Loading required package: car
Warning: package ‘car’ was built under R version 4.4.3Loading required package: carData

Attaching package: ‘car’

The following object is masked from ‘package:dplyr’:

    recode

The following object is masked from ‘package:purrr’:

    some

Loading required package: sandwich
Warning: package ‘sandwich’ was built under R version 4.4.3Registered S3 method overwritten by 'htmlwidgets':
  method           from         
  print.htmlwidget tools:rstudio
Registered S3 method overwritten by 'data.table':
  method           from
  print.data.table     

Ejemplo Visual del proceso de prueba de hipótesis (Ho vrs. Ha), con la prueba de T

Prueba de Hipótesis

Ya hemos visto que si comparamos pares de muestras que salen de la misma población, lo más probable (e.g., P > 0.95) es encontrar valores de T entre los cuantiles 2.5% y 97.5% de la distribución de T.

Ahora, si comparamos dos grupos (i.e., n1=100 y n2=100). El primer grupo, proveniente de N1, y el otro, proveniente de otra población (N2) que por marco teórico, esperamos tenga un promedio mayor que el de la N1 (i.e., N1 < N2). Entonces esperamos que t < 0.

n1

n1= 100
prom1 = 138.82
sd1 = 14.69

n2

n2 = 100
prom2 = 143.17
sd2 = 13.02

##### t test
t <- (prom1- prom2 ) / sqrt( ((sd1^2)/n1  ) + ((sd2^2)/n2  ) )
t
[1] -2.212543

Lo que queremos saber es qué tanta es la diferencia en esa dirección. Es decir, qué tan pequeña es el P.value.

Si logramos rechazar Ho. Entonces, cuál es la alternativa (Ha)?

Ha = Ŷ1 < Ŷ2

La prueba de T que necesitamos es con el umbral del error Tipo-1 hacia el extremo de T < 0 (Prueba de una cola) para verificar cuál es la probabilidad de que el μN1 sea menor que el de μN2 (i.e., Ŷ12).

En verde vemos el valor de t =-1.65 equivalente a una P=0.05. Evidentemente, el valor de t =-2.21, en rojo, nos muestra que la Pμ1<μ2=0.01 (1%). Es decir, ese es el error al decir que μ12.]

LS0tDQp0aXRsZTogIlQudGVzdF9IYSINCm91dHB1dDogDQogIGh0bWxfbm90ZWJvb2s6IA0KICAgIHRvYzogZmFsc2UNCiAgICB0b2NfZmxvYXQ6IHRydWUNCiAgICBjb2RlX2ZvbGRpbmc6IHNob3cNCiAgICBmaWdfaGVpZ2h0OiA2DQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQotLS0gIA0KDQpgYGB7ciBlY2hvPUZBTFNFfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KFJjbWRyTWlzYykNCmBgYA0KDQoqKkVqZW1wbG8gVmlzdWFsIGRlbCBwcm9jZXNvIGRlIHBydWViYSBkZSBoaXDDs3Rlc2lzICgqSG8qIHZycy4gKkhhKiksIGNvbiBsYSBwcnVlYmEgZGUgVCoqDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFLCBlY2hvPUZBTFNFfQ0KbGlicmFyeShmbGV4ZGFzaGJvYXJkKQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KA0KICBlY2hvID0gRkFMU0UsDQoJbWVzc2FnZSA9IEZBTFNFLA0KICB3YXJuaW5nID0gRkFMU0UsDQoJaW5jbHVkZSA9IFRSVUUNCikNCmBgYCANCg0KDQpgYGB7ciBlY2hvPUZBTFNFLCBzaG93PUZBTFNFfQ0KzrwxPSAxMzguNjsgz4MxPSAxMi42DQpgYGANCg0KIA0KYGBge3IgZWNobz1GQUxTRX0NCm4xPSAxMDANCm5zMT0gMTAwMDAgICAgICAgICAgICAgICAgICAjIFNpbXVsYW5kbyAxMCwwMDAgbXVlc3RyYXMNCm1lYW4xIDwtIG51bWVyaWMobnMxKSAgICAgIyBWZWN0b3IgZGUgbWVkaWFzIGRlIGNhZGEgbXVlc3RyYQ0Kc2QxIDwtIG51bWVyaWMobnMxKSAgICAgICAjIFZlY3RvciBwYXJhIGxhcyBkZSBkZSBjL211ZXN0cmENCiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMgIA0KbjI9IDEwMA0KbnMyPSAxMDAwMCAgICAgICAgICAgICAgICAgICAgICMgU2ltdWxhbmRvIDEwLDAwMCBtdWVzdHJhcw0KbWVhbjIgPC0gbnVtZXJpYyhuczIpICAgICAjIFZlY3RvciBkZSBtZWRpYXMgZGUgY2FkYSBtdWVzdHJhDQpzZDIgPC0gbnVtZXJpYyhuczIpICAgICAgICMgVmVjdG9yIHBhcmEgbGFzIGRlIGRlIGMvbXVlc3RyYQ0KZWUyIDwtIG51bWVyaWMobnMyKSAgICAgICAjIFZlY3RvciBwYXJhIGxvcyBlcnJvcmVzIHTDrXBpY29zDQojIyMgU2ltdWxhbmRvIGxvcyBtdWVzdHJlb3MgYWxlYXRvcmlvcyAjIyMjIyMjIyMjIyMNCg0KZm9yIChpIGluIDE6bnMxKSB7DQogIHgxIDwtIHJub3JtKG49bjEsIG1lYW49zrwxLCBzZD0gz4MxKSAgIyBtdWVzdHJhIGFsZWF0b3JpYSBkZSB0YW1hw7FvIChuKQ0KICBtZWFuMVtpXSA8LSBtZWFuKHgxKQ0KICBzZDFbaV0gPC0gc2QoeDEpDQogIH0gIA0KIyMjIyMjIyMjIyMjIyMjIyMjICANCnNldC5zZWVkKDE0MzYpDQpmb3IgKGkgaW4gMTpuczIpIHsNCiAgeDIgPC0gcm5vcm0obj1uMiwgbWVhbj3OvDEsIHNkPSDPgzEpICAjIG11ZXN0cmEgYWxlYXRvcmlhIGRlIHRhbWHDsW8gKG4pDQogIG1lYW4yW2ldIDwtIG1lYW4oeDIpDQogIHNkMltpXSA8LSBzZCh4MikNCiAgZWUyW2ldIDwtIHNkKHgyKS9zcXJ0KG4yKQ0KICAgIH0NCmBgYCAgDQoNCg0KYGBge3IgZWNobz1GQUxTRSwgaW5jbHVkZT1GQUxTRX0NCmEgPC0gZGF0YS5mcmFtZSggY2JpbmQoInBhaXIiPSBjKDE6MTAwMDApLCBtZWFuMSxzZDEsbWVhbjIsc2QyDQogICAgICAgICAgICAgICAgICAgICAgICMsZWUyDQogICAgICAgICAgICAgICAgICAgICAgICkgKSAgICAgICAgIyAxMDAgbXVlc3RyYXMgZGUgYy9OIGNvbiBzdXMgSUMuOTUlIHBhcmEgbXUNCmEkdCA8LSAoIG1lYW4xLSBtZWFuMiApLyBzcXJ0KCgoc2QxXjIpL24xKSArICAoKHNkMl4yKS9uMikpICAjIFBydWViYSBkZSB0IHBhcmEgY2FkYSBwYXIgZGUgbXVlc3RyYXMNCmhlYWQoYSkNCmBgYCAgDQoNCmBgYHtyIGVjaG89RkFMU0UsIGluY2x1ZGU9RkFMU0V9DQpwbG90KGEkdCwgdHlwZT0ibiIsIHlsYWIgPSAidCB2YWx1ZXMiLCB5bGltPWMoIG1pbihhJHQpLG1heChhJHQpKSkNCnBvaW50cyhhJHQsIHBjaD0yMSwgY2V4PTAuNSwgY29sPSAicHVycGxlIikNCiNwb2ludHMoIGEkbWVhbjEsIGNvbD0icHVycGxlIikNCiNwb2ludHMoYSRtZWFuMiwgcGNoPTIwLCBjZXg9MC41KSANCmFibGluZShoPSBtZWFuKGEkdCksIGx3ZD0gMywgY29sPSJyZWQiLCBsdHk9ICJkYXNoZWQiKQ0KYWJsaW5lKGg9IGMoIHF0KHA9MC4wMjUsZGY9OTgpLCBxdChwPTAuOTc1LGRmPTk4KSApICwgbHdkPSAyLCBjb2w9ImJsYWNrIiwgbHR5PSAiZGFzaGVkIiApDQojYWJsaW5lKGg9IG1lYW4oYSRtZWFuMiksIGx3ZD0gMywgY29sPSJvcmFuZ2UiLCBsdHk9ICJkYXNoZWQiKQ0KYGBgIA0KIyMgUHJ1ZWJhIGRlIEhpcMOzdGVzaXMNCg0KWWEgaGVtb3MgdmlzdG8gcXVlIHNpIGNvbXBhcmFtb3MgcGFyZXMgZGUgbXVlc3RyYXMgcXVlIHNhbGVuIGRlIGxhIG1pc21hIHBvYmxhY2nDs24sIGxvIG3DoXMgcHJvYmFibGUgKGUuZy4sIFAgPiAwLjk1KSBlcyBlbmNvbnRyYXIgdmFsb3JlcyBkZSBUIGVudHJlIGxvcyBjdWFudGlsZXMgMi41JSB5IDk3LjUlIGRlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgVC4NCg0KYGBge3IgZWNobz1GQUxTRX0NCiMgRGlzdHJpYnVjacOzbiBkZSBsYXMgMTAwMDAgdC50ZXN0IA0KaGlzdChhJHQsICB4bGltPWMobWVhbihhJHQpLTQsICs0KSwNCiAgICAgcHJvYmFiaWxpdHkgPSBUUlVFLCBib3JkZXI9ICJ3aGl0ZSIsIGNvbCA9ICJ3aGl0ZSIsDQogICAgIG1haW4gPSAiVCBkaXN0cmlidXRpb24iLCB4bGFiID0gInQiLCB5bGFiID0gIlByb2JhYmlsaXR5IikNCmxpbmVzKGRlbnNpdHkoYSR0KSwgY29sPSJibGFjayIpDQojYWJsaW5lKHY9IG1lYW4oYSR0KSwgY29sPSAzLCBsd2Q9MikNCmFibGluZSh2PSAwLCBjb2w9IDIsIGx3ZD0yLCBsdHk9ICJkYXNoZWQiKSANCiNhYmxpbmUodj0gcXVhbnRpbGUoYSR0LCBwcm9iPWMoMC4wMjUsIDAuOTc1KSksIGNvbD0gMywgbHdkPTIsIGx0eT0gImRhc2hlZCIpIA0KYWJsaW5lKHY9IHF0KHA9YygwLjAyNSwgMC45NzUpLCBkZj0gMTk4KSwgY29sPSAzLCBsd2Q9MiwgbHR5PSAiZGFzaGVkIikNCmBgYCAgDQpBaG9yYSwgc2kgY29tcGFyYW1vcyBkb3MgZ3J1cG9zIChpLmUuLCAqbjEqPTEwMCB5ICpuMio9MTAwKS4gRWwgcHJpbWVyIGdydXBvLCBwcm92ZW5pZW50ZSBkZSAqTjEqLCB5IGVsIG90cm8sIHByb3ZlbmllbnRlIGRlIG90cmEgcG9ibGFjacOzbiAoKk4yKikgcXVlIHBvciBtYXJjbyB0ZcOzcmljbywgZXNwZXJhbW9zIHRlbmdhIHVuIHByb21lZGlvIG1heW9yIHF1ZSBlbCBkZSBsYSBOMSAoaS5lLiwgKipOfjF+IDwgTn4yfioqKS4gRW50b25jZXMgZXNwZXJhbW9zIHF1ZSAqKnQgPCAwKiouIA0KDQojIyMjIyBfX24xX18NCm4xPSAxMDAgIA0KcHJvbTEgPSAxMzguODIgIA0Kc2QxID0gMTQuNjkJICANCg0KIyMjIyMgX19uMl9fDQpuMiA9IDEwMCAgDQpwcm9tMiA9IGByIHJvdW5kKG1lYW4oeDMpLDIpYCAgDQpzZDIgPSBgciByb3VuZChzZCh4MyksMilgICANCg0KIVtdKEM6L1VzZXJzL2Z2aWxsL015IERyaXZlL0VzdF9CYXNfQXBsaWNhZGFfMjAyNS9maWd1cmVzL3QudGVzdF9mb3JtdWxhLnBuZykgIA0KYGBge3IgZWNobz1GQUxTRSwgcmVzdWx0cz1GQUxTRX0NCnNldC5zZWVkKDEyMzUpDQp4MyA8LSBybm9ybSggbj0gMTAwLCBtZWFuPSAxNDIuMiwgc2Q9IDEyLjQpICAgIyMgbXVlc3RyYSBuMg0KbWVhbih4Myk7IHNkKHgzKTsgc2QoeDMpL3NxcnQoODApDQpwcm9tMT0gMTM4LjgyMzYgOyBzZDEgPSAgMTQuNjk0NjcNCmBgYA0KDQpgYGB7ciBlY2hvPUZBTFNFLCByZXN1bHRzPUZBTFNFfQ0KIyMjIyMgbjMNCm4zID04MA0KcHJvbTIgPSBtZWFuKHgzKQ0Kc2QyID0gc2QoeDMpDQplZTIgPSBzZCh4Mykvc3FydCg4MCkNCiMjDQoNCmBgYCAgDQoNCmBgYHtyIGVjaG89VFJVRX0NCiMjIyMjIHQgdGVzdA0KdCA8LSAocHJvbTEtIHByb20yICkgLyBzcXJ0KCAoKHNkMV4yKS9uMSAgKSArICgoc2QyXjIpL24yICApICkNCnQNCmBgYCAgDQoNCkxvIHF1ZSBxdWVyZW1vcyBzYWJlciBlcyBxdcOpIHRhbnRhIGVzIGxhIGRpZmVyZW5jaWEgZW4gZXNhIGRpcmVjY2nDs24uIEVzIGRlY2lyLCBxdcOpIHRhbiBwZXF1ZcOxYSBlcyBlbCAqKlAudmFsdWUqKi4NCg0KIyMjIFNpIGxvZ3JhbW9zIHJlY2hhemFyICpIfm9+Ki4gRW50b25jZXMsIGN1w6FsIGVzIGxhIGFsdGVybmF0aXZhICgqSH5hfiopPw0KDQojIyMgSH5hfiA9IMW2fjF+IDwgxbZ+Mn4NCg0KTGEgcHJ1ZWJhIGRlIFQgcXVlIG5lY2VzaXRhbW9zIGVzIGNvbiBlbCB1bWJyYWwgZGVsICplcnJvciBUaXBvLTEqIGhhY2lhIGVsIGV4dHJlbW8gZGUgKipUIDwgMCoqIChQcnVlYmEgZGUgdW5hIGNvbGEpIHBhcmEgdmVyaWZpY2FyIGN1w6FsIGVzIGxhIHByb2JhYmlsaWRhZCBkZSBxdWUgZWwgKirOvH5OMX4qKiBzZWEgbWVub3IgcXVlIGVsIGRlICoqzrx+TjJ+KiogKGkuZS4sICrFtn4xfjzFtn4yfiopLg0KDQpgYGB7cn0NCnR3by50YWlscy50IDwtIHF0KHA9IGMoMC4wMjUsIDAuOTc1KSwgZGY9IDk5Kzk5ICkNCm9uZS50YWlsLnQgPC0gcXQocD0gMC4wNSwgZGY9IDk5Kzk5ICkNCg0KcGFyKG1mcm93PWMoMSwyKSkNCi54IDwtIHNlcSgtMy4zNCwgMy4zNCwgbGVuZ3RoLm91dD0xMDAwKSAgDQogIHBsb3REaXN0cigueCwgZHQoLngsIGRmPTE5OCksIGNkZj1GQUxTRSwgeGxhYj0idCIsIHlsYWI9IkRlbnNpdHkiLCANCiAgbWFpbj1wYXN0ZSgidCBEaXN0cmlidXRpb246ICBkZj0gMTk4IiksIA0KICByZWdpb25zPWxpc3QoYygtSW5mLHR3by50YWlscy50WzFdKSxjKHR3by50YWlscy50WzJdLCBJbmYpKSwgDQogIGNvbD1jKCcjQkVCRUJFJywgJyNCRUJFQkUnKSwgbGVnZW5kID0gRkFMU0UsDQogIGxlZ2VuZC5wb3M9J3RvcCcpDQoNCi54IDwtIHNlcSgtMy4zNCwgMy4zNCwgbGVuZ3RoLm91dD0xMDAwKSAgDQogIHBsb3REaXN0cigueCwgZHQoLngsIGRmPTE5OCksIGNkZj1GQUxTRSwgeGxhYj0idCIsIHlsYWI9IkRlbnNpdHkiLCANCiAgbWFpbj1wYXN0ZSgidCBEaXN0cmlidXRpb246ICBERj0gMTk4IiksIHJlZ2lvbnM9bGlzdChjKC1JbmYsIG9uZS50YWlsLnQpKSwgY29sPWMoJyNCRUJFQkUnLCAnI0JFQkVCRScpLA0KICBsZWdlbmQgPSBGQUxTRSwNCiAgbGVnZW5kLnBvcz0ndG9wJykNCiAgDQpgYGAgIA0KDQpgYGB7ciBlY2hvPUZBTFNFfQ0KIyBEaXN0cmlidWNpw7NuIGRlIGxhcyAxMDAwMCB0LnRlc3QgDQpoaXN0KGEkdCwgIHhsaW09YyhtZWFuKGEkdCktNCwgKzQpLA0KICAgICBwcm9iYWJpbGl0eSA9IFRSVUUsIGJvcmRlcj0gIndoaXRlIiwgY29sID0gIndoaXRlIiwNCiAgICAgbWFpbiA9ICJUIGRpc3RyaWJ1dGlvbiIsIHhsYWIgPSAidCIsIHlsYWIgPSAiUHJvYmFiaWxpdHkiKQ0KbGluZXMoZGVuc2l0eShhJHQpLCBjb2w9ImJsYWNrIikNCiNhYmxpbmUodj0gbWVhbihhJHQpLCBjb2w9IDMsIGx3ZD0yKQ0KI2FibGluZSh2PSAwLCBjb2w9IDIsIGx3ZD0yLCBsdHk9ICJkYXNoZWQiKSANCiNhYmxpbmUodj0gcXVhbnRpbGUoYSR0LCBwcm9iPWMoMC4wMjUsIDAuOTc1KSksIGNvbD0gMywgbHdkPTIsIGx0eT0gImRhc2hlZCIpIA0KZGVuIDwtIGRlbnNpdHkoYSR0KQ0KIw0KdmFsdWUxIDwtIG9uZS50YWlsLnQNCg0KI3ZhbHVlMiA8LSB0d28udGFpbHMudFsxXQ0KcG9seWdvbihjKGRlbiR4W2RlbiR4IDw9IHZhbHVlMSBdLCB2YWx1ZTEpLA0KICAgICAgICBjKGRlbiR5W2RlbiR4IDw9IHZhbHVlMSBdLCAwKSwNCiAgICAgICAgI2NvbCA9ICJzbGF0ZWJsdWUxIg0KICAgICAgICBjb2w9ICIjQkVCRUJFIiwgDQogICAgICAgIGFscGhhID0gMC4xLA0KICAgICAgICBib3JkZXIgPSAxKQ0KIw0KdmFsdWUyIDwtIHQNCnBvbHlnb24oYyhkZW4keFtkZW4keCA8PSB2YWx1ZTIgXSwgdmFsdWUyKSwNCiAgICAgICAgYyhkZW4keVtkZW4keCA8PSB2YWx1ZTIgXSwgMCksDQogICAgICAgICNjb2wgPSAic2xhdGVibHVlMSINCiAgICAgICAgY29sPSAiYnJvd240IiwgDQogICAgICAgIGFscGhhID0gMC4wMiwNCiAgICAgICAgYm9yZGVyID0gInJlZDQiKQ0KIw0KI3ZhbHVlMyA8LSB0d28udGFpbHMudFsyXQ0KcG9seWdvbihjKGRlbiR4W2RlbiR4ID49IHZhbHVlMSBdLCB2YWx1ZTEpLA0KICAgICAgICBjKGRlbiR5W2RlbiR4ID49IHZhbHVlMSBdLCAwKSwNCiAgICAgICAgY29sID0gIndoaXRlIiwNCiAgICAjICAgIGNvbD0gIiNCRUJFQkUiLA0KICAgICAgICBib3JkZXIgPSBUKQ0KIw0KYWJsaW5lKHY9IHQsIGNvbD0gInJlZCIsIGx3ZD0zLCBsdHk9ICJkYXNoZWQiKQ0KYWJsaW5lKHY9IHF0KHA9YygwLjA1KSwgZGY9IDk5Kzk5KSwgY29sPSAiZ3JlZW4iLCBsd2Q9MiwgbHR5PSAiZGFzaGVkIikgIA0KDQp0ZXh0KHg9IC0yLjYsIHk9IDAuMTUsDQogICAgIGxhYmVsPSAidD0gLTIuMiIsDQogICAgIHNydD0gMCkNCnRleHQoeD0gMCwgeT0gMC4xLA0KICAgICBsYWJlbD0gIlA9IDAuOTUiLCBjb2w9ImdyZWVuNCIsDQogICAgIHNydD0gMCkNCmBgYCAgDQoNCiMjIyMgRW4gdmVyZGUgdmVtb3MgZWwgdmFsb3IgZGUgX190ID1gciByb3VuZChxdChwPWMoMC4wNSksIGRmPTk5Kzk5KSwyKWBfXyBlcXVpdmFsZW50ZSBhIHVuYSBfX1A9MC4wNV9fLiBFdmlkZW50ZW1lbnRlLCBlbCB2YWxvciBkZSBfX3QgPWByIHJvdW5kKHQsMilgX18sIGVuIHJvam8sIG5vcyBtdWVzdHJhIHF1ZSBsYSBfX1B+zrwxPM68Mn49YHIgcm91bmQocHQocT10LCBkZj0gOTkrOTkpLDIpYF9fICgxJSkuIEVzIGRlY2lyLCBlc2UgZXMgZWwgZXJyb3IgYWwgZGVjaXIgcXVlIF8qKs68fjF+PM68fjJ+KipfLl0gICANCg==