|>
flights group_by(origin) |>
summarise(n=n(),depm=mean(dep_delay,na.rm=T))
# A tibble: 3 × 3
origin n depm
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。
计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)
|>
flights group_by(origin) |>
summarise(n=n(),depm=mean(dep_delay,na.rm=T))
# A tibble: 3 × 3
origin n depm
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
计算不同航空公司2013从纽约起飞航班数和平均延误时间
|>
flights group_by(carrier) |>
summarise(n=n(),depm=mean(dep_delay,na.rm=T)) |>
arrange(desc(n))
# A tibble: 16 × 3
carrier n depm
<chr> <int> <dbl>
1 UA 58665 12.1
2 B6 54635 13.0
3 EV 54173 20.0
4 DL 48110 9.26
5 AA 32729 8.59
6 MQ 26397 10.6
7 US 20536 3.78
8 9E 18460 16.7
9 WN 12275 17.7
10 VX 5162 12.9
11 FL 3260 18.7
12 AS 714 5.80
13 F9 685 20.2
14 YV 601 19.0
15 HA 342 4.90
16 OO 32 12.6
计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)
|>
flights group_by(origin,dest) |>
summarise(n=n(),depm=mean(distance)) |>
slice_max(n,n=3)
`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.
# A tibble: 9 × 4
# Groups: origin [3]
origin dest n depm
<chr> <chr> <int> <dbl>
1 EWR ORD 6100 719
2 EWR BOS 5327 200
3 EWR SFO 5127 2565
4 JFK LAX 11262 2475
5 JFK SFO 8204 2586
6 JFK BOS 5898 187
7 LGA ATL 10263 762
8 LGA ORD 8857 733
9 LGA CLT 6168 544
代码含义:
tibble(iris)
:将iris
数据集转换为tibble
格式。
%>%
:将转换后的tibble
传递给下一个函数。
arrange(Species, across(starts_with("Sepal"), desc))
:
首先按照Species
列进行升序排序。然后对Sepal.Length
和Sepal.Width
列进行降序排列。
tibble(iris) %>%
arrange(Species,across(starts_with("Sepal"), desc))
# A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.8 4 1.2 0.2 setosa
2 5.7 4.4 1.5 0.4 setosa
3 5.7 3.8 1.7 0.3 setosa
4 5.5 4.2 1.4 0.2 setosa
5 5.5 3.5 1.3 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 5.4 3.9 1.3 0.4 setosa
8 5.4 3.7 1.5 0.2 setosa
9 5.4 3.4 1.7 0.2 setosa
10 5.4 3.4 1.5 0.4 setosa
# ℹ 140 more rows
代码含义:
代码执行顺序
starwars
:加载starwars
数据集。%>%
:将数据集传递给下一个函数。group_by(gender)
:按照gender
列对数据进行分组。filter(mass > mean(mass, na.rm = TRUE))
:在每个性别组中,筛选出mass
大于该组平均值的角色。最终的结果是一个新的数据集,其中包含每个性别组中体重大于该组平均体重的角色。%>%
starwars group_by(gender) %>%
filter(mass > mean(mass, na.rm = TRUE))
# A tibble: 15 × 14
# Groups: gender [3]
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Darth … 202 136 none white yellow 41.9 male mascu…
2 Owen L… 178 120 brown, gr… light blue 52 male mascu…
3 Beru W… 165 75 brown light blue 47 fema… femin…
4 Chewba… 228 112 brown unknown blue 200 male mascu…
5 Jabba … 175 1358 <NA> green-tan… orange 600 herm… mascu…
6 Jek To… 180 110 brown fair blue NA <NA> <NA>
7 IG-88 200 140 none metal red 15 none mascu…
8 Bossk 190 113 none green red 53 male mascu…
9 Ayla S… 178 55 none blue hazel 48 fema… femin…
10 Gregar… 185 85 black dark brown NA <NA> <NA>
11 Lumina… 170 56.2 black yellow blue 58 fema… femin…
12 Zam We… 168 55 blonde fair, gre… yellow NA fema… femin…
13 Shaak … 178 57 none red, blue… black NA fema… femin…
14 Grievo… 216 159 none brown, wh… green, y… NA male mascu…
15 Tarfful 234 136 brown brown blue NA male mascu…
# ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
# vehicles <list>, starships <list>
代码含义:
starwars
:加载starwars
数据集。%>%
:将数据集传递给下一个函数。select(name, homeworld, species)
:选择name
、homeworld
和species
三列。mutate(across(!name, as.factor))
:将homeworld
和species
列转换为因子类型。最终的结果是一个新的数据集,其中包含name
、homeworld
和species
三列,并且homeworld
和species
列被转换为因子类型。%>%
starwars select(name, homeworld, species) %>%
mutate(across(!name, as.factor))
# A tibble: 87 × 3
name homeworld species
<chr> <fct> <fct>
1 Luke Skywalker Tatooine Human
2 C-3PO Tatooine Droid
3 R2-D2 Naboo Droid
4 Darth Vader Tatooine Human
5 Leia Organa Alderaan Human
6 Owen Lars Tatooine Human
7 Beru Whitesun Lars Tatooine Human
8 R5-D4 Tatooine Droid
9 Biggs Darklighter Tatooine Human
10 Obi-Wan Kenobi Stewjon Human
# ℹ 77 more rows
代码含义:
tibble(mtcars)
:将mtcars
数据集转换为tibble
格式。%>%
:将转换后的tibble
传递给下一个函数。group_by(vs)
:按照vs
列对数据进行分组。mutate(hp_cut = cut(hp, 3))
:在每组内,将hp
列的值分成3个区间,并生成新的hp_cut
列。group_by(hp_cut)
:按照hp_cut
列对数据进行分组。最终的结果是一个新的tibble
,其中包含mtcars
数据集的所有列,并且新增了hp_cut
列。数据首先按照vs
列分组,然后在每组内按照hp_cut
列分组。
tibble(mtcars) %>%
group_by(vs) %>%
mutate(hp_cut = cut(hp, 3)) %>%
group_by(hp_cut)
# A tibble: 32 × 12
# Groups: hp_cut [6]
mpg cyl disp hp drat wt qsec vs am gear carb hp_cut
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 (90.8,172]
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 (90.8,172]
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 (75.7,99.3]
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 (99.3,123]
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 (172,254]
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 (99.3,123]
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 (172,254]
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 (51.9,75.7]
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 (75.7,99.3]
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 (99.3,123]
# ℹ 22 more rows
阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。
inner_join()
:
library(dplyr)
# 创建两个数据集
<- tibble(id = c(1, 2, 3), name = c("Alice", "Bob", "Charlie"))
df1 <- tibble(id = c(2, 3, 4), age = c(25, 30, 35))
df2
# 使用inner_join合并
<- inner_join(df1, df2, by = "id")
result print(result)
# A tibble: 2 × 3
id name age
<dbl> <chr> <dbl>
1 2 Bob 25
2 3 Charlie 30
left_join()
:
# 使用left_join合并
<- left_join(df1, df2, by = "id")
result print(result)
# A tibble: 3 × 3
id name age
<dbl> <chr> <dbl>
1 1 Alice NA
2 2 Bob 25
3 3 Charlie 30
right_join()
:
# 使用right_join合并
<- right_join(df1, df2, by = "id")
result print(result)
# A tibble: 3 × 3
id name age
<dbl> <chr> <dbl>
1 2 Bob 25
2 3 Charlie 30
3 4 <NA> 35
full_join()
:
# 使用full_join合并
<- full_join(df1, df2, by = "id")
result print(result)
# A tibble: 4 × 3
id name age
<dbl> <chr> <dbl>
1 1 Alice NA
2 2 Bob 25
3 3 Charlie 30
4 4 <NA> 35