Abstract
This is an undergrad student level exercise for class use. We analyse soy data, 117 observations.This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Sugestão de citação: FIGUEIREDO, Adriano Marcos Rodrigues. Econometria: exemplo_soja_apostila. Campo Grande-MS,Brasil: RStudio/Rpubs, 2020. Disponível em http://rpubs.com/amrofi/exemplo_soja_apostila.
Sabendo que a variável dependente Qsoja é a quantidade produzida de soja, a variável FERTILIZANTE é a quantidade utilizada de fertilizantes, a variável TRATOR é o número de horas-máquina utilizadas, e MO é a quantidade de mão-de-obra em número de pessoas.
Pede-se:
library(readxl)
# library(foreign)
# dados <- read_excel("soja_apostila.xlsx",
# sheet = "dados")
dados<-structure(list(OBS = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117), QSOJA = c(436.631327347,
373.648319403, 394.422208122, 343.569529223, 303.766149519, 301.164159253,
288.948162961, 330.653425923, 312.790481897, 326.337437514, 393.924244131,
472.095484821, 506.519816219, 351.622349614, 381.683735178, 383.16244294,
411.039886175, 393.721292241, 434.570723074, 433.61603289, 397.521061235,
392.667303139, 388.161060061, 370.962499467, 392.989989558, 364.608287145,
346.432408617, 418.249947335, 406.403616915, 335.565654517, 372.389277147,
355.138034335, 350.368666514, 333.22912698, 331.404160354, 350.215587437,
347.930917294, 429.353837601, 312.648633868, 320.1290397, 367.600375264,
370.58115319, 318.293875369, 360.716491231, 344.127888634, 348.460445231,
339.909909323, 355.115806958, 333.991242698, 324.352196839, 326.362748629,
337.522873509, 326.439134587, 315.883680773, 309.389262881, 309.992167966,
294.858595183, 319.126938705, 321.075126328, 324.617110436, 326.498169984,
323.024096765, 306.607962724, 316.685380598, 306.63234033, 347.051171678,
281.018277888, 306.438241825, 310.158071775, 308.554712739, 317.988817729,
309.3024648, 301.907326808, 293.695986672, 286.246007121, 284.741951642,
281.541824884, 276.076484065, 225.250102468, 221.579142339, 222.819046328,
210.465091286, 204.579726173, 210.208100729, 214.619137203, 249.68373735,
234.056997721, 237.782743552, 247.783594823, 243.326935015, 250.517759798,
245.477283956, 242.547637962, 235.139515392, 246.077631412, 300.660379261,
311.547314244, 311.592498254, 311.661546245, 313.521069724, 324.623216411,
325.219601572, 316.051963666, 315.23510561, 313.039404973, 311.256344161,
314.759829619, 319.859862035, 315.86486682, 313.067146865, 305.235250016,
299.911393983, 292.819273066, 288.374750217, 282.574142328, 280.040196223,
272.093598783), FERTILIZANTE = c(19.0271541214, 17.896131535,
16.7816326404, 13.4907436954, 9.8792199643, 9.47578570764, 11.3642792008,
15.1279345194, 15.3328667597, 12.851502126, 11.5137639555, 12.855099231,
13.0130463524, 13.4551480743, 14.3478259384, 13.4461834272, 12.8505836532,
11.878680085, 8.97428388969, 11.2853667097, 10.3459526645, 10.1678109845,
12.599515057, 18.0635955859, 22.5905514861, 27.0789975599, 25.8933999151,
24.670302157, 22.3482879799, 23.0661021802, 23.46202603, 23.3742807993,
23.6293106114, 21.5085651347, 20.4244350802, 18.8640383209, 18.2649424041,
16.1258445984, 15.3872613296, 15.7475620647, 14.8983557849, 18.5713738614,
19.782502768, 19.9334418708, 20.8217736318, 20.2664704198, 18.7039332243,
16.9397047639, 15.2224405941, 15.3900606317, 15.4866979181, 14.1888364722,
17.5057959027, 18.4499760981, 18.0443380567, 18.7653974258, 17.733992169,
14.4708212634, 19.1906127545, 23.6107568782, 22.4809389477, 19.9623501966,
24.292193006, 23.7774100871, 20.902854945, 17.6135324226, 18.2422805406,
18.4963907183, 20.1887054098, 17.2164566133, 18.2228548842, 17.63412,
17.3651340732, 21.165752859, 20.6546570465, 20.5382250175, 20.2625821575,
20.0316705895, 19.6747891284, 19.2320746157, 19.1556951795, 18.6659751037,
18.2573530021, 18.0250472242, 18.2220357618, 18.1808546614, 17.9427350427,
17.8936494922, 17.5782913467, 17.4452921577, 17.4075434149, 17.287132673,
17.0010026609, 16.7956796708, 16.6141444443, 16.6135183413, 16.5922588804,
22.0744924554, 22.0123280182, 21.8207871467, 21.4818658909, 21.3918043526,
21.1455500396, 21.0219803014, 20.9587175263, 20.8135574015, 22.8749876176,
22.8850270408, 22.7508743781, 22.6733292656, 22.4866071739, 22.3322073706,
22.1375395445, 22.1331443789, 22.081593902, 22.1113459316, 22.0611011027
), TRATOR = c(3.1712177231, 2.9130726375, 2.79693877341, 2.89345709284,
3.09884379577, 3.55341964037, 3.9774977203, 4.86255038122, 5.27067294863,
5.29179499304, 4.38619579258, 3.61549665871, 3.18096688613, 3.31203644906,
3.58695648459, 3.36154585679, 2.79360514201, 3.25443289999, 2.69228516691,
2.90195143963, 2.95598647557, 2.98255788878, 3.23987530037, 3.18769333868,
3.80472446082, 4.16599962459, 4.25644930111, 3.65485957882, 3.42843054238,
3.56476124603, 4.10585455524, 4.23376550096, 4.21951975203, 4.45534563505,
4.22104991658, 3.77280766418, 4.05887608981, 4.35397804157, 3.71858815465,
3.9194002239, 3.86253116707, 3.4489694314, 3.40698658782, 3.10590838452,
3.40719932157, 3.89739815766, 3.58705568686, 3.06139242721, 2.56377946849,
3.27038788423, 3.61356284755, 2.9212310384, 3.72808616447, 4.09999468846,
4.00985290148, 3.12756623763, 3.66502504826, 3.61770531584, 2.74151610779,
3.07966394064, 2.24809389477, 2.21803891073, 3.23895906746, 3.26939388698,
2.71737114285, 3.52270648453, 2.63499607808, 2.84559857204, 3.02830581147,
2.75463305812, 3.79642810087, 3.673775, 4.3412835183, 4.23315057181,
5.50790854573, 5.47686000466, 5.40335524199, 6.67722352984, 6.5582630428,
6.41069153856, 6.3852317265, 6.22199170124, 6.08578433403, 6.00834907473,
6.07401192061, 6.06028488713, 5.98091168091, 5.96454983075, 5.85943044889,
5.8150973859, 5.80251447164, 5.76237755766, 5.66700088697, 5.59855989028,
5.53804814809, 5.53783944709, 5.53075296013, 5.51862311384, 5.50308200454,
5.45519678667, 5.37046647273, 5.34795108814, 5.28638750989, 5.25549507535,
5.23967938158, 5.20338935039, 5.19886082219, 5.20114250927, 5.17065326775,
5.15302937855, 5.11059253952, 5.07550167513, 6.03751078486, 6.03631210335,
6.02225288236, 6.03036707224, 6.01666393711), MO = c(0.0680761131536,
0.0680761131536, 0.0680761131536, 0.0680761131536, 0.0715237353179,
0.0833559863149, 0.0985723372523, 0.111410334113, 0.114487135409,
0.102686021888, 0.121305727388, 0.123194700963, 0.113382190903,
0.0988435877764, 0.0807663035114, 0.0622686351567, 0.083800394246,
0.0765243736067, 0.0574877668834, 0.0653655605136, 0.0725099376921,
0.0780548956575, 0.0806568955951, 0.0816669323964, 0.0822771664653,
0.0801052294483, 0.0750435658726, 0.0703103611476, 0.0796030780377,
0.0830484524405, 0.093584156327, 0.100913962297, 0.108669511694,
0.111606408158, 0.118828985067, 0.120133794043, 0.118234214897,
0.105740298613, 0.093457488034, 0.0841934657141, 0.0798233440708,
0.0747407520408, 0.0708495225001, 0.0672990598108, 0.0611103807825,
0.055394759321, 0.0660366632049, 0.0689438046948, 0.0669589093824,
0.0638618759693, 0.0596771157157, 0.0549263770463, 0.073413760912,
0.0823331322263, 0.0834334103063, 0.079906745817, 0.0716246518416,
0.0633701381158, 0.0934971222594, 0.104075531949, 0.100833255886,
0.0930097649901, 0.0813417334974, 0.0695736926403, 0.21049581374,
0.261260874072, 0.258725366517, 0.236599269382, 0.206871841743,
0.167746823366, 0.126327870706, 0.114329213918, 0.104788717578,
0.0945762804116, 0.0848737411962, 0.0770183438155, 0.0741085180759,
0.071409196083, 0.0683152400292, 0.0649972892104, 0.0629654795252,
0.0596274204703, 0.0578149511733, 0.0565786204537, 0.0566907779257,
0.0560576352059, 0.0548250237417, 0.0541779942959, 0.0539450091897,
0.0542532433056, 0.0548506857575, 0.0551811677564, 0.0549659731863,
0.0549918545222, 0.0547197615699, 0.0550399709491, 0.0552913982385,
0.0554912883605, 0.0556552669895, 0.0554884433151, 0.0541104333052,
0.0533695807757, 0.0522471298894, 0.0514366981903, 0.0507783150735,
0.049926520817, 0.049902565317, 0.0499439709453, 0.0496705879533,
0.0495206123279, 0.0491319590269, 0.0488136373605, 0.0483839405954,
0.0483701426115, 0.0482533012199, 0.0483141284115, 0.0482001633184
)), row.names = c(NA, -117L), class = c("tbl_df", "tbl", "data.frame"
))
attach(dados)
# QSOJA = quantidade produzida de soja;
# FERTILIZANTE = quantidade utilizada de fertilizantes,
# TRATOR = número de horas-máquina utilizadas, e
# MO = quantidade de mão-de-obra em número de pessoas
dados
#
regressao1<-lm(QSOJA~FERTILIZANTE+TRATOR+MO)
summary(regressao1)
##
## Call:
## lm(formula = QSOJA ~ FERTILIZANTE + TRATOR + MO)
##
## Residuals:
## Min 1Q Median 3Q Max
## -66.714 -33.171 1.768 24.894 149.637
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 494.9657 25.5723 19.356 < 2e-16 ***
## FERTILIZANTE -0.5535 1.0589 -0.523 0.6022
## TRATOR -33.6899 3.7410 -9.006 6.09e-15 ***
## MO -209.1407 107.8926 -1.938 0.0551 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 41.51 on 113 degrees of freedom
## Multiple R-squared: 0.4651, Adjusted R-squared: 0.4509
## F-statistic: 32.75 on 3 and 113 DF, p-value: 2.608e-15
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
stargazer(list(regressao1),type="text",style="all" )
##
## =======================================================
## Dependent variable:
## -----------------------------------
## QSOJA
## -------------------------------------------------------
## FERTILIZANTE -0.554
## (1.059)
## t = -0.523
## p = 0.603
## TRATOR -33.690***
## (3.741)
## t = -9.006
## p = 0.000
## MO -209.141*
## (107.893)
## t = -1.938
## p = 0.056
## Constant 494.966***
## (25.572)
## t = 19.356
## p = 0.000
## -------------------------------------------------------
## Observations 117
## R2 0.465
## Adjusted R2 0.451
## Residual Std. Error 41.506 (df = 113)
## F Statistic 32.753*** (df = 3; 113) (p = 0.000)
## =======================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Utilizaremos o recurso I(fitted(regressao1)) para gerar automaticamente e já estimar a regressão de teste
#
reg_RESET_3<-lm(QSOJA~FERTILIZANTE+TRATOR+MO+I(fitted(regressao1)^2)+
I(fitted(regressao1)^3)+I(fitted(regressao1)^4),data=dados)
reg_RESET<-lm(QSOJA~FERTILIZANTE+TRATOR+MO+
I(fitted(regressao1)^2)+I(fitted(regressao1)^3),data=dados)
results<-stargazer(list(regressao1,reg_RESET_3),type="text",style="all" )
##
## ==============================================================================================
## Dependent variable:
## -----------------------------------------------------------------------
## QSOJA
## (1) (2)
## ----------------------------------------------------------------------------------------------
## FERTILIZANTE -0.554 304.130**
## (1.059) (135.047)
## t = -0.523 t = 2.252
## p = 0.603 p = 0.027
## TRATOR -33.690*** 18,591.290**
## (3.741) (8,231.767)
## t = -9.006 t = 2.258
## p = 0.000 p = 0.026
## MO -209.141* 115,237.700**
## (107.893) (51,069.360)
## t = -1.938 t = 2.256
## p = 0.056 p = 0.027
## I(fitted(regressao1)2) 2.665**
## (1.165)
## t = 2.287
## p = 0.025
## I(fitted(regressao1)3) -0.006**
## (0.002)
## t = -2.300
## p = 0.024
## I(fitted(regressao1)4) 0.00000**
## (0.00000)
## t = 2.303
## p = 0.024
## Constant 494.966*** -230,604.700**
## (25.572) (101,861.300)
## t = 19.356 t = -2.264
## p = 0.000 p = 0.026
## ----------------------------------------------------------------------------------------------
## Observations 117 117
## R2 0.465 0.532
## Adjusted R2 0.451 0.507
## Residual Std. Error 41.506 (df = 113) 39.331 (df = 110)
## F Statistic 32.753*** (df = 3; 113) (p = 0.000) 20.879*** (df = 6; 110) (p = 0.000)
## ==============================================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
# RESET: H0: o modelo esta bem especificado, ou H0: COEFICIENTES incluindo "fitted" sao nulos
library(car)
## Carregando pacotes exigidos: carData
# RESETH0<-c("I(fitted(regressao1)^2)","I(fitted(regressao1)^3)",
# "I(fitted(regressao1)^4)")
RESETH0<-c("I(fitted(regressao1)^2)","I(fitted(regressao1)^3)")
Tabela_RESET<-linearHypothesis(reg_RESET,RESETH0)
# outra alternativa é usar a linha abaixo com o matchCoefs
#Tabela_RESET<-linearHypothesis(reg_RESET, matchCoefs(reg_RESET,"fitted"))
Tabela_RESET
library(lmtest)
## Carregando pacotes exigidos: zoo
##
## Anexando pacote: 'zoo'
## Os seguintes objetos são mascarados por 'package:base':
##
## as.Date, as.Date.numeric
TesteRESET<-resettest(regressao1, power = 2:3) # default é power = 2:3
TesteRESET
##
## RESET test
##
## data: regressao1
## RESET = 5.0746, df1 = 2, df2 = 111, p-value = 0.007783
#alterando as potencias
TesteRESET.power<-resettest(regressao1, power = 2:4)
TesteRESET.power
##
## RESET test
##
## data: regressao1
## RESET = 5.2816, df1 = 3, df2 = 110, p-value = 0.001932
regressao1$AIC <- AIC(regressao1)
regressao1$BIC <- BIC(regressao1)
#mostrando os valores de AIC e SIC
library(stargazer)
star.1 <- stargazer(regressao1,
title="Título: Resultado da Regressão",
align=TRUE,
type = "text", style = "all",
keep.stat=c("aic","bic","rsq", "adj.rsq","n")
)
##
## Título: Resultado da Regressão
## ===============================================
## Dependent variable:
## ---------------------------
## QSOJA
## -----------------------------------------------
## FERTILIZANTE -0.554
## (1.059)
## t = -0.523
## p = 0.603
## TRATOR -33.690***
## (3.741)
## t = -9.006
## p = 0.000
## MO -209.141*
## (107.893)
## t = -1.938
## p = 0.056
## Constant 494.966***
## (25.572)
## t = 19.356
## p = 0.000
## -----------------------------------------------
## Observations 117
## R2 0.465
## Adjusted R2 0.451
## Akaike Inf. Crit. 1,209.807
## Bayesian Inf. Crit. 1,223.617
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01