagnosis = col_character(),
##   ..   radius_mean = col_double(),
##   ..   texture_mean = col_double(),
##   ..   perimeter_mean = col_double(),
##   ..   area_mean = col_double(),
##   ..   smoothness_mean = col_double(),
##   ..   compactness_mean = col_double(),
##   ..   concavity_mean = col_double(),
##   ..   `concave points_mean` = col_double(),
##   ..   symmetry_mean = col_double(),
##   ..   fractal_dimension_mean = col_double(),
##   ..   radius_se = col_double(),
##   ..   texture_se = col_double(),
##   ..   perimeter_se = col_double(),
##   ..   area_se = col_double(),
##   ..   smoothness_se = col_double(),
##   ..   compactness_se = col_double(),
##   ..   concavity_se = col_double(),
##   ..   `concave points_se` = col_double(),
##   ..   symmetry_se = col_double(),
##   ..   fractal_dimension_se = col_double(),
##   ..   radius_worst = col_double(),
##   ..   texture_worst = col_double(),
##   ..   perimeter_worst = col_double(),
##   ..   area_worst = col_double(),
##   ..   smoothness_worst = col_double(),
##   ..   compactness_worst = col_double(),
##   ..   concavity_worst = col_double(),
##   ..   `concave points_worst` = col_double(),
##   ..   symmetry_worst = col_double(),
##   ..   fractal_dimension_worst = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
WBC1 <- WBC[-1]
dim(WBC1)
## [1] 569  31
####
table(WBC1$diagnosis)
## 
##   B   M 
## 357 212
#convert to a factor
WBC1$diagnosis <- factor(WBC1$diagnosis, levels = c("B","M"), labels = c("Benign", "Malignant"))
table(WBC1$diagnosis)
## 
##    Benign Malignant 
##       357       212
round(prop.table(table(WBC1$diagnosis)))
## 
##    Benign Malignant 
##         1         0
round(prop.table(table(WBC1$diagnosis))* 100, digits =1)
## 
##    Benign Malignant 
##      62.7      37.3
summary (WBC1[c("radius_mean", "area_mean", "smoothness_mean")])
##   radius_mean       area_mean      smoothness_mean  
##  Min.   : 6.981   Min.   : 143.5   Min.   :0.05263  
##  1st Qu.:11.700   1st Qu.: 420.3   1st Qu.:0.08637  
##  Median :13.370   Median : 551.1   Median :0.09587  
##  Mean   :14.127   Mean   : 654.9   Mean   :0.09636  
##  3rd Qu.:15.780   3rd Qu.: 782.7   3rd Qu.:0.10530  
##  Max.   :28.110   Max.   :2501.0   Max.   :0.16340
# Create normalization function
  normalize <- function(x) {
    return((x - min(x)) / (max(x) - min(x)))
  
  }
normalize(c(1,2,3,4,5))
## [1] 0.00 0.25 0.50 0.75 1.00
wbc_N <- as.data.frame(lapply(WBC1[2:31], normalize))
head(wbc_N)
##   radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 1   0.5210374    0.0226581      0.5459885 0.3637328       0.5937528
## 2   0.6431445    0.2725736      0.6157833 0.5015907       0.2898799
## 3   0.6014956    0.3902604      0.5957432 0.4494168       0.5143089
## 4   0.2100904    0.3608387      0.2335015 0.1029056       0.8113208
## 5   0.6298926    0.1565776      0.6309861 0.4892895       0.4303512
## 6   0.2588386    0.2025702      0.2679842 0.1415058       0.6786133
##   compactness_mean concavity_mean concave.points_mean symmetry_mean
## 1        0.7920373      0.7031396           0.7311133     0.6863636
## 2        0.1817680      0.2036082           0.3487575     0.3797980
## 3        0.4310165      0.4625117           0.6356859     0.5095960
## 4        0.8113613      0.5656045           0.5228628     0.7762626
## 5        0.3478928      0.4639175           0.5183897     0.3782828
## 6        0.4619962      0.3697282           0.4020378     0.5186869
##   fractal_dimension_mean  radius_se texture_se perimeter_se    area_se
## 1              0.6055181 0.35614702 0.12046941   0.36903360 0.27381126
## 2              0.1413227 0.15643672 0.08258929   0.12444047 0.12565979
## 3              0.2112468 0.22962158 0.09430251   0.18037035 0.16292179
## 4              1.0000000 0.13909107 0.17587518   0.12665504 0.03815479
## 5              0.1868155 0.23382220 0.09306489   0.22056260 0.16368757
## 6              0.5511794 0.08075321 0.11713225   0.06879329 0.03808008
##   smoothness_se compactness_se concavity_se concave.points_se symmetry_se
## 1     0.1592956     0.35139844   0.13568182         0.3006251  0.31164518
## 2     0.1193867     0.08132304   0.04696970         0.2538360  0.08453875
## 3     0.1508312     0.28395470   0.09676768         0.3898466  0.20569032
## 4     0.2514532     0.54321507   0.14295455         0.3536655  0.72814769
## 5     0.3323588     0.16791841   0.14363636         0.3570752  0.13617943
## 6     0.1970629     0.23431069   0.09272727         0.2153817  0.19372995
##   fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
## 1            0.1830424    0.6207755     0.1415245       0.6683102 0.45069799
## 2            0.0911101    0.6069015     0.3035714       0.5398177 0.43521431
## 3            0.1270055    0.5563856     0.3600746       0.5084417 0.37450845
## 4            0.2872048    0.2483102     0.3859275       0.2413467 0.09400806
## 5            0.1457996    0.5197439     0.1239339       0.5069476 0.34157491
## 6            0.1446596    0.2682319     0.3126333       0.2639076 0.13674794
##   smoothness_worst compactness_worst concavity_worst concave.points_worst
## 1        0.6011358         0.6192916       0.5686102            0.9120275
## 2        0.3475533         0.1545634       0.1929712            0.6391753
## 3        0.4835898         0.3853751       0.3597444            0.8350515
## 4        0.9154725         0.8140117       0.5486422            0.8848797
## 5        0.4373638         0.1724151       0.3194888            0.5584192
## 6        0.7127386         0.4827837       0.4277157            0.5982818
##   symmetry_worst fractal_dimension_worst
## 1      0.5984624               0.4188640
## 2      0.2335896               0.2228781
## 3      0.4037059               0.2134330
## 4      1.0000000               0.7737111
## 5      0.1575005               0.1425948
## 6      0.4770353               0.4549390
#splitting the data into test and train dataset.
wbcd_train <-wbc_N[1:469, ]
wbcd_test <- wbc_N[470:569, ]

wbcd_train_labels <- WBC1[1:469, 1]
wbcd_train_labels
## # A tibble: 469 × 1
##    diagnosis
##    <fct>    
##  1 Malignant
##  2 Malignant
##  3 Malignant
##  4 Malignant
##  5 Malignant
##  6 Malignant
##  7 Malignant
##  8 Malignant
##  9 Malignant
## 10 Malignant
## # ℹ 459 more rows
wbcd_test_labels <- WBC1[470:569, 1]

#training the model 
library(class)
## Warning: package 'class' was built under R version 4.4.3
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl= wbcd_train_labels$diagnosis, k=21)
wbcd_test_pred
##   [1] Benign    Benign    Benign    Benign    Benign    Benign    Benign   
##   [8] Benign    Benign    Benign    Malignant Benign    Benign    Benign   
##  [15] Benign    Benign    Benign    Benign    Malignant Benign    Benign   
##  [22] Benign    Benign    Malignant Benign    Benign    Benign    Benign   
##  [29] Benign    Malignant Malignant Benign    Malignant Benign    Malignant
##  [36] Benign    Benign    Benign    Benign    Benign    Malignant Benign   
##  [43] Benign    Malignant Benign    Benign    Benign    Malignant Malignant
##  [50] Benign    Benign    Benign    Malignant Benign    Benign    Benign   
##  [57] Benign    Benign    Benign    Benign    Benign    Benign    Benign   
##  [64] Benign    Malignant Benign    Malignant Malignant Benign    Benign   
##  [71] Benign    Benign    Benign    Benign    Benign    Benign    Benign   
##  [78] Benign    Benign    Benign    Benign    Benign    Benign    Benign   
##  [85] Benign    Benign    Benign    Benign    Benign    Benign    Benign   
##  [92] Benign    Benign    Malignant Malignant Malignant Malignant Malignant
##  [99] Malignant Benign   
## Levels: Benign Malignant
#step 4 Evaluate model performance
library(gmodels)
## Warning: package 'gmodels' was built under R version 4.4.3
CrossTable(x = wbcd_test_labels$diagnosis, y = wbcd_test_pred, prop.chisq = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  100 
## 
##  
##                            | wbcd_test_pred 
## wbcd_test_labels$diagnosis |    Benign | Malignant | Row Total | 
## ---------------------------|-----------|-----------|-----------|
##                     Benign |        77 |         0 |        77 | 
##                            |     1.000 |     0.000 |     0.770 | 
##                            |     0.975 |     0.000 |           | 
##                            |     0.770 |     0.000 |           | 
## ---------------------------|-----------|-----------|-----------|
##                  Malignant |         2 |        21 |        23 | 
##                            |     0.087 |     0.913 |     0.230 | 
##                            |     0.025 |     1.000 |           | 
##                            |     0.020 |     0.210 |           | 
## ---------------------------|-----------|-----------|-----------|
##               Column Total |        79 |        21 |       100 | 
##                            |     0.790 |     0.210 |           | 
## ---------------------------|-----------|-----------|-----------|
## 
## 

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.