Loading required package: car
Warning: package ‘car’ was built under R version 4.4.3Loading required package: carData
Attaching package: ‘car’
The following object is masked from ‘package:dplyr’:
recode
The following object is masked from ‘package:purrr’:
some
Loading required package: sandwich
Warning: package ‘sandwich’ was built under R version 4.4.3Registered S3 method overwritten by 'htmlwidgets':
method from
print.htmlwidget tools:rstudio
Registered S3 method overwritten by 'data.table':
method from
print.data.table
Ejemplo Visual del proceso de prueba de hipótesis
(Ho vrs. Ha), con la prueba de T
Prueba de Hipótesis
Ya hemos visto que si comparamos pares de muestras que salen de la
misma población, lo más probable (e.g., P > 0.95) es encontrar
valores de T entre los cuantiles 2.5% y 97.5% de la distribución de
T.

Ahora, si comparamos dos grupos (i.e., n1=100 y
n2=100). El primer grupo, proveniente de N1, y el
otro, proveniente de otra población (N2) que por marco teórico,
esperamos tenga un promedio mayor que el de la N1 (i.e.,
N1 < N2). Entonces esperamos
que t < 0.
n1
n1= 100
prom1 = 138.82
sd1 = 14.69
n2
n2 = 100
prom2 = 143.17
sd2 = 13.02

##### t test
t <- (prom1- prom2 ) / sqrt( ((sd1^2)/n1 ) + ((sd2^2)/n2 ) )
t
[1] -2.212543
Lo que queremos saber es qué tanta es la diferencia en esa dirección.
Es decir, qué tan pequeña es el P.value.
Si logramos rechazar Ho. Entonces, cuál es la
alternativa (Ha)?
Ha = Ŷ1 < Ŷ2
La prueba de T que necesitamos es con el umbral del error
Tipo-1 hacia el extremo de T < 0 (Prueba de una
cola) para verificar cuál es la probabilidad de que el
μN1 sea menor que el de
μN2 (i.e.,
Ŷ1<Ŷ2).


En verde vemos el valor de t =-1.65 equivalente a
una P=0.05. Evidentemente, el valor de t
=-2.21, en rojo, nos muestra que la
Pμ1<μ2=0.01 (1%). Es decir, ese es el
error al decir que
μ1<μ2.]
LS0tDQp0aXRsZTogIlQudGVzdF9IYSINCm91dHB1dDogDQogIGh0bWxfbm90ZWJvb2s6IA0KICAgIHRvYzogZmFsc2UNCiAgICB0b2NfZmxvYXQ6IHRydWUNCiAgICBjb2RlX2ZvbGRpbmc6IHNob3cNCiAgICBmaWdfaGVpZ2h0OiA2DQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQotLS0gIA0KDQpgYGB7ciBlY2hvPUZBTFNFfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KFJjbWRyTWlzYykNCmBgYA0KDQoqKkVqZW1wbG8gVmlzdWFsIGRlbCBwcm9jZXNvIGRlIHBydWViYSBkZSBoaXDDs3Rlc2lzICgqSG8qIHZycy4gKkhhKiksIGNvbiBsYSBwcnVlYmEgZGUgVCoqDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFLCBlY2hvPUZBTFNFfQ0KbGlicmFyeShmbGV4ZGFzaGJvYXJkKQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KA0KICBlY2hvID0gRkFMU0UsDQoJbWVzc2FnZSA9IEZBTFNFLA0KICB3YXJuaW5nID0gRkFMU0UsDQoJaW5jbHVkZSA9IFRSVUUNCikNCmBgYCANCg0KDQpgYGB7ciBlY2hvPUZBTFNFLCBzaG93PUZBTFNFfQ0KzrwxPSAxMzguNjsgz4MxPSAxMi42DQpgYGANCg0KIA0KYGBge3IgZWNobz1GQUxTRX0NCm4xPSAxMDANCm5zMT0gMTAwMDAgICAgICAgICAgICAgICAgICAjIFNpbXVsYW5kbyAxMCwwMDAgbXVlc3RyYXMNCm1lYW4xIDwtIG51bWVyaWMobnMxKSAgICAgIyBWZWN0b3IgZGUgbWVkaWFzIGRlIGNhZGEgbXVlc3RyYQ0Kc2QxIDwtIG51bWVyaWMobnMxKSAgICAgICAjIFZlY3RvciBwYXJhIGxhcyBkZSBkZSBjL211ZXN0cmENCiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMgIA0KbjI9IDEwMA0KbnMyPSAxMDAwMCAgICAgICAgICAgICAgICAgICAgICMgU2ltdWxhbmRvIDEwLDAwMCBtdWVzdHJhcw0KbWVhbjIgPC0gbnVtZXJpYyhuczIpICAgICAjIFZlY3RvciBkZSBtZWRpYXMgZGUgY2FkYSBtdWVzdHJhDQpzZDIgPC0gbnVtZXJpYyhuczIpICAgICAgICMgVmVjdG9yIHBhcmEgbGFzIGRlIGRlIGMvbXVlc3RyYQ0KZWUyIDwtIG51bWVyaWMobnMyKSAgICAgICAjIFZlY3RvciBwYXJhIGxvcyBlcnJvcmVzIHTDrXBpY29zDQojIyMgU2ltdWxhbmRvIGxvcyBtdWVzdHJlb3MgYWxlYXRvcmlvcyAjIyMjIyMjIyMjIyMNCg0KZm9yIChpIGluIDE6bnMxKSB7DQogIHgxIDwtIHJub3JtKG49bjEsIG1lYW49zrwxLCBzZD0gz4MxKSAgIyBtdWVzdHJhIGFsZWF0b3JpYSBkZSB0YW1hw7FvIChuKQ0KICBtZWFuMVtpXSA8LSBtZWFuKHgxKQ0KICBzZDFbaV0gPC0gc2QoeDEpDQogIH0gIA0KIyMjIyMjIyMjIyMjIyMjIyMjICANCnNldC5zZWVkKDE0MzYpDQpmb3IgKGkgaW4gMTpuczIpIHsNCiAgeDIgPC0gcm5vcm0obj1uMiwgbWVhbj3OvDEsIHNkPSDPgzEpICAjIG11ZXN0cmEgYWxlYXRvcmlhIGRlIHRhbWHDsW8gKG4pDQogIG1lYW4yW2ldIDwtIG1lYW4oeDIpDQogIHNkMltpXSA8LSBzZCh4MikNCiAgZWUyW2ldIDwtIHNkKHgyKS9zcXJ0KG4yKQ0KICAgIH0NCmBgYCAgDQoNCg0KYGBge3IgZWNobz1GQUxTRSwgaW5jbHVkZT1GQUxTRX0NCmEgPC0gZGF0YS5mcmFtZSggY2JpbmQoInBhaXIiPSBjKDE6MTAwMDApLCBtZWFuMSxzZDEsbWVhbjIsc2QyDQogICAgICAgICAgICAgICAgICAgICAgICMsZWUyDQogICAgICAgICAgICAgICAgICAgICAgICkgKSAgICAgICAgIyAxMDAgbXVlc3RyYXMgZGUgYy9OIGNvbiBzdXMgSUMuOTUlIHBhcmEgbXUNCmEkdCA8LSAoIG1lYW4xLSBtZWFuMiApLyBzcXJ0KCgoc2QxXjIpL24xKSArICAoKHNkMl4yKS9uMikpICAjIFBydWViYSBkZSB0IHBhcmEgY2FkYSBwYXIgZGUgbXVlc3RyYXMNCmhlYWQoYSkNCmBgYCAgDQoNCmBgYHtyIGVjaG89RkFMU0UsIGluY2x1ZGU9RkFMU0V9DQpwbG90KGEkdCwgdHlwZT0ibiIsIHlsYWIgPSAidCB2YWx1ZXMiLCB5bGltPWMoIG1pbihhJHQpLG1heChhJHQpKSkNCnBvaW50cyhhJHQsIHBjaD0yMSwgY2V4PTAuNSwgY29sPSAicHVycGxlIikNCiNwb2ludHMoIGEkbWVhbjEsIGNvbD0icHVycGxlIikNCiNwb2ludHMoYSRtZWFuMiwgcGNoPTIwLCBjZXg9MC41KSANCmFibGluZShoPSBtZWFuKGEkdCksIGx3ZD0gMywgY29sPSJyZWQiLCBsdHk9ICJkYXNoZWQiKQ0KYWJsaW5lKGg9IGMoIHF0KHA9MC4wMjUsZGY9OTgpLCBxdChwPTAuOTc1LGRmPTk4KSApICwgbHdkPSAyLCBjb2w9ImJsYWNrIiwgbHR5PSAiZGFzaGVkIiApDQojYWJsaW5lKGg9IG1lYW4oYSRtZWFuMiksIGx3ZD0gMywgY29sPSJvcmFuZ2UiLCBsdHk9ICJkYXNoZWQiKQ0KYGBgIA0KIyMgUHJ1ZWJhIGRlIEhpcMOzdGVzaXMNCg0KWWEgaGVtb3MgdmlzdG8gcXVlIHNpIGNvbXBhcmFtb3MgcGFyZXMgZGUgbXVlc3RyYXMgcXVlIHNhbGVuIGRlIGxhIG1pc21hIHBvYmxhY2nDs24sIGxvIG3DoXMgcHJvYmFibGUgKGUuZy4sIFAgPiAwLjk1KSBlcyBlbmNvbnRyYXIgdmFsb3JlcyBkZSBUIGVudHJlIGxvcyBjdWFudGlsZXMgMi41JSB5IDk3LjUlIGRlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgVC4NCg0KYGBge3IgZWNobz1GQUxTRX0NCiMgRGlzdHJpYnVjacOzbiBkZSBsYXMgMTAwMDAgdC50ZXN0IA0KaGlzdChhJHQsICB4bGltPWMobWVhbihhJHQpLTQsICs0KSwNCiAgICAgcHJvYmFiaWxpdHkgPSBUUlVFLCBib3JkZXI9ICJ3aGl0ZSIsIGNvbCA9ICJ3aGl0ZSIsDQogICAgIG1haW4gPSAiVCBkaXN0cmlidXRpb24iLCB4bGFiID0gInQiLCB5bGFiID0gIlByb2JhYmlsaXR5IikNCmxpbmVzKGRlbnNpdHkoYSR0KSwgY29sPSJibGFjayIpDQojYWJsaW5lKHY9IG1lYW4oYSR0KSwgY29sPSAzLCBsd2Q9MikNCmFibGluZSh2PSAwLCBjb2w9IDIsIGx3ZD0yLCBsdHk9ICJkYXNoZWQiKSANCiNhYmxpbmUodj0gcXVhbnRpbGUoYSR0LCBwcm9iPWMoMC4wMjUsIDAuOTc1KSksIGNvbD0gMywgbHdkPTIsIGx0eT0gImRhc2hlZCIpIA0KYWJsaW5lKHY9IHF0KHA9YygwLjAyNSwgMC45NzUpLCBkZj0gMTk4KSwgY29sPSAzLCBsd2Q9MiwgbHR5PSAiZGFzaGVkIikNCmBgYCAgDQpBaG9yYSwgc2kgY29tcGFyYW1vcyBkb3MgZ3J1cG9zIChpLmUuLCAqbjEqPTEwMCB5ICpuMio9MTAwKS4gRWwgcHJpbWVyIGdydXBvLCBwcm92ZW5pZW50ZSBkZSAqTjEqLCB5IGVsIG90cm8sIHByb3ZlbmllbnRlIGRlIG90cmEgcG9ibGFjacOzbiAoKk4yKikgcXVlIHBvciBtYXJjbyB0ZcOzcmljbywgZXNwZXJhbW9zIHRlbmdhIHVuIHByb21lZGlvIG1heW9yIHF1ZSBlbCBkZSBsYSBOMSAoaS5lLiwgKipOfjF+IDwgTn4yfioqKS4gRW50b25jZXMgZXNwZXJhbW9zIHF1ZSAqKnQgPCAwKiouIA0KDQojIyMjIyBfX24xX18NCm4xPSAxMDAgIA0KcHJvbTEgPSAxMzguODIgIA0Kc2QxID0gMTQuNjkJICANCg0KIyMjIyMgX19uMl9fDQpuMiA9IDEwMCAgDQpwcm9tMiA9IGByIHJvdW5kKG1lYW4oeDMpLDIpYCAgDQpzZDIgPSBgciByb3VuZChzZCh4MyksMilgICANCg0KIVtdKEM6L1VzZXJzL2Z2aWxsL015IERyaXZlL0VzdF9CYXNfQXBsaWNhZGFfMjAyNS9maWd1cmVzL3QudGVzdF9mb3JtdWxhLnBuZykgIA0KYGBge3IgZWNobz1GQUxTRSwgcmVzdWx0cz1GQUxTRX0NCnNldC5zZWVkKDEyMzUpDQp4MyA8LSBybm9ybSggbj0gMTAwLCBtZWFuPSAxNDIuMiwgc2Q9IDEyLjQpICAgIyMgbXVlc3RyYSBuMg0KbWVhbih4Myk7IHNkKHgzKTsgc2QoeDMpL3NxcnQoODApDQpwcm9tMT0gMTM4LjgyMzYgOyBzZDEgPSAgMTQuNjk0NjcNCmBgYA0KDQpgYGB7ciBlY2hvPUZBTFNFLCByZXN1bHRzPUZBTFNFfQ0KIyMjIyMgbjMNCm4zID04MA0KcHJvbTIgPSBtZWFuKHgzKQ0Kc2QyID0gc2QoeDMpDQplZTIgPSBzZCh4Mykvc3FydCg4MCkNCiMjDQoNCmBgYCAgDQoNCmBgYHtyIGVjaG89VFJVRX0NCiMjIyMjIHQgdGVzdA0KdCA8LSAocHJvbTEtIHByb20yICkgLyBzcXJ0KCAoKHNkMV4yKS9uMSAgKSArICgoc2QyXjIpL24yICApICkNCnQNCmBgYCAgDQoNCkxvIHF1ZSBxdWVyZW1vcyBzYWJlciBlcyBxdcOpIHRhbnRhIGVzIGxhIGRpZmVyZW5jaWEgZW4gZXNhIGRpcmVjY2nDs24uIEVzIGRlY2lyLCBxdcOpIHRhbiBwZXF1ZcOxYSBlcyBlbCAqKlAudmFsdWUqKi4NCg0KIyMjIFNpIGxvZ3JhbW9zIHJlY2hhemFyICpIfm9+Ki4gRW50b25jZXMsIGN1w6FsIGVzIGxhIGFsdGVybmF0aXZhICgqSH5hfiopPw0KDQojIyMgSH5hfiA9IMW2fjF+IDwgxbZ+Mn4NCg0KTGEgcHJ1ZWJhIGRlIFQgcXVlIG5lY2VzaXRhbW9zIGVzIGNvbiBlbCB1bWJyYWwgZGVsICplcnJvciBUaXBvLTEqIGhhY2lhIGVsIGV4dHJlbW8gZGUgKipUIDwgMCoqIChQcnVlYmEgZGUgdW5hIGNvbGEpIHBhcmEgdmVyaWZpY2FyIGN1w6FsIGVzIGxhIHByb2JhYmlsaWRhZCBkZSBxdWUgZWwgKirOvH5OMX4qKiBzZWEgbWVub3IgcXVlIGVsIGRlICoqzrx+TjJ+KiogKGkuZS4sICrFtn4xfjzFtn4yfiopLg0KDQpgYGB7cn0NCnR3by50YWlscy50IDwtIHF0KHA9IGMoMC4wMjUsIDAuOTc1KSwgZGY9IDk5Kzk5ICkNCm9uZS50YWlsLnQgPC0gcXQocD0gMC4wNSwgZGY9IDk5Kzk5ICkNCg0KcGFyKG1mcm93PWMoMSwyKSkNCi54IDwtIHNlcSgtMy4zNCwgMy4zNCwgbGVuZ3RoLm91dD0xMDAwKSAgDQogIHBsb3REaXN0cigueCwgZHQoLngsIGRmPTE5OCksIGNkZj1GQUxTRSwgeGxhYj0idCIsIHlsYWI9IkRlbnNpdHkiLCANCiAgbWFpbj1wYXN0ZSgidCBEaXN0cmlidXRpb246ICBkZj0gMTk4IiksIA0KICByZWdpb25zPWxpc3QoYygtSW5mLHR3by50YWlscy50WzFdKSxjKHR3by50YWlscy50WzJdLCBJbmYpKSwgDQogIGNvbD1jKCcjQkVCRUJFJywgJyNCRUJFQkUnKSwgbGVnZW5kID0gRkFMU0UsDQogIGxlZ2VuZC5wb3M9J3RvcCcpDQoNCi54IDwtIHNlcSgtMy4zNCwgMy4zNCwgbGVuZ3RoLm91dD0xMDAwKSAgDQogIHBsb3REaXN0cigueCwgZHQoLngsIGRmPTE5OCksIGNkZj1GQUxTRSwgeGxhYj0idCIsIHlsYWI9IkRlbnNpdHkiLCANCiAgbWFpbj1wYXN0ZSgidCBEaXN0cmlidXRpb246ICBERj0gMTk4IiksIHJlZ2lvbnM9bGlzdChjKC1JbmYsIG9uZS50YWlsLnQpKSwgY29sPWMoJyNCRUJFQkUnLCAnI0JFQkVCRScpLA0KICBsZWdlbmQgPSBGQUxTRSwNCiAgbGVnZW5kLnBvcz0ndG9wJykNCiAgDQpgYGAgIA0KDQpgYGB7ciBlY2hvPUZBTFNFfQ0KIyBEaXN0cmlidWNpw7NuIGRlIGxhcyAxMDAwMCB0LnRlc3QgDQpoaXN0KGEkdCwgIHhsaW09YyhtZWFuKGEkdCktNCwgKzQpLA0KICAgICBwcm9iYWJpbGl0eSA9IFRSVUUsIGJvcmRlcj0gIndoaXRlIiwgY29sID0gIndoaXRlIiwNCiAgICAgbWFpbiA9ICJUIGRpc3RyaWJ1dGlvbiIsIHhsYWIgPSAidCIsIHlsYWIgPSAiUHJvYmFiaWxpdHkiKQ0KbGluZXMoZGVuc2l0eShhJHQpLCBjb2w9ImJsYWNrIikNCiNhYmxpbmUodj0gbWVhbihhJHQpLCBjb2w9IDMsIGx3ZD0yKQ0KI2FibGluZSh2PSAwLCBjb2w9IDIsIGx3ZD0yLCBsdHk9ICJkYXNoZWQiKSANCiNhYmxpbmUodj0gcXVhbnRpbGUoYSR0LCBwcm9iPWMoMC4wMjUsIDAuOTc1KSksIGNvbD0gMywgbHdkPTIsIGx0eT0gImRhc2hlZCIpIA0KZGVuIDwtIGRlbnNpdHkoYSR0KQ0KIw0KdmFsdWUxIDwtIG9uZS50YWlsLnQNCg0KI3ZhbHVlMiA8LSB0d28udGFpbHMudFsxXQ0KcG9seWdvbihjKGRlbiR4W2RlbiR4IDw9IHZhbHVlMSBdLCB2YWx1ZTEpLA0KICAgICAgICBjKGRlbiR5W2RlbiR4IDw9IHZhbHVlMSBdLCAwKSwNCiAgICAgICAgI2NvbCA9ICJzbGF0ZWJsdWUxIg0KICAgICAgICBjb2w9ICIjQkVCRUJFIiwgDQogICAgICAgIGFscGhhID0gMC4xLA0KICAgICAgICBib3JkZXIgPSAxKQ0KIw0KdmFsdWUyIDwtIHQNCnBvbHlnb24oYyhkZW4keFtkZW4keCA8PSB2YWx1ZTIgXSwgdmFsdWUyKSwNCiAgICAgICAgYyhkZW4keVtkZW4keCA8PSB2YWx1ZTIgXSwgMCksDQogICAgICAgICNjb2wgPSAic2xhdGVibHVlMSINCiAgICAgICAgY29sPSAiYnJvd240IiwgDQogICAgICAgIGFscGhhID0gMC4wMiwNCiAgICAgICAgYm9yZGVyID0gInJlZDQiKQ0KIw0KI3ZhbHVlMyA8LSB0d28udGFpbHMudFsyXQ0KcG9seWdvbihjKGRlbiR4W2RlbiR4ID49IHZhbHVlMSBdLCB2YWx1ZTEpLA0KICAgICAgICBjKGRlbiR5W2RlbiR4ID49IHZhbHVlMSBdLCAwKSwNCiAgICAgICAgY29sID0gIndoaXRlIiwNCiAgICAjICAgIGNvbD0gIiNCRUJFQkUiLA0KICAgICAgICBib3JkZXIgPSBUKQ0KIw0KYWJsaW5lKHY9IHQsIGNvbD0gInJlZCIsIGx3ZD0zLCBsdHk9ICJkYXNoZWQiKQ0KYWJsaW5lKHY9IHF0KHA9YygwLjA1KSwgZGY9IDk5Kzk5KSwgY29sPSAiZ3JlZW4iLCBsd2Q9MiwgbHR5PSAiZGFzaGVkIikgIA0KDQp0ZXh0KHg9IC0yLjYsIHk9IDAuMTUsDQogICAgIGxhYmVsPSAidD0gLTIuMiIsDQogICAgIHNydD0gMCkNCnRleHQoeD0gMCwgeT0gMC4xLA0KICAgICBsYWJlbD0gIlA9IDAuOTUiLCBjb2w9ImdyZWVuNCIsDQogICAgIHNydD0gMCkNCmBgYCAgDQoNCiMjIyMgRW4gdmVyZGUgdmVtb3MgZWwgdmFsb3IgZGUgX190ID1gciByb3VuZChxdChwPWMoMC4wNSksIGRmPTk5Kzk5KSwyKWBfXyBlcXVpdmFsZW50ZSBhIHVuYSBfX1A9MC4wNV9fLiBFdmlkZW50ZW1lbnRlLCBlbCB2YWxvciBkZSBfX3QgPWByIHJvdW5kKHQsMilgX18sIGVuIHJvam8sIG5vcyBtdWVzdHJhIHF1ZSBsYSBfX1B+zrwxPM68Mn49YHIgcm91bmQocHQocT10LCBkZj0gOTkrOTkpLDIpYF9fICgxJSkuIEVzIGRlY2lyLCBlc2UgZXMgZWwgZXJyb3IgYWwgZGVjaXIgcXVlIF8qKs68fjF+PM68fjJ+KipfLl0gICANCg==