Configuração do
Ambiente
Experimento 1:
Simulação de Dados
Geração dos dados
simulados
set.seed(123)
FERTILIZANTE <- seq(10, 100, by=5)
TRATOR <- seq(5, 50, by=2.5)
MO <- seq(20, 200, by=10)
QSOJA <- 5 * FERTILIZANTE + 3 * TRATOR + 2 * MO - 0.05 * FERTILIZANTE^2 - 0.02 * TRATOR^2 - 0.01 * MO^2 + rnorm(length(FERTILIZANTE), 0, 10)
dados_simulados <- data.frame(FERTILIZANTE, TRATOR, MO, QSOJA)
Visualização da
Função de Produção
ggplot(dados_simulados, aes(x = FERTILIZANTE, y = QSOJA)) +
geom_point() + geom_smooth(method = "loess") +
labs(title = "Produção de Soja vs Fertilizante")

ggplot(dados_simulados, aes(x = TRATOR, y = QSOJA)) +
geom_point() + geom_smooth(method = "loess") +
labs(title = "Produção de Soja vs Trator")

ggplot(dados_simulados, aes(x = MO, y = QSOJA)) +
geom_point() + geom_smooth(method = "loess") +
labs(title = "Produção de Soja vs Mão de Obra")

Experimento 2: Dados
Reais
Carregamento dos
Dados
dados <- readxl::read_excel("soja_apostila.xlsx", sheet = "dados")
Modelo de
Regressão
modelo <- lm(QSOJA ~ FERTILIZANTE + TRATOR + MO, data = dados)
summary(modelo)
##
## Call:
## lm(formula = QSOJA ~ FERTILIZANTE + TRATOR + MO, data = dados)
##
## Residuals:
## Min 1Q Median 3Q Max
## -66.714 -33.171 1.768 24.894 149.637
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 494.9657 25.5723 19.356 < 2e-16 ***
## FERTILIZANTE -0.5535 1.0589 -0.523 0.6022
## TRATOR -33.6899 3.7410 -9.006 6.09e-15 ***
## MO -209.1407 107.8926 -1.938 0.0551 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 41.51 on 113 degrees of freedom
## Multiple R-squared: 0.4651, Adjusted R-squared: 0.4509
## F-statistic: 32.75 on 3 and 113 DF, p-value: 2.608e-15
Análise dos
Resultados
par(mfrow=c(2,2))
plot(modelo)

Questões:
- Quais os parâmetros significativos a 10% de significância?
- O resultado é coerente com a teoria econômica?
- Qual a hipótese nula no teste de significância global do
modelo?
Conclusão
Este documento apresentou dois experimentos sobre a função de
produção da soja. No primeiro, simulamos dados e identificamos o
comportamento da produção. No segundo, aplicamos a análise a dados
reais, verificando sua adequação teórica.
LS0tDQp0aXRsZTogIkVjb25vbWV0cmlhOiBGdW7Dp8OjbyBkZSBQcm9kdcOnw6NvIGRhIFNvamEiDQphdXRob3I6ICJBZHJpYW5vIE1hcmNvcyBSb2RyaWd1ZXMgRmlndWVpcmVkbywgKmUtbWFpbDogYWRyaWFuby5maWd1ZWlyZWRvQHVmbXMuYnIqIg0KYWJzdHJhY3Q6IA0KICBFc3RlIMOpIHVtIGV4ZXJjw61jaW8gZGlkw6F0aWNvIHBhcmEgYWx1bm9zIGRlIGdyYWR1YcOnw6NvLiBBbmFsaXNhbW9zIGRhZG9zIGRlIHByb2R1w6fDo28gZGUgc29qYSwgaW5jbHVpbmRvIHVtIGV4cGVyaW1lbnRvIGNvbSBkYWRvcyBzaW11bGFkb3MgZSB1bSBlc3R1ZG8gZW1ww61yaWNvLg0KZGF0ZTogImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJWQgJUIgJVknKWAiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgdGhlbWU6IGRlZmF1bHQNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICBkZl9wcmludDogcGFnZWQNCiAgICBmaWdfY2FwdGlvbjogeWVzDQogIHBkZl9kb2N1bWVudDoNCiAgICB0b2M6IHllcw0KICB3b3JkX2RvY3VtZW50Og0KICAgIHRvYzogeWVzDQotLS0NCg0KIyBMaWNlbsOnYSB7I0xpY2Vuw6dhIC51bm51bWJlcmVkfQ0KDQpFc3RlIHRyYWJhbGhvIGVzdMOhIGxpY2VuY2lhZG8gc29iIGEgQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1TaGFyZUFsaWtlIDQuMCBJbnRlcm5hdGlvbmFsIExpY2Vuc2UuIFBhcmEgbWFpcyBkZXRhbGhlcywgdmlzaXRlIDxodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1zYS80LjAvPi4NCg0KIVtMaWNlbnNlOiBDQyBCWS1TQSA0LjBdKGh0dHBzOi8vbWlycm9ycy5jcmVhdGl2ZWNvbW1vbnMub3JnL3ByZXNza2l0L2J1dHRvbnMvODh4MzEvcG5nL2J5LXNhLnBuZyl7d2lkdGg9IjI1JSJ9DQoNCiMgQ29uZmlndXJhw6fDo28gZG8gQW1iaWVudGUNCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShkcGx5cikNCmBgYA0KDQojIEV4cGVyaW1lbnRvIDE6IFNpbXVsYcOnw6NvIGRlIERhZG9zDQoNCiMjIEdlcmHDp8OjbyBkb3MgZGFkb3Mgc2ltdWxhZG9zDQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KRkVSVElMSVpBTlRFIDwtIHNlcSgxMCwgMTAwLCBieT01KQ0KVFJBVE9SIDwtIHNlcSg1LCA1MCwgYnk9Mi41KQ0KTU8gPC0gc2VxKDIwLCAyMDAsIGJ5PTEwKQ0KDQpRU09KQSA8LSA1ICogRkVSVElMSVpBTlRFICsgMyAqIFRSQVRPUiArIDIgKiBNTyAtIDAuMDUgKiBGRVJUSUxJWkFOVEVeMiAtIDAuMDIgKiBUUkFUT1JeMiAtIDAuMDEgKiBNT14yICsgcm5vcm0obGVuZ3RoKEZFUlRJTElaQU5URSksIDAsIDEwKQ0KDQpkYWRvc19zaW11bGFkb3MgPC0gZGF0YS5mcmFtZShGRVJUSUxJWkFOVEUsIFRSQVRPUiwgTU8sIFFTT0pBKQ0KYGBgDQoNCiMjIFZpc3VhbGl6YcOnw6NvIGRhIEZ1bsOnw6NvIGRlIFByb2R1w6fDo28NCg0KYGBge3J9DQpnZ3Bsb3QoZGFkb3Nfc2ltdWxhZG9zLCBhZXMoeCA9IEZFUlRJTElaQU5URSwgeSA9IFFTT0pBKSkgKw0KICBnZW9tX3BvaW50KCkgKyBnZW9tX3Ntb290aChtZXRob2QgPSAibG9lc3MiKSArDQogIGxhYnModGl0bGUgPSAiUHJvZHXDp8OjbyBkZSBTb2phIHZzIEZlcnRpbGl6YW50ZSIpDQoNCmdncGxvdChkYWRvc19zaW11bGFkb3MsIGFlcyh4ID0gVFJBVE9SLCB5ID0gUVNPSkEpKSArDQogIGdlb21fcG9pbnQoKSArIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsb2VzcyIpICsNCiAgbGFicyh0aXRsZSA9ICJQcm9kdcOnw6NvIGRlIFNvamEgdnMgVHJhdG9yIikNCg0KZ2dwbG90KGRhZG9zX3NpbXVsYWRvcywgYWVzKHggPSBNTywgeSA9IFFTT0pBKSkgKw0KICBnZW9tX3BvaW50KCkgKyBnZW9tX3Ntb290aChtZXRob2QgPSAibG9lc3MiKSArDQogIGxhYnModGl0bGUgPSAiUHJvZHXDp8OjbyBkZSBTb2phIHZzIE3Do28gZGUgT2JyYSIpDQpgYGANCg0KIyBFeHBlcmltZW50byAyOiBEYWRvcyBSZWFpcw0KDQojIyBDYXJyZWdhbWVudG8gZG9zIERhZG9zDQoNCmBgYHtyfQ0KZGFkb3MgPC0gcmVhZHhsOjpyZWFkX2V4Y2VsKCJzb2phX2Fwb3N0aWxhLnhsc3giLCBzaGVldCA9ICJkYWRvcyIpDQpgYGANCg0KIyMgTW9kZWxvIGRlIFJlZ3Jlc3PDo28NCg0KYGBge3J9DQptb2RlbG8gPC0gbG0oUVNPSkEgfiBGRVJUSUxJWkFOVEUgKyBUUkFUT1IgKyBNTywgZGF0YSA9IGRhZG9zKQ0Kc3VtbWFyeShtb2RlbG8pDQpgYGANCg0KIyMgQW7DoWxpc2UgZG9zIFJlc3VsdGFkb3MNCg0KYGBge3J9DQpwYXIobWZyb3c9YygyLDIpKQ0KcGxvdChtb2RlbG8pDQpgYGANCg0KIyMjIFF1ZXN0w7VlczoNCg0KYS4gUXVhaXMgb3MgcGFyw6JtZXRyb3Mgc2lnbmlmaWNhdGl2b3MgYSAxMCUgZGUgc2lnbmlmaWPDom5jaWE/DQpiLiBPIHJlc3VsdGFkbyDDqSBjb2VyZW50ZSBjb20gYSB0ZW9yaWEgZWNvbsO0bWljYT8NCmMuIFF1YWwgYSBoaXDDs3Rlc2UgbnVsYSBubyB0ZXN0ZSBkZSBzaWduaWZpY8OibmNpYSBnbG9iYWwgZG8gbW9kZWxvPw0KDQojIENvbmNsdXPDo28NCg0KRXN0ZSBkb2N1bWVudG8gYXByZXNlbnRvdSBkb2lzIGV4cGVyaW1lbnRvcyBzb2JyZSBhIGZ1bsOnw6NvIGRlIHByb2R1w6fDo28gZGEgc29qYS4gTm8gcHJpbWVpcm8sIHNpbXVsYW1vcyBkYWRvcyBlIGlkZW50aWZpY2Ftb3MgbyBjb21wb3J0YW1lbnRvIGRhIHByb2R1w6fDo28uIE5vIHNlZ3VuZG8sIGFwbGljYW1vcyBhIGFuw6FsaXNlIGEgZGFkb3MgcmVhaXMsIHZlcmlmaWNhbmRvIHN1YSBhZGVxdWHDp8OjbyB0ZcOzcmljYS4NCg==