Π£ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΏΠ°ΠΊΠ΅Ρ CARET, Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΊΠΎΠΌΠ°Π½Π΄Ρ names(getModelInfo()), ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡΡΡΡ ΡΠΎ ΡΠΏΠΈΡΠΊΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π²ΡΠ±ΠΎΡΠ° ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ². ΠΡΠΏΠΎΠ»Π½ΠΈΡΠ΅ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ°Π·Π²Π΅Π΄ΠΎΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Π΄Π°Π½Π½ΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ featurePlot() Π΄Π»Ρ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ ΠΈΠ· ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΠΉΠ»Π° ΠΏΠ°ΠΊΠ΅ΡΠ° CARET:
x <- matrix(rnorm(50*5),ncol=5)
y <- factor(rep(c(βAβ, βBβ), 25))
Π‘ΠΎΡ ΡΠ°Π½ΠΈΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ Π² *.jpg ΡΠ°ΠΉΠ»Ρ. Π‘Π΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄Ρ.
library(caret)
## Warning: ΠΏΠ°ΠΊΠ΅Ρ 'caret' Π±ΡΠ» ΡΠΎΠ±ΡΠ°Π½ ΠΏΠΎΠ΄ R Π²Π΅ΡΡΠΈΠΈ 4.4.3
## ΠΠ°Π³ΡΡΠ·ΠΊΠ° ΡΡΠ΅Π±ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠ°ΠΊΠ΅ΡΠ°: ggplot2
## ΠΠ°Π³ΡΡΠ·ΠΊΠ° ΡΡΠ΅Π±ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠ°ΠΊΠ΅ΡΠ°: lattice
names(getModelInfo())
## [1] "ada" "AdaBag" "AdaBoost.M1"
## [4] "adaboost" "amdai" "ANFIS"
## [7] "avNNet" "awnb" "awtan"
## [10] "bag" "bagEarth" "bagEarthGCV"
## [13] "bagFDA" "bagFDAGCV" "bam"
## [16] "bartMachine" "bayesglm" "binda"
## [19] "blackboost" "blasso" "blassoAveraged"
## [22] "bridge" "brnn" "BstLm"
## [25] "bstSm" "bstTree" "C5.0"
## [28] "C5.0Cost" "C5.0Rules" "C5.0Tree"
## [31] "cforest" "chaid" "CSimca"
## [34] "ctree" "ctree2" "cubist"
## [37] "dda" "deepboost" "DENFIS"
## [40] "dnn" "dwdLinear" "dwdPoly"
## [43] "dwdRadial" "earth" "elm"
## [46] "enet" "evtree" "extraTrees"
## [49] "fda" "FH.GBML" "FIR.DM"
## [52] "foba" "FRBCS.CHI" "FRBCS.W"
## [55] "FS.HGD" "gam" "gamboost"
## [58] "gamLoess" "gamSpline" "gaussprLinear"
## [61] "gaussprPoly" "gaussprRadial" "gbm_h2o"
## [64] "gbm" "gcvEarth" "GFS.FR.MOGUL"
## [67] "GFS.LT.RS" "GFS.THRIFT" "glm.nb"
## [70] "glm" "glmboost" "glmnet_h2o"
## [73] "glmnet" "glmStepAIC" "gpls"
## [76] "hda" "hdda" "hdrda"
## [79] "HYFIS" "icr" "J48"
## [82] "JRip" "kernelpls" "kknn"
## [85] "knn" "krlsPoly" "krlsRadial"
## [88] "lars" "lars2" "lasso"
## [91] "lda" "lda2" "leapBackward"
## [94] "leapForward" "leapSeq" "Linda"
## [97] "lm" "lmStepAIC" "LMT"
## [100] "loclda" "logicBag" "LogitBoost"
## [103] "logreg" "lssvmLinear" "lssvmPoly"
## [106] "lssvmRadial" "lvq" "M5"
## [109] "M5Rules" "manb" "mda"
## [112] "Mlda" "mlp" "mlpKerasDecay"
## [115] "mlpKerasDecayCost" "mlpKerasDropout" "mlpKerasDropoutCost"
## [118] "mlpML" "mlpSGD" "mlpWeightDecay"
## [121] "mlpWeightDecayML" "monmlp" "msaenet"
## [124] "multinom" "mxnet" "mxnetAdam"
## [127] "naive_bayes" "nb" "nbDiscrete"
## [130] "nbSearch" "neuralnet" "nnet"
## [133] "nnls" "nodeHarvest" "null"
## [136] "OneR" "ordinalNet" "ordinalRF"
## [139] "ORFlog" "ORFpls" "ORFridge"
## [142] "ORFsvm" "ownn" "pam"
## [145] "parRF" "PART" "partDSA"
## [148] "pcaNNet" "pcr" "pda"
## [151] "pda2" "penalized" "PenalizedLDA"
## [154] "plr" "pls" "plsRglm"
## [157] "polr" "ppr" "pre"
## [160] "PRIM" "protoclass" "qda"
## [163] "QdaCov" "qrf" "qrnn"
## [166] "randomGLM" "ranger" "rbf"
## [169] "rbfDDA" "Rborist" "rda"
## [172] "regLogistic" "relaxo" "rf"
## [175] "rFerns" "RFlda" "rfRules"
## [178] "ridge" "rlda" "rlm"
## [181] "rmda" "rocc" "rotationForest"
## [184] "rotationForestCp" "rpart" "rpart1SE"
## [187] "rpart2" "rpartCost" "rpartScore"
## [190] "rqlasso" "rqnc" "RRF"
## [193] "RRFglobal" "rrlda" "RSimca"
## [196] "rvmLinear" "rvmPoly" "rvmRadial"
## [199] "SBC" "sda" "sdwd"
## [202] "simpls" "SLAVE" "slda"
## [205] "smda" "snn" "sparseLDA"
## [208] "spikeslab" "spls" "stepLDA"
## [211] "stepQDA" "superpc" "svmBoundrangeString"
## [214] "svmExpoString" "svmLinear" "svmLinear2"
## [217] "svmLinear3" "svmLinearWeights" "svmLinearWeights2"
## [220] "svmPoly" "svmRadial" "svmRadialCost"
## [223] "svmRadialSigma" "svmRadialWeights" "svmSpectrumString"
## [226] "tan" "tanSearch" "treebag"
## [229] "vbmpRadial" "vglmAdjCat" "vglmContRatio"
## [232] "vglmCumulative" "widekernelpls" "WM"
## [235] "wsrf" "xgbDART" "xgbLinear"
## [238] "xgbTree" "xyf"
ΠΠ°Π΄Π°Π΅ΠΌ Π½Π°Π±ΠΎΡΡ Π΄Π°Π½Π½ΡΡ ΠΈ ΡΠΎΠ·Π΄Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊΠΈ Π½Π° ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π΅.
x <- matrix(rnorm(50*5), ncol=5)
y <- factor(rep(c("A", "B"), 25))
featurePlot(x = x, y = y, plot = "pairs")
featurePlot(x = x, y = y, plot = "density", layout = c(1, 5))
featurePlot(x = x, y = y, plot = "box", layout = c(5, 1))
jpeg("featurePlot_pairs.jpg")
featurePlot(x = x, y = y, plot = "pairs")
dev.off()
## png
## 2
jpeg("featurePlot_density.jpg")
featurePlot(x = x, y = y, plot = "density")
dev.off()
## png
## 2
jpeg("featurePlot_box.jpg")
featurePlot(x = x, y = y, plot = "box")
dev.off()
## png
## 2
ΠΡΠ²ΠΎΠ΄: ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π΄Π°Π½Π½ΡΡ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Π΄Π°Π½Π½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΉΠ½Ρ ΠΈ Π±ΠΎΠ»ΡΡΠ°Ρ ΡΠ°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² Π΄ΠΈΠ°ΠΏΠΎΠ·ΠΎΠ½Π΅ ΠΎΡ -1 Π΄ΠΎ 1. ΠΠ΅Π΄ΠΈΠ°Π½Π½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠ»Π°ΡΡΠ° Π Π·Π°ΡΠ°ΡΡΡΡ Π²ΡΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΊΠ»Π°ΡΡΠ° B Π² ΡΠ°ΠΌΠΊΠ°Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Feature.
Π‘ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈΠ· ΠΏΠ°ΠΊΠ΅ΡΠ° Fselector ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π°ΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π½Π°Π±ΠΎΡ data(iris). Π‘Π΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄Ρ.
library(FSelector)
## Warning: ΠΏΠ°ΠΊΠ΅Ρ 'FSelector' Π±ΡΠ» ΡΠΎΠ±ΡΠ°Π½ ΠΏΠΎΠ΄ R Π²Π΅ΡΡΠΈΠΈ 4.4.3
data(iris)
weights <- information.gain(Species ~ ., data = iris)
print(weights)
## attr_importance
## Sepal.Length 0.4521286
## Sepal.Width 0.2672750
## Petal.Length 0.9402853
## Petal.Width 0.9554360
ΠΡΠ²ΠΎΠ΄: ΠΈΠ· Π΄Π°Π½Π½ΡΡ Π²Π°ΠΆΠ½ΠΎΡΡΠΈ Π°ΡΡΡΠΈΠ±ΡΡΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ Π²Π°ΠΆΠ½ΠΎΡΡΡΡ ΠΎΠ±Π»Π°Π΄ΡΡ Π°ΡΡΠΈΠ±ΡΡΡ ΡΠΈΡΠΈΠ½Ρ ΠΈ Π΄Π»ΠΈΠ½Ρ Petal, Π² ΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠ°ΠΊΠ° Sepal ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ Π½ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΉ Π²Π°ΠΆΠ½ΠΎΡΡΡΡ Π΄Π»Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΡΠΈΡΠΈΠ½Π°.
Π‘ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ discretize() ΠΈΠ· ΠΏΠ°ΠΊΠ΅ΡΠ° arules Π²ΡΠΏΠΎΠ»Π½ΠΈΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ: Β«intervalΒ» (ΡΠ°Π²Π½Π°Ρ ΡΠΈΡΠΈΠ½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π°), Β«frequencyΒ» (ΡΠ°Π²Π½Π°Ρ ΡΠ°ΡΡΠΎΡΠ°), Β«clusterΒ» (ΠΊΠ»Π°ΡΡΠ΅ΡΠΈΠ·Π°ΡΠΈΡ) ΠΈ Β«fixedΒ» (ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ Π·Π°Π΄Π°ΡΡ Π³ΡΠ°Π½ΠΈΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ²). ΠΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ iris. Π‘Π΄Π΅Π»Π°ΠΉΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ
library(arules)
## Warning: ΠΏΠ°ΠΊΠ΅Ρ 'arules' Π±ΡΠ» ΡΠΎΠ±ΡΠ°Π½ ΠΏΠΎΠ΄ R Π²Π΅ΡΡΠΈΠΈ 4.4.3
## ΠΠ°Π³ΡΡΠ·ΠΊΠ° ΡΡΠ΅Π±ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠ°ΠΊΠ΅ΡΠ°: Matrix
##
## ΠΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΡΡ ΠΏΠ°ΠΊΠ΅Ρ: 'arules'
## Π‘Π»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ ΡΠΊΡΡΡΡ ΠΎΡ 'package:base':
##
## abbreviate, write
iris$Sepal.Length_interval <- discretize(iris$Sepal.Length, method = "interval", breaks = 3)
iris$Sepal.Length_frequency <- discretize(iris$Sepal.Length, method = "frequency", breaks = 3)
iris$Sepal.Length_cluster <- discretize(iris$Sepal.Length, method = "cluster", breaks = 3)
iris$Sepal.Length_fixed <- discretize(iris$Sepal.Length, method = "fixed", breaks = c(-Inf, 5.5, 6.5, Inf))
plot_interval <- ggplot(iris, aes(x = Sepal.Length_interval)) +
geom_bar(fill = "salmon", color = "black") +
labs(title = "ΠΠ΅ΡΠΎΠ΄: Π Π°Π²Π½Π°Ρ ΡΠΈΡΠΈΠ½Π° (interval)")
plot_interval
plot_frequency <- ggplot(iris, aes(x = Sepal.Length_frequency)) +
geom_bar(fill = "lightgreen", color = "black") +
labs(title = "ΠΠ΅ΡΠΎΠ΄: Π Π°Π²Π½Π°Ρ ΡΠ°ΡΡΠΎΡΠ° (frequency)")
plot_frequency
plot_cluster <- ggplot(iris, aes(x = Sepal.Length_cluster)) +
geom_bar(fill = "gold", color = "black") +
labs(title = "ΠΠ΅ΡΠΎΠ΄: ΠΠ»Π°ΡΡΠ΅ΡΠΈΠ·Π°ΡΠΈΡ (cluster)")
plot_cluster
plot_fixed <- ggplot(iris, aes(x = Sepal.Length_fixed)) +
geom_bar(fill = "violet", color = "black") +
labs(title = "ΠΠ΅ΡΠΎΠ΄: Π€ΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Π³ΡΠ°Π½ΠΈΡΡ (fixed)")
plot_fixed
ΠΡΠ²ΠΎΠ΄: Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΌΠΎΠΆΠ½Π½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ:
interval Π΄Π΅Π»ΠΈΡ Π΄Π°Π½Π½ΡΠ΅ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ ΡΠ°Π²Π½ΠΎΠΉ ΡΠΈΡΠΈΠ½Ρ;
frequency Π΄Π΅Π»ΠΈΡ Π΄Π°Π½Π½ΡΠ΅ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ Ρ ΡΠ°Π²Π½ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ Π·Π°ΠΏΠΈΡΠ΅ΠΉ;
cluster Π΄Π΅Π»ΠΈΡ Π΄Π°Π½Π½ΡΠ΅ Π·Π° ΡΡΠ΅Ρ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΊΠ»Π°ΡΡΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ (Π³ΡΡΠΏΠΏΠΈΡΡΠ΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎ ΡΡ ΠΎΠΆΠ΅ΡΡΠΈ);
fixed Π΄Π΅Π»ΠΈΡ Π΄Π°Π½Π½ΡΠ΅ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ, Π·Π°Π΄Π°Π½Π½ΡΠ΅ Π²ΡΡΡΠ½ΡΡ.
ΠΠ°ΠΆΠ΄ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π΄ΠΈΡΠΊΡΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ΅ΡΡΠΎ Π±ΡΡΡ Π΄Π»Ρ ΡΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ.
Π£ΡΡΠ°Π½ΠΎΠ²ΠΈΡΠ΅ ΠΏΠ°ΠΊΠ΅Ρ Boruta ΠΈ ΠΏΡΠΎΠ²Π΅Π΄ΠΈΡΠ΅ Π²ΡΠ±ΠΎΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π΄Π»Ρ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ data(βOzoneβ) [4, 5, 6]. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ boxplot, ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄Ρ. ΠΡΠΎΠ²Π΅ΡΠΈΠΌ, ΠΊΠ°ΠΊΠΈΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ ΡΠ²Π»ΡΡΡΡΡ Π²Π°ΠΆΠ½ΡΠΌΠΈ Π΄Π»Ρ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² 4, 5 ΠΈ 6.
library(Boruta)
## Warning: ΠΏΠ°ΠΊΠ΅Ρ 'Boruta' Π±ΡΠ» ΡΠΎΠ±ΡΠ°Π½ ΠΏΠΎΠ΄ R Π²Π΅ΡΡΠΈΠΈ 4.4.3
library(mlbench)
## Warning: ΠΏΠ°ΠΊΠ΅Ρ 'mlbench' Π±ΡΠ» ΡΠΎΠ±ΡΠ°Π½ ΠΏΠΎΠ΄ R Π²Π΅ΡΡΠΈΠΈ 4.4.3
data("Ozone", package = "mlbench")
ozone_clean <- na.omit(Ozone)
str(ozone_clean)
## 'data.frame': 203 obs. of 13 variables:
## $ V1 : Factor w/ 12 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ V2 : Factor w/ 31 levels "1","2","3","4",..: 5 6 7 8 9 12 13 14 15 16 ...
## $ V3 : Factor w/ 7 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
## $ V4 : num 5 6 4 4 6 6 5 4 4 7 ...
## $ V5 : num 5760 5720 5790 5790 5700 5720 5760 5780 5830 5870 ...
## $ V6 : num 3 4 6 3 3 3 6 6 3 2 ...
## $ V7 : num 51 69 19 25 73 44 33 19 19 19 ...
## $ V8 : num 54 35 45 55 41 51 51 54 58 61 ...
## $ V9 : num 45.3 49.6 46.4 52.7 48 ...
## $ V10: num 1450 1568 2631 554 2083 ...
## $ V11: num 25 15 -33 -28 23 9 -44 -44 -53 -67 ...
## $ V12: num 57 53.8 54.1 64.8 52.5 ...
## $ V13: num 60 60 100 250 120 150 40 200 250 200 ...
## - attr(*, "na.action")= 'omit' Named int [1:163] 1 2 3 4 10 11 17 18 20 24 ...
## ..- attr(*, "names")= chr [1:163] "1" "2" "3" "4" ...
ozone_clean <- droplevels(ozone_clean)
set.seed(123)
boruta_output <- Boruta(V4 ~ ., data = ozone_clean, doTrace = 2, maxRuns = 100)
## 1. run of importance source...
## 2. run of importance source...
## 3. run of importance source...
## 4. run of importance source...
## 5. run of importance source...
## 6. run of importance source...
## 7. run of importance source...
## 8. run of importance source...
## 9. run of importance source...
## 10. run of importance source...
## 11. run of importance source...
## After 11 iterations, +0.95 secs:
## confirmed 9 attributes: V1, V10, V11, V12, V13 and 4 more;
## rejected 2 attributes: V3, V6;
## still have 1 attribute left.
## 12. run of importance source...
## 13. run of importance source...
## 14. run of importance source...
## 15. run of importance source...
## 16. run of importance source...
## 17. run of importance source...
## 18. run of importance source...
## 19. run of importance source...
## 20. run of importance source...
## 21. run of importance source...
## 22. run of importance source...
## 23. run of importance source...
## 24. run of importance source...
## After 24 iterations, +1.9 secs:
## rejected 1 attribute: V2;
## no more attributes left.
print(boruta_output)
## Boruta performed 24 iterations in 1.942889 secs.
## 9 attributes confirmed important: V1, V10, V11, V12, V13 and 4 more;
## 3 attributes confirmed unimportant: V2, V3, V6;
plot(boruta_output)
jpeg("attribute_importance.jpg", width = 1200, height = 800)
plot(boruta_output)
dev.off()
## png
## 2
boruta_output <- Boruta(V5 ~ ., data = ozone_clean, doTrace = 2, maxRuns = 100)
## 1. run of importance source...
## 2. run of importance source...
## 3. run of importance source...
## 4. run of importance source...
## 5. run of importance source...
## 6. run of importance source...
## 7. run of importance source...
## 8. run of importance source...
## 9. run of importance source...
## 10. run of importance source...
## 11. run of importance source...
## After 11 iterations, +0.89 secs:
## confirmed 11 attributes: V1, V10, V11, V12, V13 and 6 more;
## still have 1 attribute left.
## 12. run of importance source...
## 13. run of importance source...
## 14. run of importance source...
## 15. run of importance source...
## After 15 iterations, +1.2 secs:
## rejected 1 attribute: V3;
## no more attributes left.
print(boruta_output)
## Boruta performed 15 iterations in 1.205071 secs.
## 11 attributes confirmed important: V1, V10, V11, V12, V13 and 6 more;
## 1 attributes confirmed unimportant: V3;
plot(boruta_output)
jpeg("attribute_importance.jpg", width = 1200, height = 800)
plot(boruta_output)
dev.off()
## png
## 2
boruta_output <- Boruta(V6 ~ ., data = ozone_clean, doTrace = 2, maxRuns = 100)
## 1. run of importance source...
## 2. run of importance source...
## 3. run of importance source...
## 4. run of importance source...
## 5. run of importance source...
## 6. run of importance source...
## 7. run of importance source...
## 8. run of importance source...
## 9. run of importance source...
## 10. run of importance source...
## 11. run of importance source...
## After 11 iterations, +0.9 secs:
## confirmed 5 attributes: V1, V11, V5, V7, V9;
## rejected 2 attributes: V2, V3;
## still have 5 attributes left.
## 12. run of importance source...
## 13. run of importance source...
## 14. run of importance source...
## 15. run of importance source...
## After 15 iterations, +1.2 secs:
## confirmed 3 attributes: V10, V12, V4;
## still have 2 attributes left.
## 16. run of importance source...
## 17. run of importance source...
## 18. run of importance source...
## 19. run of importance source...
## 20. run of importance source...
## 21. run of importance source...
## 22. run of importance source...
## 23. run of importance source...
## 24. run of importance source...
## After 24 iterations, +1.9 secs:
## rejected 1 attribute: V13;
## still have 1 attribute left.
## 25. run of importance source...
## 26. run of importance source...
## 27. run of importance source...
## 28. run of importance source...
## 29. run of importance source...
## 30. run of importance source...
## 31. run of importance source...
## 32. run of importance source...
## 33. run of importance source...
## 34. run of importance source...
## 35. run of importance source...
## 36. run of importance source...
## 37. run of importance source...
## 38. run of importance source...
## 39. run of importance source...
## 40. run of importance source...
## 41. run of importance source...
## 42. run of importance source...
## 43. run of importance source...
## 44. run of importance source...
## 45. run of importance source...
## 46. run of importance source...
## 47. run of importance source...
## 48. run of importance source...
## 49. run of importance source...
## 50. run of importance source...
## 51. run of importance source...
## 52. run of importance source...
## 53. run of importance source...
## 54. run of importance source...
## 55. run of importance source...
## 56. run of importance source...
## 57. run of importance source...
## 58. run of importance source...
## 59. run of importance source...
## 60. run of importance source...
## 61. run of importance source...
## 62. run of importance source...
## 63. run of importance source...
## 64. run of importance source...
## 65. run of importance source...
## 66. run of importance source...
## 67. run of importance source...
## 68. run of importance source...
## 69. run of importance source...
## 70. run of importance source...
## 71. run of importance source...
## 72. run of importance source...
## 73. run of importance source...
## 74. run of importance source...
## 75. run of importance source...
## 76. run of importance source...
## 77. run of importance source...
## 78. run of importance source...
## 79. run of importance source...
## 80. run of importance source...
## 81. run of importance source...
## 82. run of importance source...
## 83. run of importance source...
## 84. run of importance source...
## 85. run of importance source...
## 86. run of importance source...
## 87. run of importance source...
## 88. run of importance source...
## 89. run of importance source...
## 90. run of importance source...
## 91. run of importance source...
## After 91 iterations, +7 secs:
## confirmed 1 attribute: V8;
## no more attributes left.
print(boruta_output)
## Boruta performed 91 iterations in 6.962747 secs.
## 9 attributes confirmed important: V1, V10, V11, V12, V4 and 4 more;
## 3 attributes confirmed unimportant: V13, V2, V3;
plot(boruta_output)
jpeg("attribute_importance.jpg", width = 1200, height = 800)
plot(boruta_output)
dev.off()
## png
## 2
ΠΡΠ²ΠΎΠ΄: Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ:
Π΄Π»Ρ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ° 4 Π²Π°ΠΆΠ½ΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ 1,5,7,8,9,10,11,12,13 (Π²ΡΠ΅, ΠΊΡΠΎΠΌΠ΅ 2,3,4 ΠΈ 6);
Π΄Π»Ρ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ° 5 Π²Π°ΠΆΠ½ΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ 1,2,4,6,7,8,9,10,11,12,13 (Π²ΡΠ΅, ΠΊΡΠΎΠΌΠ΅ 3 ΠΈ 5);
Π΄Π»Ρ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ° 6 Π²Π°ΠΆΠ½ΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ 1,4,5,7,8,9,10,11,12 (Π²ΡΠ΅, ΠΊΡΠΎΠΌΠ΅ 2,3,13 ΠΈ 6).