Author

Marcus

Published

September 11, 2024

Setup

Libraries and functions

Code
rm(list = ls())

knitr::opts_chunk$set(warning = FALSE, message = FALSE) 

Mypackages <-
  c("lme4","tidyverse","effects","ggplot2","psych",
    "MASS","Rmisc","lmerTest","ggthemes", "knitr",
    "lsmeans","pastecs","sjstats","car","ordinal",
    "Rcpp","corrplot", "ggpubr", "EnvStats",
    "easyStats", "cowplot","see","datawizard", 
    "ggcorrplot", "lavaan", "qualtRics", "effsize")

# install.packages(Mypackages) #you must remove the # in this comment if you need to install the packages! 
lapply(Mypackages,
       require,
       character.only = TRUE)

options(knitr.kable.NA = '—')
set.seed(1)  

Load Data

Code
# read in data files
setwd("~/Desktop")
data_raw <-read_survey("/Users/mtrenfield17/Desktop/Research/Boston College Research/SISC Lab Research/IS Project/Honduras/IS Honduras Pilot 1.csv")

Functions

Code
plot_fn <- function(data, iv, dv, coln = NULL, rown = NULL, facet_var = NULL, facet_var2 = NULL, 
                    x_label = "", y_label = "", title = "", 
                    x_text_size = 13, y_text_size = 13, x_title_size = 13, y_title_size = 13, 
                    plot_title_size = 16, facet_text_size = 12, 
                    x_levels = NULL, x_labels = NULL) {
  
  # Reorder the x variable if x_levels is provided
  if (!is.null(x_levels)) {
    data[[deparse(substitute(iv))]] <- factor(data[[deparse(substitute(iv))]], levels = x_levels)
  }
  
  # Rename the x variable if x_labels is provided
  if (!is.null(x_labels)) {
    data[[deparse(substitute(iv))]] <- factor(data[[deparse(substitute(iv))]], labels = x_labels)
  }

  # Create the base plot
  part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
    geom_violin(alpha = 0.3, scale = "count") + 
    stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
    stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2,
                 size = 1.5, color = "black") +
    theme_classic() +
    xlab(x_label) +
    ylab(y_label) +
    ggtitle(title) +
    theme(
      panel.background = element_rect(fill = "transparent"), 
      legend.position = "right", 
      plot.title = element_text(face = "bold", hjust = 0.5, size = plot_title_size), 
      plot.subtitle = element_text(hjust = 0.5),
      panel.grid.major.y = element_line(color='grey75'), 
      axis.text.x = element_text(face = "plain", size = x_text_size, color = "black"),
      axis.text.y = element_text(face = "plain", size = y_text_size, color = "black"),
      axis.title.x = element_text(face = "plain", size = x_title_size, color = "black"), 
      axis.title.y = element_text(face = "plain", size = y_title_size, color = "black", 
                                  margin = margin(t = 0, r = 10, b = 0, l = 0)),
      panel.border = element_rect(color = "black", fill = NA, size = 1),
      strip.text = element_text(size = facet_text_size)  # Adjust the facet text size
    )
  
  # Check if a facet_var (row) and facet_var2 (column) are provided
  if (!is.null(facet_var) & !is.null(facet_var2)) {
    # If both row and column variables are provided, use facet_grid
    part1 <- part1 + facet_grid(as.formula(paste(facet_var, "~", facet_var2)))
  } else if (!is.null(facet_var)) {
    # If only one facet variable is provided, facet by rows
    part1 <- part1 + facet_wrap(as.formula(paste("~", facet_var)), 
                                ncol = if (!is.null(coln)) coln else NULL, 
                                nrow = if (!is.null(rown)) rown else NULL, 
                                scales = "free", as.table = TRUE)
  }
  
  # Final plot adjustments
  ggpar(part1, legend = "none")
}

Reshaping data

Demographics

Code
# making conservative, liberal, and moderate group 
data_raw <- data_raw %>%
  mutate(political_group = ifelse(pol < 4, "Conservative",
                                  ifelse(pol > 4, "Liberal", "Moderate")))

# making a column for white vs non-white
data_raw$White <- ifelse(grepl("White", data_raw$race_TEXT), "White", "Non-White")

# making a column for URM vs non-URM
urm_groups <- c("Black", "Hispanic or Latino/a/x", "American Indian and Native Alaskan", "Pacific Islander or Native Hawaiian", "Middle Eastern and North African")

data_raw$URM <- ifelse(grepl(paste(urm_groups, collapse="|"), data_raw$race_TEXT), "URM", "Non-URM")

# reordering demos
data_raw <- data_raw %>%
  mutate(
    Gender_TEXT = factor(gen_TEXT, levels = c("Man", "Woman", "I identify as:")),
    pol_TEXT = factor(pol_TEXT, levels = c("Very Liberal", "Liberal", "Somewhat Liberal", "Moderate",
    "Somewhat Conservative", "Conservative", "Very Conservative")),
    edu_TEXT = factor(edu_TEXT, levels = c("Some schooling, but no high school diploma or degree", 
    "High school diploma or GED", "Some college, Technical degree, or Associates degree", 
    "Bachelor's degree", "Graduate degree (Masters, PhD, etc)")),
    inc_TEXT = factor(inc_TEXT, levels = c("Less than $25,000", "$25,000 - $49,999", "$50,000 - $74,999", 
    "$75,000 - $99,999", "$100,000 - $149,999", "$150,000 - $199,999","More than $200,000")),
    political_group = factor(political_group, levels = c("Liberal", "Moderate", "Conservative")),
    White = factor(White, levels = c("White", "Non-White")),
    URM = factor(URM, levels = c("Non-URM", "URM"))
  )

Outcomes

Code
#### filtering people who failed the attn check ####
data <- data_raw %>% filter(attentionCheck == 3)

## changing condition to factor and reordering ##
data$condition <- as.factor(data$condition)
data$condition <- factor(data$condition, levels = c("individualScope", "populationScope", "mergedScope"))

# changing numeric DVs to numeric
data <- data %>% mutate_at(vars(policyDV, donation, helpDV_1:blame_2, age, pol, pid, edu, inc, charityRealYN, `Duration (in seconds)`), as.numeric)

## renaming matrix variables
names(data)[names(data) == 'helpDV_1'] <-'hondurasGovHelp'
names(data)[names(data) == 'helpDV_2'] <-'usGovHelp'
names(data)[names(data) == 'helpDV_3'] <-'indivHonduranHelp'
names(data)[names(data) == 'helpDV_4'] <-'indivUSHelp'
names(data)[names(data) == 'helpDV_5'] <-'youHelp'

names(data)[names(data) == 'preventDV_1'] <-'honduranGovPrevent'
names(data)[names(data) == 'preventDV_2'] <-'usGovPrevent'
names(data)[names(data) == 'preventDV_3'] <-'indivHonduranPrevent'
names(data)[names(data) == 'preventDV_4'] <-'indivUSPrevent'
names(data)[names(data) == 'preventDV_5'] <-'youPrevent'

names(data)[names(data) == 'blame_1'] <-'honduranGovBlame'
names(data)[names(data) == 'blame_2'] <-'usGovBlame'
names(data)[names(data) == 'blame_3'] <-'indivHonduranBlame'
names(data)[names(data) == 'blame_4'] <-'indivUSBlame'

data$condition <- relevel(data$condition, ref = "mergedScope")
data_I <- data
data_I$condition <- relevel(data_I$condition, ref = "individualScope")  

Data Quality

Charity Belief

Code
plot_fn(data = data, iv = condition, dv = charityRealYN, x_label = "Condition", y_label = "Charity Doubt", 
        title = "Extent Participants Doubted the Charity was real", 
        x_levels = c("individualScope", "populationScope", "mergedScope"),
        x_labels = c("Individual \n\ Frame", "Structural \n\ Frame", "Combined \n\ Frame"))

Attention Check

  • 1 person said no to the consent

  • 40 people failed the attention check (maybe people got a little confused?)

Code
data_raw %>%
  group_by(consent) %>%
  dplyr::summarise(n = n()) %>%
  mutate(freq = n / sum(n))

data_raw <- data_raw %>% filter(consent == 8)

data_raw %>%
  group_by(attentionCheck) %>%
  dplyr::summarise(n = n()) %>%
  mutate(freq = n / sum(n))

Demographics

Code
# Subset your data frame to include only the demographic columns
demo_data <- data[, c("gen_TEXT", "race_TEXT", "inc_TEXT", "edu_TEXT", "pol_TEXT", "pid_TEXT", "area_TEXT", "political_group", "White", "URM", "priorKnowledge_TEXT")]

# Age
mean(data$age, na.rm=TRUE)
[1] 41.19217
Code
sd(data$age, na.rm=TRUE)
[1] 12.23968
Code
# Loop through each demographic column and calculate frequency counts
freq_tables <- list()

for (col in names(demo_data)) {
  {
    freq_table <- as.data.frame(table(demo_data[[col]]))
    freq_table$Percent <- round(freq_table$Freq / sum(freq_table$Freq) * 100, 2)
    freq_tables[[col]] <- freq_table
  }
}

# Print the frequency tables
for (i in seq_along(freq_tables)) {
  if (!is.null(freq_tables[[i]])) {
    cat("\nTable of frequencies for", names(freq_tables)[i], ":\n")
    print(freq_tables[[i]])
  }
}

Table of frequencies for gen_TEXT :
            Var1 Freq Percent
1 I identify as:    6    1.07
2            Man  277   49.29
3          Woman  279   49.64

Table of frequencies for race_TEXT :
                                                                                                                                                                                Var1
1                                                                                                                                                 American Indian and Native Alaskan
2                                                                                                                                           American Indian and Native Alaskan,Black
3  American Indian and Native Alaskan,Black,East Asian,South Asian,Southeast Asian,Pacific Islander or Native Hawaiian,Hispanic or Latino/a/x,Middle Eastern and North African,White
4                                                                                                                                     American Indian and Native Alaskan,Black,White
5                                                                                                                    American Indian and Native Alaskan,Hispanic or Latino/a/x,White
6                                                                                                                                           American Indian and Native Alaskan,White
7                                                                                                                                                                              Black
8                                                                                                                                                       Black,Hispanic or Latino/a/x
9                                                                                                                                                 Black,Hispanic or Latino/a/x,White
10                                                                                                                                                             Black,Southeast Asian
11                                                                                                                                                                       Black,White
12                                                                                                                                                                        East Asian
13                                                                                                                                                                  East Asian,White
14                                                                                                                                                            Hispanic or Latino/a/x
15                                                                                                                                                      Hispanic or Latino/a/x,White
16                                                                                                                                                  Middle Eastern and North African
17                                                                                                                                            Middle Eastern and North African,White
18                                                                                                                                         Pacific Islander or Native Hawaiian,White
19                                                                                                                                                                       South Asian
20                                                                                                                                                       South Asian,Southeast Asian
21                                                                                                                                                                 South Asian,White
22                                                                                                                                                                   Southeast Asian
23                                                                                                                                                                             White
   Freq Percent
1     1    0.18
2     1    0.18
3     1    0.18
4     2    0.36
5     1    0.18
6     3    0.53
7    54    9.61
8     1    0.18
9     3    0.53
10    1    0.18
11    5    0.89
12   12    2.14
13    3    0.53
14   26    4.63
15   12    2.14
16    1    0.18
17    1    0.18
18    1    0.18
19    3    0.53
20    1    0.18
21    1    0.18
22   10    1.78
23  418   74.38

Table of frequencies for inc_TEXT :
                 Var1 Freq Percent
1   Less than $25,000   63   11.21
2   $25,000 - $49,999  119   21.17
3   $50,000 - $74,999  121   21.53
4   $75,000 - $99,999   86   15.30
5 $100,000 - $149,999   96   17.08
6 $150,000 - $199,999   48    8.54
7  More than $200,000   29    5.16

Table of frequencies for edu_TEXT :
                                                  Var1 Freq Percent
1 Some schooling, but no high school diploma or degree    3    0.53
2                           High school diploma or GED   83   14.77
3 Some college, Technical degree, or Associates degree  160   28.47
4                                    Bachelor's degree  217   38.61
5                  Graduate degree (Masters, PhD, etc)   99   17.62

Table of frequencies for pol_TEXT :
                   Var1 Freq Percent
1          Very Liberal   74   13.17
2               Liberal   87   15.48
3      Somewhat Liberal   73   12.99
4              Moderate  128   22.78
5 Somewhat Conservative   59   10.50
6          Conservative   97   17.26
7     Very Conservative   44    7.83

Table of frequencies for pid_TEXT :
                 Var1 Freq Percent
1            Democrat  205   36.48
2 Independent / Other  186   33.10
3          Republican  171   30.43

Table of frequencies for area_TEXT :
      Var1 Freq Percent
1    Rural  108   19.22
2 Suburban  316   56.23
3    Urban  138   24.56

Table of frequencies for political_group :
          Var1 Freq Percent
1      Liberal  234   41.64
2     Moderate  128   22.78
3 Conservative  200   35.59

Table of frequencies for White :
       Var1 Freq Percent
1     White  451   80.25
2 Non-White  111   19.75

Table of frequencies for URM :
     Var1 Freq Percent
1 Non-URM  448   79.72
2     URM  114   20.28

Table of frequencies for priorKnowledge_TEXT :
                      Var1 Freq Percent
1            Knowledgeable    7    1.25
2 Not at all knowledgeable  377   67.08
3   Slightly knowledgeable  140   24.91
4   Somewhat knowledgeable   34    6.05
5       Very knowledgeable    4    0.71

Demographic Plot

Code
# List of demographic columns to plot
demographic_columns <- c("gen_TEXT", "race_TEXT", "inc_TEXT", "edu_TEXT", "pol_TEXT", "pid_TEXT", "area_TEXT", "political_group", "White", "URM", "priorKnowledge_TEXT")  # Use column names as strings

# Function to create percent plot
create_percent_plot <- function(data, column) {
  # Calculate the frequency and percentage for each category
  freq_table <- data %>%
    group_by(across(all_of(column))) %>%
    dplyr::summarise(Freq = n()) %>%
    mutate(Percent = Freq / sum(Freq) * 100)
  
  # Create the plot
  p <- ggplot(freq_table, aes_string(x = column, y = "Percent", fill = column)) +
    geom_bar(stat = "identity", position = "dodge") +
    scale_y_continuous(labels = scales::percent_format(scale = 1)) +
    labs(x = column, y = "Percentage", title = paste("Distribution of", column)) +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))
  
  return(p)
}

# Loop through demographic columns and plot
lapply(demographic_columns, function(col) create_percent_plot(demo_data, col))
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]


[[9]]


[[10]]


[[11]]

Code
ggplot(data, aes(x = age)) +
  geom_histogram(binwidth = 5, color = "black", alpha = 0.7) +
  labs(title = "Age", x = " ", y = "Distribution") +
  theme_minimal()

Correlations

Overall

Code
DVs <- data[c("policyDV", "donation", "hondurasGovHelp" ,"usGovHelp", "indivHonduranHelp", "indivUSHelp", "youHelp", "honduranGovPrevent", "usGovPrevent", "indivHonduranPrevent", "indivUSPrevent", "youPrevent", "honduranGovBlame", "usGovBlame", "indivHonduranBlame", "indivUSBlame", "pol", "edu", "inc", "age", "priorKnowledge")]

# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")

# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "lower", lower = "circle", tl.cex = 0.7, insig = "label_sig", diag = TRUE)

Individual Scope

Code
# Filter the data for condition == "individualScope"
DVs_individualScope <- data[data$condition == "individualScope", 
                            c("policyDV", "donation", "hondurasGovHelp" ,"usGovHelp", "indivHonduranHelp", "indivUSHelp", "youHelp", 
                              "honduranGovPrevent", "usGovPrevent", "indivHonduranPrevent", "indivUSPrevent", "youPrevent", 
                              "honduranGovBlame", "usGovBlame", "indivHonduranBlame", "indivUSBlame", "pol", "edu", "inc", "age", "priorKnowledge")]

# Compute pairwise correlations for the filtered data
corr_DVs_individualScope <- cor(DVs_individualScope, use = "complete.obs")

# Plot the correlation matrix
corrplot(corr_DVs_individualScope, is.corr = TRUE, type = "lower", method = "circle", 
         tl.cex = 0.7, insig = "label_sig", diag = TRUE)

Structural Scope

Code
# Filter the data for condition == "individualScope"
DVs_popScope <- data[data$condition == "populationScope", 
                            c("policyDV", "donation", "hondurasGovHelp" ,"usGovHelp", "indivHonduranHelp", "indivUSHelp", "youHelp", 
                              "honduranGovPrevent", "usGovPrevent", "indivHonduranPrevent", "indivUSPrevent", "youPrevent", 
                              "honduranGovBlame", "usGovBlame", "indivHonduranBlame", "indivUSBlame", "pol", "edu", "inc", "age", "priorKnowledge")]

# Compute pairwise correlations for the filtered data
corr_DVs_popScope <- cor(DVs_popScope, use = "complete.obs")

# Plot the correlation matrix
corrplot(corr_DVs_popScope, is.corr = TRUE, type = "lower", method = "circle", 
         tl.cex = 0.7, insig = "label_sig", diag = TRUE)

Combined Scope

Code
DVs_mergedScope <- data[data$condition == "mergedScope", 
                            c("policyDV", "donation", "hondurasGovHelp" ,"usGovHelp", "indivHonduranHelp", "indivUSHelp", "youHelp", 
                              "honduranGovPrevent", "usGovPrevent", "indivHonduranPrevent", "indivUSPrevent", "youPrevent", 
                              "honduranGovBlame", "usGovBlame", "indivHonduranBlame", "indivUSBlame", "pol", "edu", "inc", "age", "priorKnowledge")]

# Compute pairwise correlations for the filtered data
corr_DVs_mergedScope <- cor(DVs_mergedScope, use = "complete.obs")

# Plot the correlation matrix
corrplot(corr_DVs_mergedScope, is.corr = TRUE, type = "lower", method = "circle", 
         tl.cex = 0.7, insig = "label_sig", diag = TRUE)

Behavioral Outcomes

Code
data$condition <- factor(data$condition, levels = c("individualScope", "populationScope", "mergedScope"))

percep_plot_list <- list(plot_fn(data, condition, donation),
                         plot_fn(data, condition, policyDV))

# Adding titles to each plot
percep_plot_list[[1]] <- percep_plot_list[[1]] +
  ggtitle("Donations")
  
percep_plot_list[[2]] <- percep_plot_list[[2]] +
  ggtitle("Support for Policy")

percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 2, nrow = 1)

overall_percep_title <- ggdraw() +
  draw_label("Behavioral DVs", fontface = "bold")

plot_grid(overall_percep_title, percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))

Code
data %>%
  group_by(condition) %>%
  dplyr::summarise(mean(policyDV))
# A tibble: 3 × 2
  condition       `mean(policyDV)`
  <fct>                      <dbl>
1 individualScope             3.77
2 populationScope             3.68
3 mergedScope                 3.57
Code
data %>%
  group_by(condition) %>%
  dplyr::summarise(mean(donation))
# A tibble: 3 × 2
  condition       `mean(donation)`
  <fct>                      <dbl>
1 individualScope             4.82
2 populationScope             4.07
3 mergedScope                 4.09
Code
data %>%
  group_by(condition, political_group) %>%
  dplyr::summarise(n())
# A tibble: 9 × 3
# Groups:   condition [3]
  condition       political_group `n()`
  <fct>           <fct>           <int>
1 individualScope Liberal            87
2 individualScope Moderate           50
3 individualScope Conservative       50
4 populationScope Liberal            81
5 populationScope Moderate           32
6 populationScope Conservative       80
7 mergedScope     Liberal            66
8 mergedScope     Moderate           46
9 mergedScope     Conservative       70

Donation Inferential Stats

  • Individual > Combined > Structural
Code
data$condition <- relevel(data$condition, ref = "mergedScope")
data_I <- data
data_I$condition <- relevel(data_I$condition, ref = "individualScope")

mod_donation<- lm(donation ~ condition, data = data)
summary(mod_donation)

Call:
lm(formula = donation ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.8235 -3.0934  0.1765  1.9066  5.9275 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               4.09341    0.25692  15.933   <2e-16 ***
conditionindividualScope  0.73012    0.36090   2.023   0.0435 *  
conditionpopulationScope -0.02087    0.35813  -0.058   0.9536    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.466 on 559 degrees of freedom
Multiple R-squared:  0.0101,    Adjusted R-squared:  0.00656 
F-statistic: 2.852 on 2 and 559 DF,  p-value: 0.05856
Code
mod_donation_indiv<- lm(donation ~ condition, data = data_I)
summary(mod_donation_indiv)

Call:
lm(formula = donation ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.8235 -3.0934  0.1765  1.9066  5.9275 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)                4.8235     0.2535  19.030   <2e-16 ***
conditionmergedScope      -0.7301     0.3609  -2.023   0.0435 *  
conditionpopulationScope  -0.7510     0.3557  -2.112   0.0352 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.466 on 559 degrees of freedom
Multiple R-squared:  0.0101,    Adjusted R-squared:  0.00656 
F-statistic: 2.852 on 2 and 559 DF,  p-value: 0.05856
Code
# Load necessary packages
if (!requireNamespace("emmeans", quietly = TRUE)) install.packages("emmeans")
if (!requireNamespace("effsize", quietly = TRUE)) install.packages("effsize")

library(emmeans)
library(effsize)

# Fit the linear model with all three conditions
mod_donation <- lm(donation ~ condition, data = data)

# Get pairwise comparisons of the means for condition levels
pairwise_emmeans <- emmeans(mod_donation, pairwise ~ condition)

# Calculate Cohen's d for each pairwise comparison
pairwise_d <- eff_size(pairwise_emmeans, sigma = sigma(mod_donation), edf = df.residual(mod_donation))

# Display the pairwise Cohen's d results
summary(pairwise_d)
 contrast                            effect.size    SE  df lower.CL upper.CL
 (mergedScope - individualScope)        -0.21065 0.104 559  -0.4155 -0.00575
 (mergedScope - populationScope)         0.00602 0.103 559  -0.1969  0.20897
 (individualScope - populationScope)     0.21667 0.103 559   0.0147  0.41862

sigma used for effect sizes: 3.466 
Confidence level used: 0.95 
Code
#cohen.d(data$donation ~ data$condition)

Policy Support Inferential Stats

  • Combined marginally higher than Individual (.08)
Code
mod_policy<- lm(policyDV ~ condition, data = data)
summary(mod_policy)

Call:
lm(formula = policyDV ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.7701 -1.6788  0.2299  1.4341  3.4341 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)                3.5659     0.1386  25.731   <2e-16 ***
conditionindividualScope   0.2041     0.1947   1.049    0.295    
conditionpopulationScope   0.1128     0.1932   0.584    0.559    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.87 on 559 degrees of freedom
Multiple R-squared:  0.001969,  Adjusted R-squared:  -0.001602 
F-statistic: 0.5513 on 2 and 559 DF,  p-value: 0.5765
Code
mod_policyI<- lm(policyDV ~ condition, data = data_I)
summary(mod_policyI)

Call:
lm(formula = policyDV ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.7701 -1.6788  0.2299  1.4341  3.4341 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)                3.7700     0.1367  27.575   <2e-16 ***
conditionmergedScope      -0.2041     0.1947  -1.049    0.295    
conditionpopulationScope  -0.0913     0.1918  -0.476    0.634    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.87 on 559 degrees of freedom
Multiple R-squared:  0.001969,  Adjusted R-squared:  -0.001602 
F-statistic: 0.5513 on 2 and 559 DF,  p-value: 0.5765

Donation faceted by pol

Code
plot_fn(data %>% filter(!is.na(political_group)), condition, donation, coln = 3, rown = 1, "political_group", title = "Amount Donated", x_text_size = 13, y_text_size = 20, plot_title_size = 25, facet_text_size = 18, x_levels = c("individualScope", "populationScope", "mergedScope"), x_labels = c("Individual \n\ Frame", "Structural \n\ Frame", "Combined \n\ Frame"))

Donation Pol Inferential Stats

Code
mod_donation_polCov <- lm(donation ~ condition+pol, data = data)
summary(mod_donation_polCov)

Call:
lm(formula = donation ~ condition + pol, data = data)

Residuals:
   Min     1Q Median     3Q    Max 
-5.027 -3.092  0.205  1.811  6.164 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               3.78321    0.40967   9.235   <2e-16 ***
conditionindividualScope  0.70290    0.36201   1.942   0.0527 .  
conditionpopulationScope -0.02440    0.35816  -0.068   0.9457    
pol                       0.07723    0.07944   0.972   0.3314    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.466 on 558 degrees of freedom
Multiple R-squared:  0.01178,   Adjusted R-squared:  0.006462 
F-statistic: 2.216 on 3 and 558 DF,  p-value: 0.08522
Code
mod_donation_polInt <- lm(donation ~ condition*pol, data = data)
summary(mod_donation_polInt)

Call:
lm(formula = donation ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.0677 -3.0923  0.2107  1.8223  6.1503 

Coefficients:
                              Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   3.818798   0.633303   6.030 2.99e-09 ***
conditionindividualScope      0.599341   0.939600   0.638    0.524    
conditionpopulationScope     -0.041892   0.849426  -0.049    0.961    
pol                           0.068370   0.144066   0.475    0.635    
conditionindividualScope:pol  0.024418   0.206438   0.118    0.906    
conditionpopulationScope:pol  0.004407   0.190758   0.023    0.982    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.472 on 556 degrees of freedom
Multiple R-squared:  0.0118,    Adjusted R-squared:  0.002917 
F-statistic: 1.328 on 5 and 556 DF,  p-value: 0.2505
Code
# individual as reference con
mod_donation_polCov_indiv <- lm(donation ~ condition+pol, data = data_I)
summary(mod_donation_polCov_indiv)

Call:
lm(formula = donation ~ condition + pol, data = data_I)

Residuals:
   Min     1Q Median     3Q    Max 
-5.027 -3.092  0.205  1.811  6.164 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               4.48611    0.42979  10.438   <2e-16 ***
conditionmergedScope     -0.70290    0.36201  -1.942   0.0527 .  
conditionpopulationScope -0.72730    0.35651  -2.040   0.0418 *  
pol                       0.07723    0.07944   0.972   0.3314    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.466 on 558 degrees of freedom
Multiple R-squared:  0.01178,   Adjusted R-squared:  0.006462 
F-statistic: 2.216 on 3 and 558 DF,  p-value: 0.08522
Code
mod_donation_polInt_indiv <- lm(donation ~ condition*pol, data = data_I)
summary(mod_donation_polInt_indiv)

Call:
lm(formula = donation ~ condition * pol, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.0677 -3.0923  0.2107  1.8223  6.1503 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   4.41814    0.69410   6.365 4.08e-10 ***
conditionmergedScope         -0.59934    0.93960  -0.638    0.524    
conditionpopulationScope     -0.64123    0.89567  -0.716    0.474    
pol                           0.09279    0.14786   0.628    0.531    
conditionmergedScope:pol     -0.02442    0.20644  -0.118    0.906    
conditionpopulationScope:pol -0.02001    0.19364  -0.103    0.918    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.472 on 556 degrees of freedom
Multiple R-squared:  0.0118,    Adjusted R-squared:  0.002917 
F-statistic: 1.328 on 5 and 556 DF,  p-value: 0.2505

Policy support faceted by pol

Code
plot_fn(data %>% filter(!is.na(political_group)), condition, policyDV, coln = 3, rown = 1, "political_group", title = "Policy Support", x_text_size = 13, y_text_size = 20, plot_title_size = 25, facet_text_size = 18, x_levels = c("individualScope", "populationScope", "mergedScope"), x_labels = c("Individual \n\ Frame", "Structural \n\ Frame", "Combined \n\ Frame"))

Policy Support Pol Inferential Stats

Code
mod_policy_polCov <- lm(policyDV ~ condition+pol, data = data)
summary(mod_donation_polCov)

Call:
lm(formula = donation ~ condition + pol, data = data)

Residuals:
   Min     1Q Median     3Q    Max 
-5.027 -3.092  0.205  1.811  6.164 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               3.78321    0.40967   9.235   <2e-16 ***
conditionindividualScope  0.70290    0.36201   1.942   0.0527 .  
conditionpopulationScope -0.02440    0.35816  -0.068   0.9457    
pol                       0.07723    0.07944   0.972   0.3314    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.466 on 558 degrees of freedom
Multiple R-squared:  0.01178,   Adjusted R-squared:  0.006462 
F-statistic: 2.216 on 3 and 558 DF,  p-value: 0.08522
Code
mod_donation_polInt <- lm(policyDV ~ condition*pol, data = data)
summary(mod_donation_polInt)

Call:
lm(formula = policyDV ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.7448 -1.5612  0.0387  1.4324  4.4508 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   2.42309    0.32198   7.526 2.13e-13 ***
conditionindividualScope     -0.23627    0.47771  -0.495 0.621088    
conditionpopulationScope     -0.21833    0.43186  -0.506 0.613373    
pol                           0.28454    0.07325   3.885 0.000115 ***
conditionindividualScope:pol  0.07784    0.10496   0.742 0.458610    
conditionpopulationScope:pol  0.07832    0.09698   0.808 0.419696    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.765 on 556 degrees of freedom
Multiple R-squared:  0.1149,    Adjusted R-squared:  0.1069 
F-statistic: 14.43 on 5 and 556 DF,  p-value: 2.649e-13
Code
# individual as reference con
mod_policy_polCov_I <- lm(donation ~ condition+pol, data = data_I)
summary(mod_donation_polCov_indiv)

Call:
lm(formula = donation ~ condition + pol, data = data_I)

Residuals:
   Min     1Q Median     3Q    Max 
-5.027 -3.092  0.205  1.811  6.164 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               4.48611    0.42979  10.438   <2e-16 ***
conditionmergedScope     -0.70290    0.36201  -1.942   0.0527 .  
conditionpopulationScope -0.72730    0.35651  -2.040   0.0418 *  
pol                       0.07723    0.07944   0.972   0.3314    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.466 on 558 degrees of freedom
Multiple R-squared:  0.01178,   Adjusted R-squared:  0.006462 
F-statistic: 2.216 on 3 and 558 DF,  p-value: 0.08522
Code
mod_policy_polInt_I <- lm(donation ~ condition*pol, data = data_I)
summary(mod_donation_polInt_indiv)

Call:
lm(formula = donation ~ condition * pol, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.0677 -3.0923  0.2107  1.8223  6.1503 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   4.41814    0.69410   6.365 4.08e-10 ***
conditionmergedScope         -0.59934    0.93960  -0.638    0.524    
conditionpopulationScope     -0.64123    0.89567  -0.716    0.474    
pol                           0.09279    0.14786   0.628    0.531    
conditionmergedScope:pol     -0.02442    0.20644  -0.118    0.906    
conditionpopulationScope:pol -0.02001    0.19364  -0.103    0.918    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.472 on 556 degrees of freedom
Multiple R-squared:  0.0118,    Adjusted R-squared:  0.002917 
F-statistic: 1.328 on 5 and 556 DF,  p-value: 0.2505

Blame

Code
data_long<-data %>% gather(stim, resp, "hondurasGovHelp":"indivUSBlame")  

blameLong <- data_long %>%
  filter(grepl("Blame", stim))

plot_fn(blameLong, condition, resp, coln = 2, rown = 2, "stim", x_text_size = 13, y_text_size = 20, plot_title_size = 25, facet_text_size = 18, x_levels = c("individualScope", "populationScope", "mergedScope"), x_labels = c("Individual \n\ Frame", "Structural \n\ Frame", "Combined \n\ Frame"))

Inferential Stats

Code
data$condition <- relevel(data$condition, ref = "mergedScope")
data_I <- data
data_I$condition <- relevel(data_I$condition, ref = "individualScope")

mod_honGovBlame <- lm(honduranGovBlame ~ condition, data = data)
summary(mod_honGovBlame)

Call:
lm(formula = honduranGovBlame ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.3956 -0.3956  0.6044  0.6631  0.6684 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               4.39560    0.06395  68.735   <2e-16 ***
conditionindividualScope -0.05871    0.08983  -0.654    0.514    
conditionpopulationScope -0.06400    0.08914  -0.718    0.473    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8627 on 559 degrees of freedom
Multiple R-squared:  0.00112,   Adjusted R-squared:  -0.002454 
F-statistic: 0.3134 on 2 and 559 DF,  p-value: 0.7311
Code
mod_honGovBlame_I <- lm(honduranGovBlame ~ condition, data = data_I)
summary(mod_honGovBlame_I)

Call:
lm(formula = honduranGovBlame ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.3956 -0.3956  0.6044  0.6631  0.6684 

Coefficients:
                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)               4.336898   0.063089  68.742   <2e-16 ***
conditionmergedScope      0.058706   0.089833   0.654    0.514    
conditionpopulationScope -0.005292   0.088526  -0.060    0.952    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8627 on 559 degrees of freedom
Multiple R-squared:  0.00112,   Adjusted R-squared:  -0.002454 
F-statistic: 0.3134 on 2 and 559 DF,  p-value: 0.7311
Code
mod_usGovBlame <- lm(usGovBlame ~ condition, data = data)
summary(mod_usGovBlame)

Call:
lm(formula = usGovBlame ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.5803 -0.6952 -0.4945  0.5055  3.3048 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.49451    0.09000  27.716  < 2e-16 ***
conditionindividualScope -0.79932    0.12643  -6.322 5.28e-10 ***
conditionpopulationScope  0.08581    0.12546   0.684    0.494    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.214 on 559 degrees of freedom
Multiple R-squared:  0.09793,   Adjusted R-squared:  0.0947 
F-statistic: 30.34 on 2 and 559 DF,  p-value: 3.092e-13
Code
mod_usGovBlame_I <- lm(usGovBlame ~ condition, data = data_I)
summary(mod_usGovBlame_I)

Call:
lm(formula = usGovBlame ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.5803 -0.6952 -0.4945  0.5055  3.3048 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               1.69519    0.08879  19.092  < 2e-16 ***
conditionmergedScope      0.79932    0.12643   6.322 5.28e-10 ***
conditionpopulationScope  0.88512    0.12459   7.104 3.70e-12 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.214 on 559 degrees of freedom
Multiple R-squared:  0.09793,   Adjusted R-squared:  0.0947 
F-statistic: 30.34 on 2 and 559 DF,  p-value: 3.092e-13
Code
mod_honIndBlame <- lm(indivHonduranBlame ~ condition, data = data)
summary(mod_honIndBlame)

Call:
lm(formula = indivHonduranBlame ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.6898 -1.5440  0.3102  1.3102  2.4560 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.65385    0.09525  27.861   <2e-16 ***
conditionindividualScope  0.03599    0.13380   0.269    0.788    
conditionpopulationScope -0.10980    0.13277  -0.827    0.409    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.285 on 559 degrees of freedom
Multiple R-squared:  0.002375,  Adjusted R-squared:  -0.001195 
F-statistic: 0.6653 on 2 and 559 DF,  p-value: 0.5145
Code
mod_honIndBlame_I <- lm(indivHonduranBlame ~ condition, data = data_I)
summary(mod_honIndBlame_I)

Call:
lm(formula = indivHonduranBlame ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.6898 -1.5440  0.3102  1.3102  2.4560 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.68984    0.09397  28.624   <2e-16 ***
conditionmergedScope     -0.03599    0.13380  -0.269    0.788    
conditionpopulationScope -0.14580    0.13186  -1.106    0.269    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.285 on 559 degrees of freedom
Multiple R-squared:  0.002375,  Adjusted R-squared:  -0.001195 
F-statistic: 0.6653 on 2 and 559 DF,  p-value: 0.5145
Code
mod_usIndBlame <- lm(indivUSBlame ~ condition, data = data)
summary(mod_usIndBlame)

Call:
lm(formula = indivUSBlame ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.3316 -0.3316 -0.2692 -0.1497  3.6684 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               1.26923    0.04841  26.220   <2e-16 ***
conditionindividualScope -0.11950    0.06800  -1.757   0.0794 .  
conditionpopulationScope  0.06238    0.06747   0.924   0.3557    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.653 on 559 degrees of freedom
Multiple R-squared:  0.01338,   Adjusted R-squared:  0.009847 
F-statistic:  3.79 on 2 and 559 DF,  p-value: 0.02319
Code
mod_usIndBlame_I <- lm(indivUSBlame ~ condition, data = data_I)
summary(mod_usIndBlame_I)

Call:
lm(formula = indivUSBlame ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.3316 -0.3316 -0.2692 -0.1497  3.6684 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               1.14973    0.04776  24.076  < 2e-16 ***
conditionmergedScope      0.11950    0.06800   1.757  0.07940 .  
conditionpopulationScope  0.18187    0.06701   2.714  0.00685 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.653 on 559 degrees of freedom
Multiple R-squared:  0.01338,   Adjusted R-squared:  0.009847 
F-statistic:  3.79 on 2 and 559 DF,  p-value: 0.02319

##Faceted by political orientation

Code
plot_fn(blameLong %>% filter(!is.na(political_group)), condition, resp, coln = 3, rown = 1, facet_var = "political_group", facet_var2 = "stim", x_text_size = 13, y_text_size = 20, plot_title_size = 25, facet_text_size = 18, x_levels = c("individualScope", "populationScope", "mergedScope"), x_labels = c("Individual \n\ Frame", "Structural \n\ Frame", "Combined \n\ Frame"))

Inferential Stats

Code
mod_honGovBlame_pol <- lm(honduranGovBlame ~ condition*pol, data = data)
summary(mod_honGovBlame_pol)

Call:
lm(formula = honduranGovBlame ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.4205 -0.3958  0.4973  0.6413  0.9121 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   4.44529    0.15657  28.391   <2e-16 ***
conditionindividualScope      0.06783    0.23230   0.292    0.770    
conditionpopulationScope      0.22329    0.21001   1.063    0.288    
pol                          -0.01237    0.03562  -0.347    0.728    
conditionindividualScope:pol -0.02796    0.05104  -0.548    0.584    
conditionpopulationScope:pol -0.07058    0.04716  -1.497    0.135    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8585 on 556 degrees of freedom
Multiple R-squared:  0.01623,   Adjusted R-squared:  0.007382 
F-statistic: 1.834 on 5 and 556 DF,  p-value: 0.1043
Code
mod_usGovBlame_pol <- lm(usGovBlame ~ condition*pol, data = data)
summary(mod_usGovBlame_pol)

Call:
lm(formula = usGovBlame ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.2280 -0.9052 -0.1560  0.8743  3.9891 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   1.82031    0.21147   8.608  < 2e-16 ***
conditionindividualScope     -1.01258    0.31375  -3.227 0.001323 ** 
conditionpopulationScope     -0.13558    0.28364  -0.478 0.632843    
pol                           0.16786    0.04811   3.489 0.000523 ***
conditionindividualScope:pol  0.03527    0.06893   0.512 0.609107    
conditionpopulationScope:pol  0.05261    0.06370   0.826 0.409193    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.16 on 556 degrees of freedom
Multiple R-squared:  0.1818,    Adjusted R-squared:  0.1744 
F-statistic: 24.71 on 5 and 556 DF,  p-value: < 2.2e-16
Code
mod_honIndBlame_pol <- lm(indivHonduranBlame ~ condition*pol, data = data)
summary(mod_honIndBlame_pol)

Call:
lm(formula = indivHonduranBlame ~ condition * pol, data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.23714 -1.16492  0.01925  0.92531  2.83508 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   3.14445    0.23036  13.650   <2e-16 ***
conditionindividualScope      0.25514    0.34177   0.747   0.4557    
conditionpopulationScope     -0.07619    0.30897  -0.247   0.8053    
pol                          -0.12215    0.05240  -2.331   0.0201 *  
conditionindividualScope:pol -0.04031    0.07509  -0.537   0.5917    
conditionpopulationScope:pol -0.00690    0.06939  -0.099   0.9208    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.263 on 556 degrees of freedom
Multiple R-squared:  0.04135,   Adjusted R-squared:  0.03273 
F-statistic: 4.797 on 5 and 556 DF,  p-value: 0.0002655
Code
mod_usIndBlame_pol <- lm(indivUSBlame ~ condition*pol, data = data)
summary(mod_usIndBlame_pol)

Call:
lm(formula = indivUSBlame ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.4707 -0.2875 -0.1959 -0.1257  3.7955 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   1.53753    0.11839  12.987  < 2e-16 ***
conditionindividualScope     -0.46439    0.17566  -2.644  0.00843 ** 
conditionpopulationScope     -0.37458    0.15880  -2.359  0.01868 *  
pol                          -0.06680    0.02693  -2.480  0.01342 *  
conditionindividualScope:pol  0.08433    0.03859   2.185  0.02930 *  
conditionpopulationScope:pol  0.10832    0.03566   3.037  0.00250 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6492 on 556 degrees of freedom
Multiple R-squared:  0.03031,   Adjusted R-squared:  0.02159 
F-statistic: 3.476 on 5 and 556 DF,  p-value: 0.004209

Responsibility to help victims

Code
responsibilityHelpLong <- data_long %>%
  filter(grepl("Help", stim))

plot_fn(responsibilityHelpLong, condition, resp, coln = 3, rown = 5, "stim", x_text_size = 13, y_text_size = 20, plot_title_size = 25, facet_text_size = 18, x_levels = c("individualScope", "populationScope", "mergedScope"), x_labels = c("Individual \n\ Frame", "Structural \n\ Frame", "Combined \n\ Frame"))

Inferential Stats

Code
mod_usGovPrevent <- lm(usGovPrevent ~ condition, data = data)
summary(mod_usGovPrevent)

Call:
lm(formula = usGovPrevent ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.7306 -0.7306 -0.4813  0.5187  2.5187 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.71429    0.09020  30.091   <2e-16 ***
conditionindividualScope -0.23300    0.12671  -1.839   0.0665 .  
conditionpopulationScope  0.01628    0.12574   0.130   0.8970    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.217 on 559 degrees of freedom
Multiple R-squared:  0.008735,  Adjusted R-squared:  0.005189 
F-statistic: 2.463 on 2 and 559 DF,  p-value: 0.0861
Code
mod_honGovPrevent <- lm(honduranGovPrevent ~ condition, data = data)
summary(mod_honGovPrevent)

Call:
lm(formula = honduranGovPrevent ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.7979  0.1551  0.2021  0.2143  0.2143 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               4.78571    0.04325 110.665   <2e-16 ***
conditionindividualScope  0.05921    0.06075   0.975     0.33    
conditionpopulationScope  0.01221    0.06028   0.203     0.84    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5834 on 559 degrees of freedom
Multiple R-squared:  0.001906,  Adjusted R-squared:  -0.001665 
F-statistic: 0.5339 on 2 and 559 DF,  p-value: 0.5866
Code
mod_honIndPrevent <- lm(indivHonduranPrevent ~ condition, data = data)
summary(mod_honIndPrevent)

Call:
lm(formula = indivHonduranPrevent ~ condition, data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.97253 -0.88770  0.03109  1.03109  1.11230 

Coefficients:
                          Estimate Std. Error t value Pr(>|t|)    
(Intercept)               3.972527   0.076238  52.107   <2e-16 ***
conditionindividualScope -0.084827   0.107093  -0.792    0.429    
conditionpopulationScope -0.003616   0.106269  -0.034    0.973    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.029 on 559 degrees of freedom
Multiple R-squared:  0.001452,  Adjusted R-squared:  -0.00212 
F-statistic: 0.4066 on 2 and 559 DF,  p-value: 0.6661
Code
mod_usIndPrevent <- lm(indivUSPrevent ~ condition, data = data)
summary(mod_usIndPrevent)

Call:
lm(formula = indivUSPrevent ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.1444 -1.1099 -0.1192  0.8556  2.8901 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)              2.109890   0.076356  27.632   <2e-16 ***
conditionindividualScope 0.034495   0.107260   0.322    0.748    
conditionpopulationScope 0.009281   0.106434   0.087    0.931    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.03 on 559 degrees of freedom
Multiple R-squared:  0.0001993, Adjusted R-squared:  -0.003378 
F-statistic: 0.05573 on 2 and 559 DF,  p-value: 0.9458
Code
mod_youPrevent <- lm(youPrevent ~ condition, data = data)
summary(mod_youPrevent)

Call:
lm(formula = youPrevent ~ condition, data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.03297 -0.97861 -0.01554  0.02139  3.02139 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.03297    0.07516  27.050   <2e-16 ***
conditionindividualScope -0.05436    0.10557  -0.515    0.607    
conditionpopulationScope -0.01742    0.10476  -0.166    0.868    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.014 on 559 degrees of freedom
Multiple R-squared:  0.0004966, Adjusted R-squared:  -0.003079 
F-statistic: 0.1389 on 2 and 559 DF,  p-value: 0.8704
Code
mod_usGovPrevent_I <- lm(usGovPrevent ~ condition, data = data_I)
summary(mod_usGovPrevent_I)

Call:
lm(formula = usGovPrevent ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.7306 -0.7306 -0.4813  0.5187  2.5187 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.48128    0.08899  27.883   <2e-16 ***
conditionmergedScope      0.23300    0.12671   1.839   0.0665 .  
conditionpopulationScope  0.24929    0.12487   1.996   0.0464 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.217 on 559 degrees of freedom
Multiple R-squared:  0.008735,  Adjusted R-squared:  0.005189 
F-statistic: 2.463 on 2 and 559 DF,  p-value: 0.0861
Code
mod_honGovPrevent_I <- lm(honduranGovPrevent ~ condition, data = data_I)
summary(mod_honGovPrevent_I)

Call:
lm(formula = honduranGovPrevent ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.7979  0.1551  0.2021  0.2143  0.2143 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               4.84492    0.04266 113.562   <2e-16 ***
conditionmergedScope     -0.05921    0.06075  -0.975    0.330    
conditionpopulationScope -0.04699    0.05986  -0.785    0.433    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5834 on 559 degrees of freedom
Multiple R-squared:  0.001906,  Adjusted R-squared:  -0.001665 
F-statistic: 0.5339 on 2 and 559 DF,  p-value: 0.5866
Code
mod_honIndPrevent_I <- lm(indivHonduranPrevent ~ condition, data = data_I)
summary(mod_honIndPrevent_I)

Call:
lm(formula = indivHonduranPrevent ~ condition, data = data_I)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.97253 -0.88770  0.03109  1.03109  1.11230 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               3.88770    0.07521  51.690   <2e-16 ***
conditionmergedScope      0.08483    0.10709   0.792    0.429    
conditionpopulationScope  0.08121    0.10554   0.770    0.442    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.029 on 559 degrees of freedom
Multiple R-squared:  0.001452,  Adjusted R-squared:  -0.00212 
F-statistic: 0.4066 on 2 and 559 DF,  p-value: 0.6661
Code
mod_usIndPrevent_I <- lm(indivUSPrevent ~ condition, data = data_I)
summary(mod_usIndPrevent_I)

Call:
lm(formula = indivUSPrevent ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.1444 -1.1099 -0.1192  0.8556  2.8901 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.14439    0.07533  28.467   <2e-16 ***
conditionmergedScope     -0.03449    0.10726  -0.322    0.748    
conditionpopulationScope -0.02521    0.10570  -0.239    0.812    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.03 on 559 degrees of freedom
Multiple R-squared:  0.0001993, Adjusted R-squared:  -0.003378 
F-statistic: 0.05573 on 2 and 559 DF,  p-value: 0.9458
Code
mod_youPrevent_I <- lm(youPrevent ~ condition, data = data_I)
summary(mod_youPrevent_I)

Call:
lm(formula = youPrevent ~ condition, data = data_I)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.03297 -0.97861 -0.01554  0.02139  3.02139 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               1.97861    0.07415  26.686   <2e-16 ***
conditionmergedScope      0.05436    0.10557   0.515    0.607    
conditionpopulationScope  0.03693    0.10404   0.355    0.723    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.014 on 559 degrees of freedom
Multiple R-squared:  0.0004966, Adjusted R-squared:  -0.003079 
F-statistic: 0.1389 on 2 and 559 DF,  p-value: 0.8704

Faceted by political orientation

Code
plot_fn(responsibilityHelpLong %>% filter(!is.na(political_group)), condition, resp, coln = 3, rown = 1, facet_var = "political_group", facet_var2 = "stim", x_text_size = 13, y_text_size = 20, plot_title_size = 25, facet_text_size = 18, x_levels = c("individualScope", "populationScope", "mergedScope"), x_labels = c("Individual \n\ Frame", "Structural \n\ Frame", "Combined \n\ Frame"))

Inferential Stats

Code
mod_usGovHelp_pol <- lm(usGovHelp ~ condition*pol, data = data)
summary(mod_usGovHelp_pol)

Call:
lm(formula = usGovHelp ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.4871 -0.7569 -0.1548  0.7221  3.2363 

Coefficients:
                              Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   1.929729   0.203943   9.462  < 2e-16 ***
conditionindividualScope     -0.361597   0.302581  -1.195    0.233    
conditionpopulationScope     -0.146508   0.273542  -0.536    0.592    
pol                           0.192598   0.046394   4.151 3.82e-05 ***
conditionindividualScope:pol  0.002945   0.066479   0.044    0.965    
conditionpopulationScope:pol  0.050818   0.061430   0.827    0.408    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.118 on 556 degrees of freedom
Multiple R-squared:  0.1271,    Adjusted R-squared:  0.1193 
F-statistic:  16.2 on 5 and 556 DF,  p-value: 6.339e-15
Code
mod_hondurasGovHelp_pol <- lm(hondurasGovHelp ~ condition*pol, data = data)
summary(mod_hondurasGovHelp_pol)

Call:
lm(formula = hondurasGovHelp ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.8518  0.1231  0.1754  0.2278  0.3406 

Coefficients:
                              Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   4.645607   0.111263  41.754   <2e-16 ***
conditionindividualScope      0.074244   0.165075   0.450    0.653    
conditionpopulationScope     -0.024695   0.149232  -0.165    0.869    
pol                           0.032147   0.025310   1.270    0.205    
conditionindividualScope:pol -0.005968   0.036268  -0.165    0.869    
conditionpopulationScope:pol  0.006327   0.033514   0.189    0.850    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6101 on 556 degrees of freedom
Multiple R-squared:  0.01214,   Adjusted R-squared:  0.00326 
F-statistic: 1.367 on 5 and 556 DF,  p-value: 0.2351
Code
mod_indivHonduranHelp_pol <- lm(indivHonduranHelp ~ condition*pol, data = data)
summary(mod_indivHonduranHelp_pol)

Call:
lm(formula = indivHonduranHelp ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.2995 -0.8169  0.1329  0.9658  1.3736 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   4.10293    0.18275  22.451   <2e-16 ***
conditionindividualScope      0.07636    0.27114   0.282   0.7783    
conditionpopulationScope      0.46185    0.24512   1.884   0.0601 .  
pol                          -0.03931    0.04157  -0.945   0.3448    
conditionindividualScope:pol -0.03968    0.05957  -0.666   0.5057    
conditionpopulationScope:pol -0.09335    0.05505  -1.696   0.0905 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.002 on 556 degrees of freedom
Multiple R-squared:  0.03695,   Adjusted R-squared:  0.02829 
F-statistic: 4.267 on 5 and 556 DF,  p-value: 0.0008129
Code
mod_indivUSHelp_pol <- lm(indivUSHelp ~ condition*pol, data = data)
summary(mod_indivUSHelp_pol)

Call:
lm(formula = indivUSHelp ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.3882 -0.3882 -0.2124  0.6558  2.9091 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   2.03545    0.18652  10.913   <2e-16 ***
conditionindividualScope      0.16036    0.27672   0.579    0.562    
conditionpopulationScope      0.04512    0.25017   0.180    0.857    
pol                           0.05547    0.04243   1.307    0.192    
conditionindividualScope:pol -0.05255    0.06080  -0.864    0.388    
conditionpopulationScope:pol -0.01153    0.05618  -0.205    0.838    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.023 on 556 degrees of freedom
Multiple R-squared:  0.006144,  Adjusted R-squared:  -0.002793 
F-statistic: 0.6875 on 5 and 556 DF,  p-value: 0.6331
Code
mod_youHelp_pol <- lm(youHelp ~ condition*pol, data = data)
summary(mod_youHelp_pol)

Call:
lm(formula = youHelp ~ condition * pol, data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.23983 -0.94285 -0.14711  0.01003  3.05715 

Coefficients:
                              Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   1.985501   0.185658  10.694   <2e-16 ***
conditionindividualScope     -0.089769   0.275451  -0.326    0.745    
conditionpopulationScope     -0.070203   0.249016  -0.282    0.778    
pol                           0.040546   0.042234   0.960    0.337    
conditionindividualScope:pol  0.006576   0.060519   0.109    0.914    
conditionpopulationScope:pol  0.005816   0.055922   0.104    0.917    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.018 on 556 degrees of freedom
Multiple R-squared:  0.007057,  Adjusted R-squared:  -0.001872 
F-statistic: 0.7904 on 5 and 556 DF,  p-value: 0.5569

Responsibility to prevent harm

Code
responsibilityPreventLong <- data_long %>%
  filter(grepl("Prevent", stim))

plot_fn(responsibilityPreventLong, condition, resp, coln = 3, rown = 5, "stim", x_text_size = 13, y_text_size = 20, plot_title_size = 25, facet_text_size = 18, x_levels = c("individualScope", "populationScope", "mergedScope"), x_labels = c("Individual \n\ Frame", "Structural \n\ Frame", "Combined \n\ Frame"))

Inferential Stats

Code
mod_usGovHelp <- lm(usGovHelp ~ condition, data = data)
summary(mod_usGovHelp)

Call:
lm(formula = usGovHelp ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.7720 -0.7720 -0.4225  0.5775  2.5775 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.70330    0.08776  30.803   <2e-16 ***
conditionindividualScope -0.28084    0.12328  -2.278   0.0231 *  
conditionpopulationScope  0.06872    0.12233   0.562   0.5745    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.184 on 559 degrees of freedom
Multiple R-squared:  0.01622,   Adjusted R-squared:  0.0127 
F-statistic: 4.608 on 2 and 559 DF,  p-value: 0.01035
Code
mod_honGovHelp <- lm(hondurasGovHelp ~ condition, data = data)
summary(mod_honGovHelp)

Call:
lm(formula = hondurasGovHelp ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.7772  0.1658  0.2228  0.2253  0.2253 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)              4.774725   0.045329 105.335   <2e-16 ***
conditionindividualScope 0.059499   0.063675   0.934    0.350    
conditionpopulationScope 0.002477   0.063185   0.039    0.969    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6115 on 559 degrees of freedom
Multiple R-squared:  0.002022,  Adjusted R-squared:  -0.001548 
F-statistic: 0.5663 on 2 and 559 DF,  p-value: 0.5679
Code
mod_honIndHelp <- lm(indivHonduranHelp ~ condition, data = data)
summary(mod_honIndHelp)

Call:
lm(formula = indivHonduranHelp ~ condition, data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-3.02591 -0.83422  0.05495  0.97409  1.16578 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               3.94505    0.07526  52.422   <2e-16 ***
conditionindividualScope -0.11083    0.10571  -1.048    0.295    
conditionpopulationScope  0.08085    0.10490   0.771    0.441    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.015 on 559 degrees of freedom
Multiple R-squared:  0.006058,  Adjusted R-squared:  0.002502 
F-statistic: 1.704 on 2 and 559 DF,  p-value: 0.183
Code
mod_usIndHelp <- lm(indivUSHelp ~ condition, data = data)
summary(mod_usIndHelp)

Call:
lm(formula = indivUSHelp ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.2591 -0.2591 -0.2582  0.7409  2.7914 

Coefficients:
                           Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.2582418  0.0758146  29.786   <2e-16 ***
conditionindividualScope -0.0496856  0.1064990  -0.467    0.641    
conditionpopulationScope  0.0008256  0.1056793   0.008    0.994    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.023 on 559 degrees of freedom
Multiple R-squared:  0.0005356, Adjusted R-squared:  -0.00304 
F-statistic: 0.1498 on 2 and 559 DF,  p-value: 0.8609
Code
mod_youHelp <- lm(youHelp ~ condition, data = data)
summary(mod_youHelp)

Call:
lm(formula = youHelp ~ condition, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.1483 -1.1016 -0.1036 -0.1016  2.8984 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.14835    0.07550  28.454   <2e-16 ***
conditionindividualScope -0.04675    0.10606  -0.441    0.660    
conditionpopulationScope -0.04472    0.10525  -0.425    0.671    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.019 on 559 degrees of freedom
Multiple R-squared:  0.000444,  Adjusted R-squared:  -0.003132 
F-statistic: 0.1242 on 2 and 559 DF,  p-value: 0.8833
Code
mod_usGovHelp_I <- lm(usGovHelp ~ condition, data = data_I)
summary(mod_usGovHelp_I)

Call:
lm(formula = usGovHelp ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.7720 -0.7720 -0.4225  0.5775  2.5775 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.42246    0.08658  27.980  < 2e-16 ***
conditionmergedScope      0.28084    0.12328   2.278  0.02310 *  
conditionpopulationScope  0.34956    0.12149   2.877  0.00416 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.184 on 559 degrees of freedom
Multiple R-squared:  0.01622,   Adjusted R-squared:  0.0127 
F-statistic: 4.608 on 2 and 559 DF,  p-value: 0.01035
Code
mod_honGovHelp_I <- lm(hondurasGovHelp ~ condition, data = data_I)
summary(mod_honGovHelp_I)

Call:
lm(formula = hondurasGovHelp ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.7772  0.1658  0.2228  0.2253  0.2253 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               4.83422    0.04472 108.102   <2e-16 ***
conditionmergedScope     -0.05950    0.06368  -0.934    0.350    
conditionpopulationScope -0.05702    0.06275  -0.909    0.364    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6115 on 559 degrees of freedom
Multiple R-squared:  0.002022,  Adjusted R-squared:  -0.001548 
F-statistic: 0.5663 on 2 and 559 DF,  p-value: 0.5679
Code
mod_honIndHelp_I <- lm(indivHonduranHelp ~ condition, data = data_I)
summary(mod_honIndHelp_I)

Call:
lm(formula = indivHonduranHelp ~ condition, data = data_I)

Residuals:
     Min       1Q   Median       3Q      Max 
-3.02591 -0.83422  0.05495  0.97409  1.16578 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               3.83422    0.07424  51.645   <2e-16 ***
conditionmergedScope      0.11083    0.10571   1.048   0.2949    
conditionpopulationScope  0.19168    0.10418   1.840   0.0663 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.015 on 559 degrees of freedom
Multiple R-squared:  0.006058,  Adjusted R-squared:  0.002502 
F-statistic: 1.704 on 2 and 559 DF,  p-value: 0.183
Code
mod_usIndHelp_I <- lm(indivUSHelp ~ condition, data = data_I)
summary(mod_usIndHelp_I)

Call:
lm(formula = indivUSHelp ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.2591 -0.2591 -0.2582  0.7409  2.7914 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.20856    0.07479  29.528   <2e-16 ***
conditionmergedScope      0.04969    0.10650   0.467    0.641    
conditionpopulationScope  0.05051    0.10495   0.481    0.630    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.023 on 559 degrees of freedom
Multiple R-squared:  0.0005356, Adjusted R-squared:  -0.00304 
F-statistic: 0.1498 on 2 and 559 DF,  p-value: 0.8609
Code
mod_youHelp_I <- lm(youHelp ~ condition, data = data_I)
summary(mod_youHelp_I)

Call:
lm(formula = youHelp ~ condition, data = data_I)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.1483 -1.1016 -0.1036 -0.1016  2.8984 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)              2.101604   0.074488  28.214   <2e-16 ***
conditionmergedScope     0.046747   0.106062   0.441    0.660    
conditionpopulationScope 0.002023   0.104519   0.019    0.985    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.019 on 559 degrees of freedom
Multiple R-squared:  0.000444,  Adjusted R-squared:  -0.003132 
F-statistic: 0.1242 on 2 and 559 DF,  p-value: 0.8833

Faceted by political orientation

Code
plot_fn(responsibilityPreventLong %>% filter(!is.na(political_group)), condition, resp, coln = 3, rown = 1, facet_var = "political_group", facet_var2 = "stim", x_text_size = 13, y_text_size = 20, plot_title_size = 25, facet_text_size = 18, x_levels = c("individualScope", "populationScope", "mergedScope"), x_labels = c("Individual \n\ Frame", "Structural \n\ Frame", "Combined \n\ Frame"))

Inferential Stats

Code
mod_usGovPrevent_pol <- lm(usGovPrevent ~ condition*pol, data = data)
summary(mod_usGovPrevent_pol)

Call:
lm(formula = usGovPrevent ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.3752 -0.9192 -0.1963  0.8037  3.0794 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   2.06539    0.21327   9.685  < 2e-16 ***
conditionindividualScope     -0.31123    0.31641  -0.984 0.325732    
conditionpopulationScope     -0.22617    0.28604  -0.791 0.429471    
pol                           0.16156    0.04851   3.330 0.000926 ***
conditionindividualScope:pol  0.00487    0.06952   0.070 0.944180    
conditionpopulationScope:pol  0.05787    0.06424   0.901 0.368063    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.169 on 556 degrees of freedom
Multiple R-squared:  0.08965,   Adjusted R-squared:  0.08147 
F-statistic: 10.95 on 5 and 556 DF,  p-value: 4.543e-10
Code
mod_hondurasGovPrevent_pol <- lm(honduranGovPrevent ~ condition*pol, data = data)
summary(mod_hondurasGovPrevent_pol)

Call:
lm(formula = honduranGovPrevent ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.8414  0.1366  0.1678  0.2151  0.3578 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   4.59460    0.10626  43.238   <2e-16 ***
conditionindividualScope      0.28438    0.15766   1.804   0.0718 .  
conditionpopulationScope      0.14315    0.14253   1.004   0.3156    
pol                           0.04758    0.02417   1.968   0.0495 *  
conditionindividualScope:pol -0.05538    0.03464  -1.599   0.1105    
conditionpopulationScope:pol -0.03277    0.03201  -1.024   0.3064    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5826 on 556 degrees of freedom
Multiple R-squared:  0.00987,   Adjusted R-squared:  0.0009658 
F-statistic: 1.108 on 5 and 556 DF,  p-value: 0.3547
Code
mod_indivHonduranPrevent_pol <- lm(indivHonduranPrevent ~ condition*pol, data = data)
summary(mod_indivHonduranPrevent_pol)

Call:
lm(formula = indivHonduranPrevent ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.1145 -0.8283  0.1618  0.9265  1.4715 

Coefficients:
                              Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   4.255417   0.184292  23.091   <2e-16 ***
conditionindividualScope     -0.025104   0.273425  -0.092   0.9269    
conditionpopulationScope      0.322499   0.247184   1.305   0.1925    
pol                          -0.070432   0.041923  -1.680   0.0935 .  
conditionindividualScope:pol -0.007987   0.060074  -0.133   0.8943    
conditionpopulationScope:pol -0.079489   0.055511  -1.432   0.1527    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.01 on 556 degrees of freedom
Multiple R-squared:  0.04132,   Adjusted R-squared:  0.0327 
F-statistic: 4.793 on 5 and 556 DF,  p-value: 0.0002678
Code
mod_indivUSPrevent_pol <- lm(indivUSPrevent ~ condition*pol, data = data)
summary(mod_indivUSPrevent_pol)

Call:
lm(formula = indivUSPrevent ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.2470 -1.0294 -0.1258  0.7530  3.0141 

Coefficients:
                              Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   2.077601   0.188066  11.047   <2e-16 ***
conditionindividualScope     -0.060255   0.279024  -0.216    0.829    
conditionpopulationScope     -0.135242   0.252246  -0.536    0.592    
pol                           0.008039   0.042782   0.188    0.851    
conditionindividualScope:pol  0.021038   0.061304   0.343    0.732    
conditionpopulationScope:pol  0.035487   0.056648   0.626    0.531    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.031 on 556 degrees of freedom
Multiple R-squared:  0.003512,  Adjusted R-squared:  -0.00545 
F-statistic: 0.3919 on 5 and 556 DF,  p-value: 0.8545
Code
mod_youPrevent_pol <- lm(youPrevent ~ condition*pol, data = data)
summary(mod_youPrevent_pol)

Call:
lm(formula = youPrevent ~ condition * pol, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.1240 -0.9572 -0.0599  0.0970  3.2075 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   1.9230325  0.1849764  10.396   <2e-16 ***
conditionindividualScope     -0.1858358  0.2744404  -0.677    0.499    
conditionpopulationScope     -0.0223795  0.2481021  -0.090    0.928    
pol                           0.0273708  0.0420790   0.650    0.516    
conditionindividualScope:pol  0.0278852  0.0602969   0.462    0.644    
conditionpopulationScope:pol  0.0009123  0.0557171   0.016    0.987    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.014 on 556 degrees of freedom
Multiple R-squared:  0.005255,  Adjusted R-squared:  -0.00369 
F-statistic: 0.5875 on 5 and 556 DF,  p-value: 0.7096