Develop an R program to quickly explore a given dataset, including categorical analysis using the group_by command, and visualize the findings using ggplot2 features.
Step 1: Load necessary libraries
library(tidyverse)
Warning: package 'tidyverse' was built under R version 4.1.3
-- Attaching packages --------------------------------------- tidyverse 1.3.2 --
v ggplot2 3.4.0 v purrr 1.0.1
v tibble 3.1.6 v dplyr 1.1.0
v tidyr 1.3.0 v stringr 1.5.0
v readr 2.1.1 v forcats 0.5.1
Warning: package 'ggplot2' was built under R version 4.1.3
Warning: package 'tidyr' was built under R version 4.1.3
Warning: package 'purrr' was built under R version 4.1.3
Warning: package 'dplyr' was built under R version 4.1.3
Warning: package 'stringr' was built under R version 4.1.3
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
library(dplyr)library(ggplot2)
Step 2: Load the dataset
# Load datasetdata <- mtcars# Convert 'cyl' to a factor for categorical analysisdata$cyl <-as.factor(data$cyl)
Step 3: Group by categorical variable
# Summarize average mpg by cylinder categorysummary_data <- data %>%group_by(cyl) %>%summarise(avg_mpg =mean(mpg), .groups ='drop')# Display summaryprint(summary_data)
# A tibble: 3 x 2
cyl avg_mpg
<fct> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1
Step 4: Visualizing the findings
# Create a bar plot using ggplot2ggplot(summary_data, aes(x = cyl, y = avg_mpg, fill = cyl)) +geom_bar(stat ="identity") +labs(title ="Average MPG by Cylinder Count",x ="Number of Cylinders",y ="Average MPG") +theme_minimal()