Bibliographic Collection
The dataset consists of bibliographic records retrieved from
Scopus on March 3, 2024, using the keywords connectome
and connectomes.
The search was applied to the Title (TI), Abstract (AB), and
Author Keywords (DE) fields to ensure comprehensive retrieval of
relevant literature.
The search was limited to: - Articles(excluding conference
papers,book chapter, etc.) - English-language publications -
Publications up to 2024
The final dataset comprises 15,188 records, exported in
CSV(Comma-Separated Values) format for further processing and
analysis.
Load and install bibliometrix R-package
pacman::p_load("bibliometrix")
Missing data
with(bibliometrix::missingData(dta), mandatoryTags) |> knitr::kable(caption="Missing data")
Missing data
AB |
Abstract |
0 |
0.00 |
Excellent |
DT |
Document Type |
0 |
0.00 |
Excellent |
SO |
Journal |
0 |
0.00 |
Excellent |
LA |
Language |
0 |
0.00 |
Excellent |
PY |
Publication Year |
0 |
0.00 |
Excellent |
TI |
Title |
0 |
0.00 |
Excellent |
TC |
Total Citation |
0 |
0.00 |
Excellent |
AU |
Author |
2 |
0.01 |
Good |
DI |
DOI |
52 |
0.34 |
Good |
C1 |
Affiliation |
81 |
0.53 |
Good |
CR |
Cited References |
121 |
0.80 |
Good |
ID |
Keywords Plus |
342 |
2.25 |
Good |
RP |
Corresponding Author |
1531 |
10.08 |
Acceptable |
DE |
Keywords |
3422 |
22.53 |
Poor |
WC |
Science Categories |
15188 |
100.00 |
Completely missing |
「DE:
keywords」是作者自行選擇的關鍵詞,可用來反映文章真正的研究重點或主題。
但經檢驗Missing
data結果,遺失「keywords」欄位的文獻總計有3422筆,占整體資料的22.53%。
數據品質為“poor”,後續在解讀與關鍵字有關的分析結果時應持保留態度。
with(bibliometrix::missingData(dta2), mandatoryTags) |> knitr::kable(caption="Missing data-cleaned")
Missing data-cleaned
AB |
Abstract |
0 |
0.00 |
Excellent |
SO |
Journal |
0 |
0.00 |
Excellent |
TI |
Title |
0 |
0.00 |
Excellent |
TC |
Total Citation |
0 |
0.00 |
Excellent |
AU |
Author |
2 |
0.01 |
Good |
DT |
Document Type |
1 |
0.01 |
Good |
LA |
Language |
1 |
0.01 |
Good |
PY |
Publication Year |
1 |
0.01 |
Good |
DI |
DOI |
52 |
0.34 |
Good |
C1 |
Affiliation |
81 |
0.53 |
Good |
CR |
Cited References |
128 |
0.84 |
Good |
ID |
Keywords Plus |
342 |
2.25 |
Good |
RP |
Corresponding Author |
1532 |
10.09 |
Acceptable |
DE |
Keywords |
3422 |
22.53 |
Poor |
WC |
Science Categories |
15189 |
100.00 |
Completely missing |
清理過後的資料出現更多missing
data,故分析上以dta為主,與關鍵字(DE)及作者機構(C1)有關的分析或視覺化則採用dta2。
Section 1:Descriptive Analysis
# save the result of a bibliometric analysis
rslt <- bibliometrix::biblioAnalysis(dta, sep = ";")
rslt2 <- bibliometrix::biblioAnalysis(dta2, sep = ";")
Result summary
1-1 Main Information about Data
s1 <- summary(rslt, k=15, pause = FALSE, verbose = FALSE, width=130) #k=15,表示只顯示前15名
with(s1, MainInformationDF)[1:9,] |> knitr::kable(caption = "Main information")
Main information
MAIN INFORMATION ABOUT DATA |
|
Timespan |
1991:2024 |
Sources (Journals, Books, etc) |
1315 |
Documents |
15188 |
Annual Growth Rate % |
24.88 |
Document Average Age |
6.24 |
Average citations per doc |
39.77 |
Average citations per year per doc |
4.57 |
References |
727867 |
1991-2024年期間,Connectome領域的Article年增率為24.88%,文獻的平均年齡為6.24年,每篇文獻的引用次數平均為39.76次,每篇文獻的年平均引用次數為4.57次,參考文獻數量為727867篇。
with(s1, MainInformationDF)[10:23,] |> knitr::kable(caption = "Main information - continued")
Main information - continued
10 |
DOCUMENT TYPES |
|
11 |
article |
15188 |
12 |
DOCUMENT CONTENTS |
|
13 |
Keywords Plus (ID) |
34300 |
14 |
Author’s Keywords (DE) |
21264 |
15 |
AUTHORS |
|
16 |
Authors |
48262 |
17 |
Author Appearances |
109873 |
18 |
Authors of single-authored docs |
346 |
19 |
AUTHORS COLLABORATION |
|
20 |
Single-authored docs |
393 |
21 |
Documents per Author |
0.315 |
22 |
Co-Authors per Doc |
7.23 |
23 |
International co-authorships % |
37.35 |
#s1$MainInformationDF|> head(15) #main information
d1 <- s1$MainInformationDF
#pander(d1, caption = "Main Information about Data", table.split = Inf) #table.split = Inf 不進行自動分割
# APA表格
library(flextable)
ft_d1<-flextable(d1) %>%
set_caption("Table 1: Summary of Key Bibliometric Information on Connectome Research") %>%
theme_booktabs() %>%
autofit() %>%
bold(part = "header") %>%
align(align = "center", part = "all") %>%
fontsize(size = 10, part = "all")
# 顯示表格
ft_d1
Table 1: Summary of Key Bibliometric Information on Connectome ResearchDescription | Results |
---|
MAIN INFORMATION ABOUT DATA |
|
Timespan | 1991:2024 |
Sources (Journals, Books, etc) | 1315 |
Documents | 15188 |
Annual Growth Rate % | 24.88 |
Document Average Age | 6.24 |
Average citations per doc | 39.77 |
Average citations per year per doc | 4.57 |
References | 727867 |
DOCUMENT TYPES |
|
article | 15188 |
DOCUMENT CONTENTS |
|
Keywords Plus (ID) | 34300 |
Author's Keywords (DE) | 21264 |
AUTHORS |
|
Authors | 48262 |
Author Appearances | 109873 |
Authors of single-authored docs | 346 |
AUTHORS COLLABORATION |
|
Single-authored docs | 393 |
Documents per Author | 0.315 |
Co-Authors per Doc | 7.23 |
International co-authorships % | 37.35 |
|
|
s2 <- summary(rslt2, k=15, pause = FALSE, verbose = FALSE, width=130)
with(s2, MainInformationDF)[1:9,] |> knitr::kable(caption = "Main information(cleanedata)")
Main information(cleanedata)
MAIN INFORMATION ABOUT DATA |
|
Timespan |
1991:2024 |
Sources (Journals, Books, etc) |
1303 |
Documents |
15189 |
Annual Growth Rate % |
24.88 |
Document Average Age |
6.24 |
Average citations per doc |
39.76 |
Average citations per year per doc |
4.57 |
References |
726785 |
with(s2, MainInformationDF)[10:23,] |> knitr::kable(caption = "Main information - continued(cleanedata)")
Main information - continued(cleanedata)
10 |
DOCUMENT TYPES |
|
11 |
|
1 |
12 |
article |
15187 |
13 |
in boston |
1 |
14 |
DOCUMENT CONTENTS |
|
15 |
Keywords Plus (ID) |
34301 |
16 |
Author’s Keywords (DE) |
20914 |
17 |
AUTHORS |
|
18 |
Authors |
48263 |
19 |
Author Appearances |
109874 |
20 |
Authors of single-authored docs |
347 |
21 |
AUTHORS COLLABORATION |
|
22 |
Single-authored docs |
394 |
23 |
Documents per Author |
0.315 |
1-2 Annual Scientific Production
ap1 <- with(s1, AnnualProduction)
ap2 <- with(s2, AnnualProduction)
colnames(ap1) <- c("Year", "Articles_s1")
colnames(ap2) <- c("Year", "Articles_s2")
library(dplyr)
ap_merged <- full_join(ap1, ap2, by = "Year")
knitr::kable(ap_merged, caption = "Comparison of Annual Scientific Production")
Comparison of Annual Scientific Production
1991 |
1 |
1 |
1998 |
4 |
4 |
1999 |
5 |
5 |
2000 |
4 |
4 |
2002 |
3 |
3 |
2004 |
3 |
3 |
2005 |
1 |
1 |
2006 |
2 |
2 |
2007 |
4 |
4 |
2008 |
6 |
6 |
2009 |
8 |
8 |
2010 |
23 |
23 |
2011 |
52 |
52 |
2012 |
95 |
95 |
2013 |
555 |
555 |
2014 |
1039 |
1039 |
2015 |
1517 |
1517 |
2016 |
1463 |
1463 |
2017 |
1077 |
1077 |
2018 |
1171 |
1171 |
2019 |
1250 |
1250 |
2020 |
1469 |
1469 |
2021 |
1473 |
1473 |
2022 |
1249 |
1249 |
2023 |
1184 |
1184 |
2024 |
1530 |
1530 |
1-3 Most Productive Authors
with(s1, MostProdAuthors) |> knitr::kable(caption = "Most Productive Authors")
Most Productive Authors
WANG Y |
335 |
WANG Y |
40.6 |
ZHANG Y |
233 |
ZHANG Y |
29.2 |
WANG J |
215 |
WANG J |
25.5 |
WANG X |
205 |
WANG X |
24.6 |
ZHANG J |
190 |
LI Y |
24.5 |
LI Y |
186 |
LI J |
23.5 |
LI J |
184 |
ZHANG J |
22.9 |
CHEN H |
181 |
CHEN H |
21.6 |
LI X |
170 |
ZHANG Z |
21.0 |
ZHANG X |
165 |
SPORNS O |
20.8 |
ZHANG Z |
161 |
LIU J |
20.6 |
LIU J |
155 |
LI X |
20.3 |
CHEN Y |
154 |
CHEN Y |
19.5 |
WANG L |
143 |
WANG Z |
19.2 |
HE Y |
137 |
HE Y |
18.9 |
with(s2, MostProdAuthors) |> knitr::kable(caption = "Most Productive Authors(cleanedata)")
Most Productive Authors(cleanedata)
WANG Y |
335 |
WANG Y |
40.6 |
ZHANG Y |
233 |
ZHANG Y |
29.2 |
WANG J |
215 |
WANG J |
25.5 |
WANG X |
205 |
WANG X |
24.6 |
ZHANG J |
190 |
LI Y |
24.5 |
LI Y |
186 |
LI J |
23.5 |
LI J |
184 |
ZHANG J |
22.9 |
CHEN H |
181 |
CHEN H |
21.6 |
LI X |
170 |
ZHANG Z |
21.0 |
ZHANG X |
165 |
SPORNS O |
20.8 |
ZHANG Z |
161 |
LIU J |
20.6 |
LIU J |
155 |
LI X |
20.3 |
CHEN Y |
154 |
CHEN Y |
19.5 |
WANG L |
143 |
WANG Z |
19.2 |
HE Y |
137 |
HE Y |
18.9 |
1-4 Top manuscripts per number of citations
with(s1, MostCitedPapers) |> knitr::kable(caption = "Most Cited Papers")
Most Cited Papers
THOMAS YEO BT, 2011, J NEUROPHYSIOL |
10.1152/jn.00338.2011 |
5905 |
394 |
18.41 |
VAN ESSEN DC, 2013, NEUROIMAGE |
10.1016/j.neuroimage.2013.05.041 |
3733 |
287 |
30.62 |
GLASSER MF, 2013, NEUROIMAGE |
10.1016/j.neuroimage.2013.04.127 |
3360 |
258 |
27.56 |
XIA M, 2013, PLOS ONE |
10.1371/journal.pone.0068910 |
3095 |
238 |
25.39 |
GLASSER MF, 2016, NATURE |
10.1038/nature18933 |
3012 |
301 |
50.59 |
EKLUND A, 2016, PROC NATL ACAD SCI U S A |
10.1073/pnas.1602413113 |
2571 |
257 |
43.18 |
BISWAL BB, 2010, PROC NATL ACAD SCI U S A |
10.1073/pnas.0911855107 |
2389 |
149 |
9.62 |
ANDERSSON JLR, 2016, NEUROIMAGE |
10.1016/j.neuroimage.2015.10.019 |
2316 |
232 |
38.90 |
HUTCHISON RM, 2013, NEUROIMAGE |
10.1016/j.neuroimage.2013.05.079 |
2129 |
164 |
17.46 |
GRAMFORT A, 2013, FRONT NEUROSCI |
10.3389/fnins.2013.00267 |
2010 |
155 |
16.49 |
VAN DIJK KRA, 2012, NEUROIMAGE |
10.1016/j.neuroimage.2011.07.044 |
1938 |
138 |
13.00 |
FAN L, 2016, CEREB CORTEX |
10.1093/cercor/bhw157 |
1921 |
192 |
32.26 |
FINN ES, 2015, NAT NEUROSCI |
10.1038/nn.4135 |
1835 |
167 |
32.09 |
DI MARTINO A, 2014, MOL PSYCHIATRY |
10.1038/mp.2013.78 |
1816 |
151 |
24.42 |
BORSBOOM D, 2017, WORLD PSYCHIATRY |
10.1002/wps.20375 |
1815 |
202 |
32.68 |
with(s2, MostCitedPapers) |> knitr::kable(caption = "Most Cited Papers(cleanedata)")
Most Cited Papers(cleanedata)
THOMAS YEO BT, 2011, J NEUROPHYSIOL |
10.1152/jn.00338.2011 |
5905 |
394 |
18.41 |
VAN ESSEN DC, 2013, NEUROIMAGE |
10.1016/j.neuroimage.2013.05.041 |
3733 |
287 |
30.62 |
GLASSER MF, 2013, NEUROIMAGE |
10.1016/j.neuroimage.2013.04.127 |
3360 |
258 |
27.56 |
XIA M, 2013, PLOS ONE |
10.1371/journal.pone.0068910 |
3095 |
238 |
25.39 |
GLASSER MF, 2016, NATURE |
10.1038/nature18933 |
3012 |
301 |
50.59 |
EKLUND A, 2016, PROC NATL ACAD SCI U S A |
10.1073/pnas.1602413113 |
2571 |
257 |
43.18 |
BISWAL BB, 2010, PROC NATL ACAD SCI U S A |
10.1073/pnas.0911855107 |
2389 |
149 |
9.62 |
ANDERSSON JLR, 2016, NEUROIMAGE |
10.1016/j.neuroimage.2015.10.019 |
2316 |
232 |
38.90 |
HUTCHISON RM, 2013, NEUROIMAGE |
10.1016/j.neuroimage.2013.05.079 |
2129 |
164 |
17.46 |
GRAMFORT A, 2013, FRONT NEUROSCI |
10.3389/fnins.2013.00267 |
2010 |
155 |
16.49 |
VAN DIJK KRA, 2012, NEUROIMAGE |
10.1016/j.neuroimage.2011.07.044 |
1938 |
138 |
13.00 |
FAN L, 2016, CEREB CORTEX |
10.1093/cercor/bhw157 |
1921 |
192 |
32.26 |
FINN ES, 2015, NAT NEUROSCI |
10.1038/nn.4135 |
1835 |
167 |
32.09 |
DI MARTINO A, 2014, MOL PSYCHIATRY |
10.1038/mp.2013.78 |
1816 |
151 |
24.42 |
BORSBOOM D, 2017, WORLD PSYCHIATRY |
10.1002/wps.20375 |
1815 |
202 |
32.68 |
1-5 Corresponding Author’s Countries
with(s1, MostProdCountries) |> knitr::kable(caption = "Most Productive Countries")
Most Productive Countries
USA |
4505 |
0.33333 |
3375 |
1130 |
0.251 |
CHINA |
2361 |
0.17469 |
1574 |
787 |
0.333 |
GERMANY |
955 |
0.07066 |
512 |
443 |
0.464 |
UNITED KINGDOM |
829 |
0.06134 |
344 |
485 |
0.585 |
CANADA |
608 |
0.04499 |
318 |
290 |
0.477 |
ITALY |
485 |
0.03589 |
273 |
212 |
0.437 |
AUSTRALIA |
429 |
0.03174 |
204 |
225 |
0.524 |
FRANCE |
355 |
0.02627 |
190 |
165 |
0.465 |
NETHERLANDS |
346 |
0.02560 |
152 |
194 |
0.561 |
JAPAN |
297 |
0.02198 |
221 |
76 |
0.256 |
KOREA |
297 |
0.02198 |
222 |
75 |
0.253 |
SPAIN |
268 |
0.01983 |
126 |
142 |
0.530 |
SWITZERLAND |
263 |
0.01946 |
112 |
151 |
0.574 |
ISRAEL |
130 |
0.00962 |
66 |
64 |
0.492 |
BELGIUM |
113 |
0.00836 |
36 |
77 |
0.681 |
依通訊作者所在之國家分析,單一國家出版物(SCP)和多國出版物(MCP)的產出量均是已開發國家為主。
with(s2, MostProdCountries) |> knitr::kable(caption = "Most Productive Countries(cleanedata)")
Most Productive Countries(cleanedata)
USA |
4504 |
0.33328 |
3374 |
1130 |
0.251 |
CHINA |
2361 |
0.17471 |
1574 |
787 |
0.333 |
GERMANY |
955 |
0.07067 |
512 |
443 |
0.464 |
UNITED KINGDOM |
829 |
0.06134 |
344 |
485 |
0.585 |
CANADA |
608 |
0.04499 |
318 |
290 |
0.477 |
ITALY |
485 |
0.03589 |
273 |
212 |
0.437 |
AUSTRALIA |
429 |
0.03174 |
204 |
225 |
0.524 |
FRANCE |
355 |
0.02627 |
190 |
165 |
0.465 |
NETHERLANDS |
346 |
0.02560 |
152 |
194 |
0.561 |
JAPAN |
297 |
0.02198 |
221 |
76 |
0.256 |
KOREA |
297 |
0.02198 |
222 |
75 |
0.253 |
SPAIN |
268 |
0.01983 |
126 |
142 |
0.530 |
SWITZERLAND |
263 |
0.01946 |
112 |
151 |
0.574 |
ISRAEL |
130 |
0.00962 |
66 |
64 |
0.492 |
BELGIUM |
113 |
0.00836 |
36 |
77 |
0.681 |
1-6 Total Citation per Countries
with(s1, TCperCountries) |> knitr::kable(caption = "Total Citation per Countries")
Total Citation per Countries
USA |
229643 |
50.98 |
CHINA |
55827 |
23.65 |
UNITED KINGDOM |
49565 |
59.79 |
GERMANY |
35982 |
37.68 |
CANADA |
22897 |
37.66 |
NETHERLANDS |
16947 |
48.98 |
AUSTRALIA |
16188 |
37.73 |
FRANCE |
15277 |
43.03 |
ITALY |
13856 |
28.57 |
SWITZERLAND |
11319 |
43.04 |
JAPAN |
7449 |
25.08 |
SPAIN |
6878 |
25.66 |
SWEDEN |
5899 |
60.19 |
KOREA |
5621 |
18.93 |
ISRAEL |
5401 |
41.55 |
with(s2, TCperCountries) |> knitr::kable(caption = "Total Citation per Countries(cleanedata)")
Total Citation per Countries(cleanedata)
USA |
229636 |
50.98 |
CHINA |
55827 |
23.65 |
UNITED KINGDOM |
49565 |
59.79 |
GERMANY |
35982 |
37.68 |
CANADA |
22897 |
37.66 |
NETHERLANDS |
16947 |
48.98 |
AUSTRALIA |
16188 |
37.73 |
FRANCE |
15277 |
43.03 |
ITALY |
13856 |
28.57 |
SWITZERLAND |
11319 |
43.04 |
JAPAN |
7449 |
25.08 |
SPAIN |
6878 |
25.66 |
SWEDEN |
5899 |
60.19 |
KOREA |
5621 |
18.93 |
ISRAEL |
5401 |
41.55 |
1-7 Most Relevant Sources
with(s1, MostRelSources) |> knitr::kable(caption = "Most Relevant Sources")
Most Relevant Sources
NEUROIMAGE |
1547 |
HUMAN BRAIN MAPPING |
875 |
JOURNAL OF NEUROSCIENCE |
460 |
PLOS ONE |
460 |
CEREBRAL CORTEX |
388 |
SCIENTIFIC REPORTS |
386 |
NEUROIMAGE: CLINICAL |
351 |
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE
UNITED STATES OF AMERICA |
250 |
FRONTIERS IN NEUROSCIENCE |
247 |
ELIFE |
240 |
BRAIN CONNECTIVITY |
230 |
NEURON |
195 |
NATURE COMMUNICATIONS |
189 |
FRONTIERS IN HUMAN NEUROSCIENCE |
178 |
PLOS COMPUTATIONAL BIOLOGY |
171 |
connectome領域的前15大核心期刊
with(s2, MostRelSources) |> knitr::kable(caption = "Most Relevant Sources(cleanedata)")
Most Relevant Sources(cleanedata)
NEUROIMAGE |
1547 |
HUMAN BRAIN MAPPING |
875 |
JOURNAL OF NEUROSCIENCE |
460 |
PLOS ONE |
460 |
CEREBRAL CORTEX |
388 |
SCIENTIFIC REPORTS |
386 |
NEUROIMAGE: CLINICAL |
351 |
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE
UNITED STATES OF AMERICA |
250 |
FRONTIERS IN NEUROSCIENCE |
247 |
ELIFE |
240 |
BRAIN CONNECTIVITY |
230 |
NATURE COMMUNICATIONS |
202 |
NEURON |
195 |
FRONTIERS IN HUMAN NEUROSCIENCE |
179 |
PLOS COMPUTATIONAL BIOLOGY |
171 |
1-8 Most Relevant Keywords
with(s1, MostRelKeywords) |> knitr::kable(caption = "Most Relevant Keywords")
Most Relevant Keywords
FUNCTIONAL CONNECTIVITY |
1839 |
CONNECTOME |
21031 |
FMRI |
1168 |
MALE |
16991 |
CONNECTOME |
993 |
FEMALE |
15771 |
GRAPH THEORY |
623 |
ARTICLE |
13690 |
CONNECTIVITY |
553 |
ADULT |
13067 |
RESTING-STATE FMRI |
466 |
BRAIN |
12013 |
DIFFUSION TENSOR IMAGING |
411 |
HUMAN |
11792 |
SCHIZOPHRENIA |
404 |
HUMANS |
9940 |
RESTING STATE |
366 |
CONTROLLED STUDY |
8472 |
TRACTOGRAPHY |
343 |
NUCLEAR MAGNETIC RESONANCE IMAGING |
7282 |
CONNECTOMICS |
329 |
MAGNETIC RESONANCE IMAGING |
6742 |
DIFFUSION MRI |
317 |
YOUNG ADULT |
6555 |
DEFAULT MODE NETWORK |
313 |
PHYSIOLOGY |
6091 |
FUNCTIONAL MAGNETIC RESONANCE IMAGING |
310 |
NERVE CELL NETWORK |
5792 |
NEUROIMAGING |
298 |
FUNCTIONAL MAGNETIC RESONANCE IMAGING |
5661 |
with(s2, MostRelKeywords) |> knitr::kable(caption = "Most Relevant Keywords(cleanedata)")
Most Relevant Keywords(cleanedata)
FUNCTIONAL CONNECTIVITY |
1839 |
CONNECTOME |
21031 |
FMRI |
1755 |
MALE |
16991 |
CONNECTOME |
1571 |
FEMALE |
15771 |
RS-FMRI |
665 |
ARTICLE |
13690 |
GRAPH THEORY |
623 |
ADULT |
13067 |
CONNECTIVITY |
553 |
BRAIN |
12013 |
DTI |
536 |
HUMAN |
11792 |
RESTING STATE |
501 |
HUMANS |
9940 |
MRI |
471 |
CONTROLLED STUDY |
8472 |
SCHIZOPHRENIA |
405 |
NUCLEAR MAGNETIC RESONANCE IMAGING |
7282 |
TRACTOGRAPHY |
343 |
MAGNETIC RESONANCE IMAGING |
6742 |
ALZHEIMER’S DISEASE |
320 |
YOUNG ADULT |
6555 |
DEFAULT MODE NETWORK |
313 |
PHYSIOLOGY |
6091 |
NEUROIMAGING |
299 |
NERVE CELL NETWORK |
5792 |
BRAIN NETWORK |
298 |
FUNCTIONAL MAGNETIC RESONANCE IMAGING |
5661 |
Co-word Analysis
# 載入必要套件
library(bibliometrix)
library(gridExtra)
library(ggpubr)
library(grid) # 轉換圖形物件
CS <- conceptualStructure(dta2, #cleaned data
field = "DE", #"DE"作者關鍵字
method = "CA", #Correspondence Analysis
minDegree = 4, #至少出現4次
clust = "auto", #可自訂2-8
stemming = TRUE, #TRUE=Porter’s Stemming algorithm
labelsize = 8,
documents = 15188, #only for CA and MCA
graph = FALSE)
# 轉換 Conceptual Structure Map (CS[[4]]) 為 grob1
grob1 <- grid.grabExpr(print(CS[[4]]))
# 轉換 Topic Dendrogram (CS[[5]]) 為 grob2
grob2 <- grid.grabExpr(print(CS[[5]]))
$dend
'dendrogram' with 2 branches and 2163 members total, at height 91.5451
$line
[1] 63.4664
attr(,"class")
[1] "bibliodendrogram"
# 使用 ggarrange 排列圖表
ggarrange(grob1, grob2, ncol = 2, nrow = 1)
