1 + 1[1] 2
Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.
When you click the Render button a document will be generated that includes both content and the output of embedded code. You can embed code like this:
1 + 1[1] 2
You can add options to executable code like this
[1] 4
The echo: false option disables the printing of code (only output is displayed).
Develop an R program to quickly explore a given dataset, including categorical analysis using the
STEP 1 : Load necessary libraries
library(tidyverse)── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.4
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
library(ggplot2)STEP 2 : Load the dataset
# load dataset
data <- mtcars
#convert 'cyl' to a factor for categorical analysis
data$cyl <- as.factor(data$cyl)STEP 3 : Group by categorical variables
#summarize average mpg by cylinder category
summary_data <- data %>%
group_by(cyl) %>%
summarise(avg_mpg = mean(mpg), .groups = 'drop')
#display summary
print(summary_data)# A tibble: 3 × 2
cyl avg_mpg
<fct> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1
STEP 4 : Visualizing the findings
ggplot(summary_data, aes(x=cyl, y=avg_mpg, fill = cyl)) +
geom_bar(stat = "identity") +
labs(title = "average MPG by cylinder count",
x = "number of cylinders",
y = "average MPG") +
theme_minimal()