Develop an R program to quickly explore a given dataset, including categorical analysis using the group_by command , and visualize the findings using ggplot2 features.
step 1:Load necessary libraries
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.4
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
Step 2:Load the dataset
# Load datasetdata<- mtcars# convert 'cyl' to a factor for categorical analysisdata$cyl <-as.factor(data$cyl)
Step 3:Group by categorical variables
#summarize avg mpg by cylinder category summary_data <- data %>%group_by (cyl) %>%summarise(avg_mpg =mean(mpg), .groups ='drop')#display summaryprint(summary_data)
#create a bar plot using ggplot2ggplot(summary_data ,aes(x= cyl,y = avg_mpg, fill= cyl)) +geom_bar(stat ="identity") +labs(title ="Average MPG by cylinder count" ,x="number of cylindesrs",y="average MPG") +theme_minimal()