221527115杨诗婷

1 第一题 编写代码

利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。

  • 计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)

    flights |>
    group_by(origin) |>
    summarise(n=n(),depm=mean(dep_delay,na.rm=T))
    # A tibble: 3 × 3
      origin      n  depm
      <chr>   <int> <dbl>
    1 EWR    120835  15.1
    2 JFK    111279  12.1
    3 LGA    104662  10.3
  • 计算不同航空公司2013从纽约起飞航班数和平均延误时间

    flights |>
    group_by(carrier) |>
    summarise(n=n(),depm=mean(dep_delay,na.rm=T))  |>
    arrange(desc(n))
    # A tibble: 16 × 3
       carrier     n  depm
       <chr>   <int> <dbl>
     1 UA      58665 12.1 
     2 B6      54635 13.0 
     3 EV      54173 20.0 
     4 DL      48110  9.26
     5 AA      32729  8.59
     6 MQ      26397 10.6 
     7 US      20536  3.78
     8 9E      18460 16.7 
     9 WN      12275 17.7 
    10 VX       5162 12.9 
    11 FL       3260 18.7 
    12 AS        714  5.80
    13 F9        685 20.2 
    14 YV        601 19.0 
    15 HA        342  4.90
    16 OO         32 12.6 
  • 计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)

    flights |>
    group_by(origin,dest) |>
    summarise(n=n(),depm=mean(distance)) |>
    slice_max(n,n=3)
    `summarise()` has grouped output by 'origin'. You can override using the
    `.groups` argument.
    # A tibble: 9 × 4
    # Groups:   origin [3]
      origin dest      n  depm
      <chr>  <chr> <int> <dbl>
    1 EWR    ORD    6100   719
    2 EWR    BOS    5327   200
    3 EWR    SFO    5127  2565
    4 JFK    LAX   11262  2475
    5 JFK    SFO    8204  2586
    6 JFK    BOS    5898   187
    7 LGA    ATL   10263   762
    8 LGA    ORD    8857   733
    9 LGA    CLT    6168   544

2 第二题 解释代码

  1. 代码含义:

    1. tibble(iris):将iris数据集转换为tibble格式。

    2. %>%:将转换后的tibble传递给下一个函数。

    3. arrange(Species, across(starts_with("Sepal"), desc))

      首先按照Species列进行升序排序。然后对Sepal.LengthSepal.Width列进行降序排列。

    tibble(iris) %>% 
      arrange(Species,across(starts_with("Sepal"), desc))
    # A tibble: 150 × 5
       Sepal.Length Sepal.Width Petal.Length Petal.Width Species
              <dbl>       <dbl>        <dbl>       <dbl> <fct>  
     1          5.8         4            1.2         0.2 setosa 
     2          5.7         4.4          1.5         0.4 setosa 
     3          5.7         3.8          1.7         0.3 setosa 
     4          5.5         4.2          1.4         0.2 setosa 
     5          5.5         3.5          1.3         0.2 setosa 
     6          5.4         3.9          1.7         0.4 setosa 
     7          5.4         3.9          1.3         0.4 setosa 
     8          5.4         3.7          1.5         0.2 setosa 
     9          5.4         3.4          1.7         0.2 setosa 
    10          5.4         3.4          1.5         0.4 setosa 
    # ℹ 140 more rows
  2. 代码含义:

    代码执行顺序

    1. starwars:加载starwars数据集。
    2. %>%:将数据集传递给下一个函数。
    3. group_by(gender):按照gender列对数据进行分组。
    4. filter(mass > mean(mass, na.rm = TRUE)):在每个性别组中,筛选出mass大于该组平均值的角色。最终的结果是一个新的数据集,其中包含每个性别组中体重大于该组平均体重的角色。
    starwars %>% 
      group_by(gender) %>% 
      filter(mass > mean(mass, na.rm = TRUE))
    # A tibble: 15 × 14
    # Groups:   gender [3]
       name    height   mass hair_color skin_color eye_color birth_year sex   gender
       <chr>    <int>  <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
     1 Darth …    202  136   none       white      yellow          41.9 male  mascu…
     2 Owen L…    178  120   brown, gr… light      blue            52   male  mascu…
     3 Beru W…    165   75   brown      light      blue            47   fema… femin…
     4 Chewba…    228  112   brown      unknown    blue           200   male  mascu…
     5 Jabba …    175 1358   <NA>       green-tan… orange         600   herm… mascu…
     6 Jek To…    180  110   brown      fair       blue            NA   <NA>  <NA>  
     7 IG-88      200  140   none       metal      red             15   none  mascu…
     8 Bossk      190  113   none       green      red             53   male  mascu…
     9 Ayla S…    178   55   none       blue       hazel           48   fema… femin…
    10 Gregar…    185   85   black      dark       brown           NA   <NA>  <NA>  
    11 Lumina…    170   56.2 black      yellow     blue            58   fema… femin…
    12 Zam We…    168   55   blonde     fair, gre… yellow          NA   fema… femin…
    13 Shaak …    178   57   none       red, blue… black           NA   fema… femin…
    14 Grievo…    216  159   none       brown, wh… green, y…       NA   male  mascu…
    15 Tarfful    234  136   brown      brown      blue            NA   male  mascu…
    # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
    #   vehicles <list>, starships <list>
  3. 代码含义:

    1. starwars:加载starwars数据集。%>%:将数据集传递给下一个函数。select(name, homeworld, species):选择namehomeworldspecies三列。mutate(across(!name, as.factor)):将homeworldspecies列转换为因子类型。最终的结果是一个新的数据集,其中包含namehomeworldspecies三列,并且homeworldspecies列被转换为因子类型。
    starwars %>%
      select(name, homeworld, species) %>%
      mutate(across(!name, as.factor))
    # A tibble: 87 × 3
       name               homeworld species
       <chr>              <fct>     <fct>  
     1 Luke Skywalker     Tatooine  Human  
     2 C-3PO              Tatooine  Droid  
     3 R2-D2              Naboo     Droid  
     4 Darth Vader        Tatooine  Human  
     5 Leia Organa        Alderaan  Human  
     6 Owen Lars          Tatooine  Human  
     7 Beru Whitesun Lars Tatooine  Human  
     8 R5-D4              Tatooine  Droid  
     9 Biggs Darklighter  Tatooine  Human  
    10 Obi-Wan Kenobi     Stewjon   Human  
    # ℹ 77 more rows
  4. 代码含义:

    tibble(mtcars):将mtcars数据集转换为tibble格式。%>%:将转换后的tibble传递给下一个函数。group_by(vs):按照vs列对数据进行分组。mutate(hp_cut = cut(hp, 3)):在每组内,将hp列的值分成3个区间,并生成新的hp_cut列。group_by(hp_cut):按照hp_cut列对数据进行分组。最终的结果是一个新的tibble,其中包含mtcars数据集的所有列,并且新增了hp_cut列。数据首先按照vs列分组,然后在每组内按照hp_cut列分组。

    tibble(mtcars) %>%
      group_by(vs) %>%
      mutate(hp_cut = cut(hp, 3)) %>%
      group_by(hp_cut)
    # A tibble: 32 × 12
    # Groups:   hp_cut [6]
         mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb hp_cut     
       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>      
     1  21       6  160    110  3.9   2.62  16.5     0     1     4     4 (90.8,172] 
     2  21       6  160    110  3.9   2.88  17.0     0     1     4     4 (90.8,172] 
     3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1 (75.7,99.3]
     4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1 (99.3,123] 
     5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2 (172,254]  
     6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1 (99.3,123] 
     7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4 (172,254]  
     8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2 (51.9,75.7]
     9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2 (75.7,99.3]
    10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4 (99.3,123] 
    # ℹ 22 more rows

3 第三题 查找帮助理解函数

阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。

  1. inner_join()

    library(dplyr)
    
    # 创建两个数据集
    df1 <- tibble(id = c(1, 2, 3), name = c("Alice", "Bob", "Charlie"))
    df2 <- tibble(id = c(2, 3, 4), age = c(25, 30, 35))
    
    # 使用inner_join合并
    result <- inner_join(df1, df2, by = "id")
    print(result)
    # A tibble: 2 × 3
         id name      age
      <dbl> <chr>   <dbl>
    1     2 Bob        25
    2     3 Charlie    30
  2. left_join()

    # 使用left_join合并
    result <- left_join(df1, df2, by = "id")
    print(result)
    # A tibble: 3 × 3
         id name      age
      <dbl> <chr>   <dbl>
    1     1 Alice      NA
    2     2 Bob        25
    3     3 Charlie    30
  3. right_join()

    # 使用right_join合并
    result <- right_join(df1, df2, by = "id")
    print(result)
    # A tibble: 3 × 3
         id name      age
      <dbl> <chr>   <dbl>
    1     2 Bob        25
    2     3 Charlie    30
    3     4 <NA>       35
  4. full_join()

    # 使用full_join合并
    result <- full_join(df1, df2, by = "id")
    print(result)
    # A tibble: 4 × 3
         id name      age
      <dbl> <chr>   <dbl>
    1     1 Alice      NA
    2     2 Bob        25
    3     3 Charlie    30
    4     4 <NA>       35