Develop an R program to quickly explore a given dataset,including categoral analysis using the group_by cpommand ,and visualize the findings using ggplopt2 features.
Step 1: Load necessary liberaries
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.4
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)library(ggplot2)
Step 2: Load the dataset
#load datasetdata<- mtcars#convert 'cyl' to a factor for categoral analysisdata$cyl<-as.factor(data$cyl)
step 3: Group by categoral variable
#summarize avg of mpg by cylinder categorysummary_data<- data %>%group_by(cyl) %>%summarise(avg_mpg =mean(mpg), .groups='drop')#display summaryprint(summary_data)
# create a bar plot using ggplot2ggplot(summary_data, aes(x=cyl,y=avg_mpg,fill=cyl))+geom_bar(stat ="identity")+labs(title ='Average MPG by cylinder count',x="Number of cylinders",y='Average MPG')+theme_minimal()