1. load libraries

2. load seurat object

# #Load Seurat Object 
# load("/home/nabbasi/isilon/To_Transfer_between_computers/23-Harmony_Integration/0-robj/5-Harmony_Integrated_All_samples_Merged_CD4Tcells_final_Resolution_Selected_0.8_ADT_Normalized_cleaned_mt.robj")
# 
# pseudobulk_seurat <- All_samples_Merged
# 
# # Set the label column with "P1", "P2", "P3", and "Control"
# pseudobulk_seurat$label <- factor(
#   ifelse(pseudobulk_seurat$orig.ident %in% c("L1", "L2"), "P1", 
#          ifelse(pseudobulk_seurat$orig.ident %in% c("L3", "L4"), "P2",
#                 ifelse(pseudobulk_seurat$orig.ident %in% c("L5", "L6", "L7"), "P3", NA))),
#   levels = c("P1", "P2", "P3")
# )
# 
# 
# # Double-check the reference level
# print(levels(pseudobulk_seurat$label))  # Should print "Control" first
# 
# # Verify factor levels
# print(levels(pseudobulk_seurat$label))  # Should show Control first
# 
# # Ensure 'replicate' is a factor
# pseudobulk_seurat$replicate <- as.factor(pseudobulk_seurat$cell_line)
# 
# # Rename the cell type column
# pseudobulk_seurat$cell_type <- "CD4T"

3. DE using LIBRA

library(Libra)

# 
# 
# # Create subsets for each pair of patients
# p1_p2 <- subset(pseudobulk_seurat, label %in% c("P1", "P2"))
# p1_p3 <- subset(pseudobulk_seurat, label %in% c("P1", "P3"))
# p2_p3 <- subset(pseudobulk_seurat, label %in% c("P2", "P3"))
# 
# # Run Libra for P1 vs P2
# libra_p1_p2 <- run_de(
#   input = p1_p2,
#   label_col = "label",
#   cell_type_col = "cell_type",
#   replicate_col = "replicate",
#   de_family = "pseudobulk",
#   de_method = "DESeq2",
#   de_type = "LRT"
# )
# 
# p1_p2 <- as.data.frame(df)
# 
# write.csv(p1_p2, "../18March_Patient_comparison_Pseudobulk/P1_vs_P2/Psedobulk_Deseq2_P1_vs_P2.csv", row.names = FALSE)
# 
# # Run Libra for P1 vs P3
# libra_p1_p3 <- run_de(
#   input = p1_p3,
#   label_col = "label",
#   cell_type_col = "cell_type",
#   replicate_col = "replicate",
#   de_family = "pseudobulk",
#   de_method = "DESeq2",
#   de_type = "LRT"
# )
# 
# p1_p3 <- as.data.frame(df)
# 
# write.csv(p1_p3, "../18March_Patient_comparison_Pseudobulk/P1_vs_P3/Psedobulk_Deseq2_P1_vs_P3.csv", row.names = FALSE)
# 
# # Run Libra for P2 vs P3
# libra_p2_p3 <- run_de(
#   input = p2_p3,
#   label_col = "label",
#   cell_type_col = "cell_type",
#   replicate_col = "replicate",
#   de_family = "pseudobulk",
#   de_method = "DESeq2",
#   de_type = "LRT"
# )
# 
# p2_p3 <- as.data.frame(df)
# 
# write.csv(p2_p3, "../18March_Patient_comparison_Pseudobulk/P2_vs_P3/Psedobulk_Deseq2_P2_vs_P3.csv", row.names = FALSE)



df <- libra_p1_p3[!(libra_p1_p3$P1.exp < 0.20 & libra_p1_p3$P3.exp < 0.20), ]

DE_results_df <- as.data.frame(df)

write.csv(DE_results_df, "../P1_vs_P3/Psedobulk_Deseq2_filtered_on_mean_P1_vs_P3.csv", row.names = FALSE)

Volcano Plot

library(ggplot2)
library(dplyr)
library(ggrepel)



# Ensure correct column names
colnames(DE_results_df)
 [1] "cell_type" "gene"      "avg_logFC" "P1.pct"    "P3.pct"    "P1.exp"    "P3.exp"    "p_val"     "p_val_adj" "de_family" "de_method" "de_type"  
# Define significance categories
volcano_data <- DE_results_df %>%
  mutate(
    significance = case_when(
      p_val_adj < 0.05 & avg_logFC > 2 ~ "Upregulated",
      p_val_adj < 0.05 & avg_logFC < -2 ~ "Downregulated",
      TRUE ~ "Not Significant"
    )
  )

# Select genes to label: p_val_adj < 1e-50 OR logFC > 2 OR logFC < -2
top_genes <- volcano_data %>%
  filter(p_val_adj < 0.05 | avg_logFC > 2 | avg_logFC < -2)

ggplot(volcano_data, aes(x = avg_logFC, y = -log10(p_val_adj), color = significance)) +
  geom_point(alpha = 0.6, size = 2) +  # Main points
  scale_color_manual(values = c("Upregulated" = "red", "Downregulated" = "blue", "Not Significant" = "grey")) +
  theme_minimal() +
  labs(title = "Volcano Plot: Pseudobulk DESeq2 Analysis",
       x = "Log2 Fold Change",
       y = "-Log10 Adjusted P-Value",
       color = "Significance") +

  # Add gene labels WITHOUT any lines connecting them
  geom_text_repel(data = top_genes, 
                  aes(label = gene),  
                  size = 5, box.padding = 0.3, max.overlaps = 15, segment.color = NA) +  

  # Add threshold lines
  geom_vline(xintercept = c(-2, 2), linetype = "dashed", color = "black") +  # logFC thresholds
  geom_hline(yintercept = -log10(0.05), linetype = "dashed", color = "black") +  # p-value threshold

  ylim(0, 70)  # Set max y-axis limit to avoid extreme values

NA
NA

Volcano Plot

library(ggplot2)
library(dplyr)
library(ggrepel)


# Ensure correct column names
colnames(DE_results_df)
 [1] "cell_type" "gene"      "avg_logFC" "P1.pct"    "P3.pct"    "P1.exp"    "P3.exp"    "p_val"     "p_val_adj" "de_family" "de_method" "de_type"  
# Define significance categories
volcano_data <- DE_results_df %>%
  mutate(
    significance = case_when(
      p_val_adj < 1e-20 & avg_logFC > 2 ~ "Most Upregulated",
      p_val_adj < 1e-20 & avg_logFC < -2 ~ "Most Downregulated",
      p_val_adj < 0.05 & avg_logFC > 2 ~ "Upregulated",
      p_val_adj < 0.05 & avg_logFC < -2 ~ "Downregulated",
      TRUE ~ "Not Significant"
    )
  )

# Select only very significant genes for labeling
top_genes <- volcano_data %>%
  filter(p_val_adj < 0.05 & (avg_logFC > 2 | avg_logFC < -2))

ggplot(volcano_data, aes(x = avg_logFC, y = -log10(p_val_adj), color = significance)) +
  
  # Main points
  geom_point(alpha = 0.7, size = 2.5) +
  
  # Highlight highly significant genes with larger points
  geom_point(data = top_genes, aes(x = avg_logFC, y = -log10(p_val_adj)), 
             color = "black", size = 3, shape = 21, fill = "black") +

  # Custom color scheme
  scale_color_manual(values = c(
    "Most Upregulated" = "darkred",
    "Most Downregulated" = "darkblue",
    "Upregulated" = "red",
    "Downregulated" = "blue",
    "Not Significant" = "grey"
  )) +

  # Add gene labels (only for highly significant genes)
  geom_text_repel(data = top_genes, aes(label = gene),  
                  size = 4, box.padding = 0.5, max.overlaps = 10, segment.color = NA) +
  
  # Add threshold lines
  geom_vline(xintercept = c(-2, 2), linetype = "dashed", color = "black") +  
  geom_hline(yintercept = -log10(0.05), linetype = "dashed", color = "black") +  

  # Improve theme
  theme_minimal(base_size = 14) +
  labs(title = "Volcano Plot: Pseudobulk DESeq2 Analysis",
       x = "Log2 Fold Change",
       y = "-Log10 Adjusted P-Value",
       color = "Significance") +

  ylim(0, 50)  # Avoid extreme scaling issues

NA
NA

4. Summarize Markers

markers <- DE_results_df

# Load necessary library
library(dplyr)

# Function to summarize markers
summarize_markers <- function(markers) {
  # Filter out NA values in p_val_adj
  markers <- markers %>% filter(!is.na(p_val_adj))
  
  num_pval0 <- sum(markers$p_val_adj == 0)
  num_pval1 <- sum(markers$p_val_adj == 1)
  num_significant <- sum(markers$p_val_adj < 0.05)
  num_upregulated <- sum(markers$avg_logFC > 1)
  num_downregulated <- sum(markers$avg_logFC < -1)
  
  cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
  cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
  cat("Number of significant genes (p_val_adj < 0.05):", num_significant, "\n")
  cat("Number of upregulated genes (avg_logFC > 1):", num_upregulated, "\n")
  cat("Number of downregulated genes (avg_logFC < -1):", num_downregulated, "\n")
}

# Example usage
cat("Markers Summary at 1e-4:\n")
Markers Summary at 1e-4:
summarize_markers(markers)
Number of genes with p_val_adj = 0: 0 
Number of genes with p_val_adj = 1: 20 
Number of significant genes (p_val_adj < 0.05): 2119 
Number of upregulated genes (avg_logFC > 1): 550 
Number of downregulated genes (avg_logFC < -1): 715 
markers2 <- DE_results_df
# Function to summarize markers
summarize_markers <- function(markers) {
  # Filter out NA values in p_val_adj
  markers <- markers %>% filter(!is.na(p_val_adj))
  
  num_pval0 <- sum(markers$p_val_adj == 0)
  num_pval1 <- sum(markers$p_val_adj == 1)
  num_significant <- sum(markers$p_val_adj < 1e-4)
  num_upregulated <- sum(markers$avg_logFC > 1)
  num_downregulated <- sum(markers$avg_logFC < -1)
  
  cat("Number of genes with p_val_adj = 0:", num_pval0, "\n")
  cat("Number of genes with p_val_adj = 1:", num_pval1, "\n")
  cat("Number of significant genes (p_val_adj < 1e-4):", num_significant, "\n")
  cat("Number of upregulated genes (avg_logFC > 1):", num_upregulated, "\n")
  cat("Number of downregulated genes (avg_logFC < 1):", num_downregulated, "\n")
}

cat("Markers Summary at 1e-4:\n")
Markers Summary at 1e-4:
summarize_markers(markers2)
Number of genes with p_val_adj = 0: 0 
Number of genes with p_val_adj = 1: 20 
Number of significant genes (p_val_adj < 1e-4): 728 
Number of upregulated genes (avg_logFC > 1): 550 
Number of downregulated genes (avg_logFC < 1): 715 

EnhancedVolcano plot


library(dplyr)
library(EnhancedVolcano)

# Assuming you have a data frame named Malignant_CD4Tcells_vs_Normal_CD4Tcells
# Filter genes based on lowest p-values but include all genes
filtered_genes <- markers %>%
  arrange(p_val_adj, desc(abs(avg_logFC)))

# Create the EnhancedVolcano plot with the filtered data
EnhancedVolcano(
  filtered_genes, 
  lab = ifelse(filtered_genes$p_val_adj <= 0.0000905 & abs(filtered_genes$avg_logFC) >= 1.0, filtered_genes$gene, NA),
  x = "avg_logFC", 
  y = "p_val_adj",
  title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
  pCutoff = 1e-4,
  FCcutoff = 1.0,
  legendPosition = 'right', 
  labCol = 'black',
  labFace = 'bold',
  boxedLabels = FALSE,  # Set to FALSE to remove boxed labels
  pointSize = 3.0,
  labSize = 5.0,
  col = c('grey70', 'black', 'blue', 'red'),  # Customize point colors
  selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0]  # Only label significant genes
)

NA
NA
NA

Create the EnhancedVolcano plot


library(ggplot2)
library(EnhancedVolcano)
library(dplyr)

# Define the output directory
output_dir <- "Malignant_vs_Control"
dir.create(output_dir, showWarnings = FALSE)

 Malignant_CD4Tcells_vs_Normal_CD4Tcells <- filtered_genes

# First Volcano Plot
p1 <- EnhancedVolcano(
  Malignant_CD4Tcells_vs_Normal_CD4Tcells,
  lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
  x = "avg_logFC",
  y = "p_val_adj",
  title = "Malignant_CD4Tcells_vs_Normal_CD4Tcells",
  pCutoff = 1e-4,
  FCcutoff = 1.0
)
print(p1)  # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot1.png"), plot = p1, width = 14, height = 10, dpi = 300)

# Second Volcano Plot with selected genes
p2 <- EnhancedVolcano(
  Malignant_CD4Tcells_vs_Normal_CD4Tcells, 
  lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
  x = "avg_logFC", 
  y = "p_val_adj",
  selectLab = c('EPCAM', 'BCAT1', 'KIR3DL2', 'FOXM1', 'TWIST1', 'TNFSF9', 
                              'CD80',  'IL1B', 'RPS4Y1', "TOX", "CD52", "TWIST1", "CCR4", "CCR7","PDCD1",
                              'IL7R', 'TCF7',  'MKI67', 'CD70', "DPP4",
                              'IL2RA','TRBV6-2', 'TRBV10-3', 'TRBV4-2', 'TRBV9', 'TRBV7-9', 
                              'TRAV12-1', 'CD8B', 'FCGR3A', 'GNLY', 'FOXP3', 'SELL', 
                              'GIMAP1', 'RIPOR2', 'LEF1', 'HOXC9', 'SP5',
                              'CCL17', 'ETV4', 'THY1', 'FOXA2', 'ITGAD', 'S100P', 'TBX4', 
                              'ID1', 'XCL1', 'SOX2', 'CD27', 'CD28','PLS3','CD70','RAB25' , 'TRBV27', 'TRBV2'),
  title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
  xlab = bquote(~Log[2]~ 'fold change'),
  pCutoff = 0.05,
  FCcutoff = 1.5, 
  pointSize = 3.0,
  labSize = 5.0,
  boxedLabels = TRUE,
  colAlpha = 0.5,
  legendPosition = 'right',
  legendLabSize = 10,
  legendIconSize = 4.0,
  drawConnectors = TRUE,
  widthConnectors = 0.5,
  colConnectors = 'grey50',
  arrowheads = FALSE,
  max.overlaps = 30
)
print(p2)  # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot2.png"), plot = p2, width = 14, height = 10, dpi = 300)

# Filtering genes
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
  arrange(p_val_adj, desc(abs(avg_logFC)))

# Third Volcano Plot - Filtering by p-value and logFC
p3 <- EnhancedVolcano(
  filtered_genes, 
  lab = ifelse(filtered_genes$p_val_adj <= 1e-4 & abs(filtered_genes$avg_logFC) >= 1.0, filtered_genes$gene, NA),
  x = "avg_logFC", 
  y = "p_val_adj",
  title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
  pCutoff = 1e-4,
  FCcutoff = 1.0,
  legendPosition = 'right', 
  labCol = 'black',
  labFace = 'bold',
  boxedLabels = FALSE,  # Remove boxed labels
  pointSize = 3.0,
  labSize = 5.0,
  col = c('grey70', 'black', 'blue', 'red'),  # Customize point colors
  selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0]
)
print(p3)  # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot3.png"), plot = p3, width = 14, height = 10, dpi = 300)

# Fourth Volcano Plot - More refined filtering
p4 <- EnhancedVolcano(
  filtered_genes, 
  lab = ifelse(filtered_genes$p_val_adj <= 1e-4 & abs(filtered_genes$avg_logFC) >= 1.0, filtered_genes$gene, NA),
  x = "avg_logFC", 
  y = "p_val_adj",
  title = "Malignant CD4 T cells (cell lines) vs Normal CD4 T cells",
  subtitle = "Highlighting differentially expressed genes",
  pCutoff = 1e-4,
  FCcutoff = 1.0,
  legendPosition = 'right',
  colAlpha = 0.8,  # Slight transparency for non-significant points
  col = c('grey70', 'black', 'blue', 'red'),  # Custom color scheme
  gridlines.major = TRUE,
  gridlines.minor = FALSE,
  selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_logFC) >= 1.0]
)
print(p4)  # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot4.png"), plot = p4, width = 14, height = 10, dpi = 300)

message("All volcano plots have been displayed and saved successfully in the 'L1_vs_Control' folder.")
All volcano plots have been displayed and saved successfully in the 'L1_vs_Control' folder.

5. Enrichment Analysis-All_Pathways

# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(ReactomePA)
library(DOSE) # For GSEA analysis
library(ggplot2) # Ensure ggplot2 is available for plotting

# Define threshold for differential expression selection (modified thresholds)
logFC_up_threshold <- 1          # Upregulated logFC threshold
logFC_down_threshold <- -1       # Downregulated logFC threshold
pval_threshold <- 0.05           # p-value threshold as specified

# Load your differential expression results (modify based on actual data structure)
# Malignant_CD4Tcells_vs_Normal_CD4Tcells <- read.csv("Your_DE_Results_File.csv")

# Select upregulated and downregulated genes
upregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[
  Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_logFC > logFC_up_threshold & 
  Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < pval_threshold, ]

downregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[
  Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_logFC < logFC_down_threshold & 
  Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < pval_threshold, ]

# Check for missing genes (NAs) in the gene column and remove them
upregulated_genes <- na.omit(upregulated_genes)
downregulated_genes <- na.omit(downregulated_genes)

# Save upregulated and downregulated gene results to CSV
write.csv(upregulated_genes, "Malignant_vs_Control/upregulated_genes.csv", row.names = FALSE)
write.csv(downregulated_genes, "Malignant_vs_Control/downregulated_genes.csv", row.names = FALSE)

# Convert gene symbols to Entrez IDs for enrichment analysis, with checks for missing values
upregulated_entrez <- bitr(upregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Avis : 6.16% of input gene IDs are fail to map...
downregulated_entrez <- bitr(downregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Avis : 5.13% of input gene IDs are fail to map...
# Check for missing Entrez IDs
missing_upregulated <- upregulated_genes$gene[is.na(upregulated_entrez$ENTREZID)]
missing_downregulated <- downregulated_genes$gene[is.na(downregulated_entrez$ENTREZID)]

# Print out the missing gene symbols for debugging
cat("Missing upregulated genes:\n", missing_upregulated, "\n")
Missing upregulated genes:
  
cat("Missing downregulated genes:\n", missing_downregulated, "\n")
Missing downregulated genes:
  
# Remove genes that couldn't be mapped to Entrez IDs
upregulated_entrez <- upregulated_entrez$ENTREZID[!is.na(upregulated_entrez$ENTREZID)]
downregulated_entrez <- downregulated_entrez$ENTREZID[!is.na(downregulated_entrez$ENTREZID)]

# Define a function to safely run enrichment, plot results, and save them
safe_enrichGO <- function(gene_list, title, filename) {
  if (length(gene_list) > 0) {
    result <- enrichGO(gene = gene_list, OrgDb = org.Hs.eg.db, keyType = "SYMBOL",
                       ont = "BP", pAdjustMethod = "BH", pvalueCutoff = 0.05)
    if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
      p <- dotplot(result, showCategory = 10, title = title)
      print(p)  
      ggsave(paste0("Malignant_vs_Control/", gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
      write.csv(as.data.frame(result), file = paste0("Malignant_vs_Control/", filename), row.names = FALSE)
    } else {
      message(paste("No significant enrichment found for:", title))
    }
  } else {
    message(paste("No genes found for:", title))
  }
}

safe_enrichKEGG <- function(entrez_list, title, filename) {
  if (length(entrez_list) > 0) {
    result <- enrichKEGG(gene = entrez_list, organism = "hsa", pvalueCutoff = 0.05)
    if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
      p <- dotplot(result, showCategory = 10, title = title)
      print(p)
      ggsave(paste0("Malignant_vs_Control/", gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
      write.csv(as.data.frame(result), file = paste0("Malignant_vs_Control/", filename), row.names = FALSE)
    } else {
      message(paste("No significant KEGG pathways found for:", title))
    }
  } else {
    message(paste("No genes found for:", title))
  }
}

safe_enrichReactome <- function(entrez_list, title, filename) {
  if (length(entrez_list) > 0) {
    result <- enrichPathway(gene = entrez_list, organism = "human", pvalueCutoff = 0.05)
    if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
      p <- dotplot(result, showCategory = 10, title = title)
      print(p)
      ggsave(paste0("Malignant_vs_Control/", gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
      write.csv(as.data.frame(result), file = paste0("Malignant_vs_Control/", filename), row.names = FALSE)
    } else {
      message(paste("No significant Reactome pathways found for:", title))
    }
  } else {
    message(paste("No genes found for:", title))
  }
}

# Perform enrichment analyses, generate plots, and save results
safe_enrichGO(upregulated_genes$gene, "GO Enrichment for Upregulated Genes", "upregulated_GO_results.csv")

safe_enrichGO(downregulated_genes$gene, "GO Enrichment for Downregulated Genes", "downregulated_GO_results.csv")


safe_enrichKEGG(upregulated_entrez, "KEGG Pathway Enrichment for Upregulated Genes", "upregulated_KEGG_results.csv")
No significant KEGG pathways found for: KEGG Pathway Enrichment for Upregulated Genes
safe_enrichKEGG(downregulated_entrez, "KEGG Pathway Enrichment for Downregulated Genes", "downregulated_KEGG_results.csv")


safe_enrichReactome(upregulated_entrez, "Reactome Pathway Enrichment for Upregulated Genes", "upregulated_Reactome_results.csv")

safe_enrichReactome(downregulated_entrez, "Reactome Pathway Enrichment for Downregulated Genes", "downregulated_Reactome_results.csv")

NA
NA

Enrichment Analysis_Hallmark


# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)

# Load Hallmark gene sets from msigdbr
hallmark_sets <- msigdbr(species = "Homo sapiens", category = "H")  # "H" is for Hallmark gene sets

# Convert gene symbols to uppercase for consistency
upregulated_genes$gene <- toupper(upregulated_genes$gene)
downregulated_genes$gene <- toupper(downregulated_genes$gene)

# Check for overlap between your upregulated/downregulated genes and Hallmark gene sets
upregulated_in_hallmark <- intersect(upregulated_genes$gene, hallmark_sets$gene_symbol)
downregulated_in_hallmark <- intersect(downregulated_genes$gene, hallmark_sets$gene_symbol)

# Print the number of overlapping genes for both upregulated and downregulated genes
cat("Number of upregulated genes in Hallmark gene sets:", length(upregulated_in_hallmark), "\n")
Number of upregulated genes in Hallmark gene sets: 129 
cat("Number of downregulated genes in Hallmark gene sets:", length(downregulated_in_hallmark), "\n")
Number of downregulated genes in Hallmark gene sets: 224 
# Define the output folder where the results will be saved
output_folder <- "Malignant_vs_Control/"

# If there are genes to analyze, proceed with enrichment analysis
if (length(upregulated_in_hallmark) > 0) {
  # Perform enrichment analysis for upregulated genes using Hallmark gene sets
  hallmark_up <- enricher(gene = upregulated_in_hallmark, 
                          TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")],  # Ensure TERM2GENE uses correct columns
                          pvalueCutoff = 0.05)
  # Check if results exist
  if (!is.null(hallmark_up) && nrow(hallmark_up) > 0) {
    # Visualize results if available
    up_dotplot <- dotplot(hallmark_up, showCategory = 20, title = "Hallmark Pathway Enrichment for Upregulated Genes")
    
    # Display the plot in the notebook
    print(up_dotplot)
    
    # Save the dotplot to a PNG file
    ggsave(paste0(output_folder, "hallmark_upregulated_dotplot.png"), plot = up_dotplot, width = 10, height = 8)
    
    # Optionally, save the results as CSV
    write.csv(as.data.frame(hallmark_up), file = paste0(output_folder, "hallmark_upregulated_enrichment.csv"), row.names = FALSE)
  } else {
    cat("No significant enrichment found for upregulated genes.\n")
  }
} else {
  cat("No upregulated genes overlap with Hallmark gene sets.\n")
}


if (length(downregulated_in_hallmark) > 0) {
  # Perform enrichment analysis for downregulated genes using Hallmark gene sets
  hallmark_down <- enricher(gene = downregulated_in_hallmark, 
                            TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")],  # Ensure TERM2GENE uses correct columns
                            pvalueCutoff = 0.05)
  # Check if results exist
  if (!is.null(hallmark_down) && nrow(hallmark_down) > 0) {
    # Visualize results if available
    down_dotplot <- dotplot(hallmark_down, showCategory = 20, title = "Hallmark Pathway Enrichment for Downregulated Genes")
    
    # Display the plot in the notebook
    print(down_dotplot)
    
    # Save the dotplot to a PNG file
    ggsave(paste0(output_folder, "hallmark_downregulated_dotplot.png"), plot = down_dotplot, width = 10, height = 8)
    
    # Optionally, save the results as CSV
    write.csv(as.data.frame(hallmark_down), file = paste0(output_folder, "hallmark_downregulated_enrichment.csv"), row.names = FALSE)
  } else {
    cat("No significant enrichment found for downregulated genes.\n")
  }
} else {
  cat("No downregulated genes overlap with Hallmark gene sets.\n")
}

NA
NA
LS0tCnRpdGxlOiAiUHNldWRvQnVsayBBbmFseXNpcyB1c2luZyBMaWJyYSBSTkEgYXNzYXktRGVzZXEyLUxSVF9vbl9saXN0X2ZpbHRyZWRfb25fbWVhbl9QMV92c19QMyIKYXV0aG9yOiAiTmFzaXIgTWFobW9vZCBBYmJhc2kiCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICB0b2M6IHllcwogICAgdG9jX2Zsb2F0OiB5ZXMKICAgIHRvY19jb2xsYXBzZWQ6IHllcwogIHdvcmRfZG9jdW1lbnQ6CiAgICB0b2M6IHllcwogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IHllcwogICAgZGZfcHJpbnQ6IHBhZ2VkCiAgcGRmX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKLS0tCgojIDEuIGxvYWQgbGlicmFyaWVzCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQoKIyBMb2FkIGxpYnJhcmllcwpsaWJyYXJ5KFNldXJhdCkKbGlicmFyeShNYXRyaXgpCmxpYnJhcnkoU2luZ2xlQ2VsbEV4cGVyaW1lbnQpCmxpYnJhcnkoREVTZXEyKQpsaWJyYXJ5KExpYnJhKQoKYGBgCgoKIyAyLiBsb2FkIHNldXJhdCBvYmplY3QKYGBge3IgbG9hZF9zZXVyYXR9CiMgI0xvYWQgU2V1cmF0IE9iamVjdCAKIyBsb2FkKCIvaG9tZS9uYWJiYXNpL2lzaWxvbi9Ub19UcmFuc2Zlcl9iZXR3ZWVuX2NvbXB1dGVycy8yMy1IYXJtb255X0ludGVncmF0aW9uLzAtcm9iai81LUhhcm1vbnlfSW50ZWdyYXRlZF9BbGxfc2FtcGxlc19NZXJnZWRfQ0Q0VGNlbGxzX2ZpbmFsX1Jlc29sdXRpb25fU2VsZWN0ZWRfMC44X0FEVF9Ob3JtYWxpemVkX2NsZWFuZWRfbXQucm9iaiIpCiMgCiMgcHNldWRvYnVsa19zZXVyYXQgPC0gQWxsX3NhbXBsZXNfTWVyZ2VkCiMgCiMgIyBTZXQgdGhlIGxhYmVsIGNvbHVtbiB3aXRoICJQMSIsICJQMiIsICJQMyIsIGFuZCAiQ29udHJvbCIKIyBwc2V1ZG9idWxrX3NldXJhdCRsYWJlbCA8LSBmYWN0b3IoCiMgICBpZmVsc2UocHNldWRvYnVsa19zZXVyYXQkb3JpZy5pZGVudCAlaW4lIGMoIkwxIiwgIkwyIiksICJQMSIsIAojICAgICAgICAgIGlmZWxzZShwc2V1ZG9idWxrX3NldXJhdCRvcmlnLmlkZW50ICVpbiUgYygiTDMiLCAiTDQiKSwgIlAyIiwKIyAgICAgICAgICAgICAgICAgaWZlbHNlKHBzZXVkb2J1bGtfc2V1cmF0JG9yaWcuaWRlbnQgJWluJSBjKCJMNSIsICJMNiIsICJMNyIpLCAiUDMiLCBOQSkpKSwKIyAgIGxldmVscyA9IGMoIlAxIiwgIlAyIiwgIlAzIikKIyApCiMgCiMgCiMgIyBEb3VibGUtY2hlY2sgdGhlIHJlZmVyZW5jZSBsZXZlbAojIHByaW50KGxldmVscyhwc2V1ZG9idWxrX3NldXJhdCRsYWJlbCkpICAjIFNob3VsZCBwcmludCAiQ29udHJvbCIgZmlyc3QKIyAKIyAjIFZlcmlmeSBmYWN0b3IgbGV2ZWxzCiMgcHJpbnQobGV2ZWxzKHBzZXVkb2J1bGtfc2V1cmF0JGxhYmVsKSkgICMgU2hvdWxkIHNob3cgQ29udHJvbCBmaXJzdAojIAojICMgRW5zdXJlICdyZXBsaWNhdGUnIGlzIGEgZmFjdG9yCiMgcHNldWRvYnVsa19zZXVyYXQkcmVwbGljYXRlIDwtIGFzLmZhY3Rvcihwc2V1ZG9idWxrX3NldXJhdCRjZWxsX2xpbmUpCiMgCiMgIyBSZW5hbWUgdGhlIGNlbGwgdHlwZSBjb2x1bW4KIyBwc2V1ZG9idWxrX3NldXJhdCRjZWxsX3R5cGUgPC0gIkNENFQiCmBgYAoKIyAzLiBERSB1c2luZyBMSUJSQQpgYGB7ciAsIGZpZy5oZWlnaHQ9MTQsIGZpZy53aWR0aD0xOH0KbGlicmFyeShMaWJyYSkKCiMgCiMgCiMgIyBDcmVhdGUgc3Vic2V0cyBmb3IgZWFjaCBwYWlyIG9mIHBhdGllbnRzCiMgcDFfcDIgPC0gc3Vic2V0KHBzZXVkb2J1bGtfc2V1cmF0LCBsYWJlbCAlaW4lIGMoIlAxIiwgIlAyIikpCiMgcDFfcDMgPC0gc3Vic2V0KHBzZXVkb2J1bGtfc2V1cmF0LCBsYWJlbCAlaW4lIGMoIlAxIiwgIlAzIikpCiMgcDJfcDMgPC0gc3Vic2V0KHBzZXVkb2J1bGtfc2V1cmF0LCBsYWJlbCAlaW4lIGMoIlAyIiwgIlAzIikpCiMgCiMgIyBSdW4gTGlicmEgZm9yIFAxIHZzIFAyCiMgbGlicmFfcDFfcDIgPC0gcnVuX2RlKAojICAgaW5wdXQgPSBwMV9wMiwKIyAgIGxhYmVsX2NvbCA9ICJsYWJlbCIsCiMgICBjZWxsX3R5cGVfY29sID0gImNlbGxfdHlwZSIsCiMgICByZXBsaWNhdGVfY29sID0gInJlcGxpY2F0ZSIsCiMgICBkZV9mYW1pbHkgPSAicHNldWRvYnVsayIsCiMgICBkZV9tZXRob2QgPSAiREVTZXEyIiwKIyAgIGRlX3R5cGUgPSAiTFJUIgojICkKIyAKIyBwMV9wMiA8LSBhcy5kYXRhLmZyYW1lKGRmKQojIAojIHdyaXRlLmNzdihwMV9wMiwgIi4uLzE4TWFyY2hfUGF0aWVudF9jb21wYXJpc29uX1BzZXVkb2J1bGsvUDFfdnNfUDIvUHNlZG9idWxrX0Rlc2VxMl9QMV92c19QMi5jc3YiLCByb3cubmFtZXMgPSBGQUxTRSkKIyAKIyAjIFJ1biBMaWJyYSBmb3IgUDEgdnMgUDMKIyBsaWJyYV9wMV9wMyA8LSBydW5fZGUoCiMgICBpbnB1dCA9IHAxX3AzLAojICAgbGFiZWxfY29sID0gImxhYmVsIiwKIyAgIGNlbGxfdHlwZV9jb2wgPSAiY2VsbF90eXBlIiwKIyAgIHJlcGxpY2F0ZV9jb2wgPSAicmVwbGljYXRlIiwKIyAgIGRlX2ZhbWlseSA9ICJwc2V1ZG9idWxrIiwKIyAgIGRlX21ldGhvZCA9ICJERVNlcTIiLAojICAgZGVfdHlwZSA9ICJMUlQiCiMgKQojIAojIHAxX3AzIDwtIGFzLmRhdGEuZnJhbWUoZGYpCiMgCiMgd3JpdGUuY3N2KHAxX3AzLCAiLi4vMThNYXJjaF9QYXRpZW50X2NvbXBhcmlzb25fUHNldWRvYnVsay9QMV92c19QMy9Qc2Vkb2J1bGtfRGVzZXEyX1AxX3ZzX1AzLmNzdiIsIHJvdy5uYW1lcyA9IEZBTFNFKQojIAojICMgUnVuIExpYnJhIGZvciBQMiB2cyBQMwojIGxpYnJhX3AyX3AzIDwtIHJ1bl9kZSgKIyAgIGlucHV0ID0gcDJfcDMsCiMgICBsYWJlbF9jb2wgPSAibGFiZWwiLAojICAgY2VsbF90eXBlX2NvbCA9ICJjZWxsX3R5cGUiLAojICAgcmVwbGljYXRlX2NvbCA9ICJyZXBsaWNhdGUiLAojICAgZGVfZmFtaWx5ID0gInBzZXVkb2J1bGsiLAojICAgZGVfbWV0aG9kID0gIkRFU2VxMiIsCiMgICBkZV90eXBlID0gIkxSVCIKIyApCiMgCiMgcDJfcDMgPC0gYXMuZGF0YS5mcmFtZShkZikKIyAKIyB3cml0ZS5jc3YocDJfcDMsICIuLi8xOE1hcmNoX1BhdGllbnRfY29tcGFyaXNvbl9Qc2V1ZG9idWxrL1AyX3ZzX1AzL1BzZWRvYnVsa19EZXNlcTJfUDJfdnNfUDMuY3N2Iiwgcm93Lm5hbWVzID0gRkFMU0UpCgoKCmRmIDwtIGxpYnJhX3AxX3AzWyEobGlicmFfcDFfcDMkUDEuZXhwIDwgMC4yMCAmIGxpYnJhX3AxX3AzJFAzLmV4cCA8IDAuMjApLCBdCgpERV9yZXN1bHRzX2RmIDwtIGFzLmRhdGEuZnJhbWUoZGYpCgp3cml0ZS5jc3YoREVfcmVzdWx0c19kZiwgIi4uL1AxX3ZzX1AzL1BzZWRvYnVsa19EZXNlcTJfZmlsdGVyZWRfb25fbWVhbl9QMV92c19QMy5jc3YiLCByb3cubmFtZXMgPSBGQUxTRSkKYGBgCgoKCgojIyBWb2xjYW5vIFBsb3QKYGBge3IgLCBmaWcuaGVpZ2h0PTE0LCBmaWcud2lkdGg9MTh9CmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShkcGx5cikKbGlicmFyeShnZ3JlcGVsKQoKCgojIEVuc3VyZSBjb3JyZWN0IGNvbHVtbiBuYW1lcwpjb2xuYW1lcyhERV9yZXN1bHRzX2RmKQoKIyBEZWZpbmUgc2lnbmlmaWNhbmNlIGNhdGVnb3JpZXMKdm9sY2Fub19kYXRhIDwtIERFX3Jlc3VsdHNfZGYgJT4lCiAgbXV0YXRlKAogICAgc2lnbmlmaWNhbmNlID0gY2FzZV93aGVuKAogICAgICBwX3ZhbF9hZGogPCAwLjA1ICYgYXZnX2xvZ0ZDID4gMiB+ICJVcHJlZ3VsYXRlZCIsCiAgICAgIHBfdmFsX2FkaiA8IDAuMDUgJiBhdmdfbG9nRkMgPCAtMiB+ICJEb3ducmVndWxhdGVkIiwKICAgICAgVFJVRSB+ICJOb3QgU2lnbmlmaWNhbnQiCiAgICApCiAgKQoKIyBTZWxlY3QgZ2VuZXMgdG8gbGFiZWw6IHBfdmFsX2FkaiA8IDFlLTUwIE9SIGxvZ0ZDID4gMiBPUiBsb2dGQyA8IC0yCnRvcF9nZW5lcyA8LSB2b2xjYW5vX2RhdGEgJT4lCiAgZmlsdGVyKHBfdmFsX2FkaiA8IDAuMDUgfCBhdmdfbG9nRkMgPiAyIHwgYXZnX2xvZ0ZDIDwgLTIpCgpnZ3Bsb3Qodm9sY2Fub19kYXRhLCBhZXMoeCA9IGF2Z19sb2dGQywgeSA9IC1sb2cxMChwX3ZhbF9hZGopLCBjb2xvciA9IHNpZ25pZmljYW5jZSkpICsKICBnZW9tX3BvaW50KGFscGhhID0gMC42LCBzaXplID0gMikgKyAgIyBNYWluIHBvaW50cwogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjKCJVcHJlZ3VsYXRlZCIgPSAicmVkIiwgIkRvd25yZWd1bGF0ZWQiID0gImJsdWUiLCAiTm90IFNpZ25pZmljYW50IiA9ICJncmV5IikpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIGxhYnModGl0bGUgPSAiVm9sY2FubyBQbG90OiBQc2V1ZG9idWxrIERFU2VxMiBBbmFseXNpcyIsCiAgICAgICB4ID0gIkxvZzIgRm9sZCBDaGFuZ2UiLAogICAgICAgeSA9ICItTG9nMTAgQWRqdXN0ZWQgUC1WYWx1ZSIsCiAgICAgICBjb2xvciA9ICJTaWduaWZpY2FuY2UiKSArCgogICMgQWRkIGdlbmUgbGFiZWxzIFdJVEhPVVQgYW55IGxpbmVzIGNvbm5lY3RpbmcgdGhlbQogIGdlb21fdGV4dF9yZXBlbChkYXRhID0gdG9wX2dlbmVzLCAKICAgICAgICAgICAgICAgICAgYWVzKGxhYmVsID0gZ2VuZSksICAKICAgICAgICAgICAgICAgICAgc2l6ZSA9IDUsIGJveC5wYWRkaW5nID0gMC4zLCBtYXgub3ZlcmxhcHMgPSAxNSwgc2VnbWVudC5jb2xvciA9IE5BKSArICAKCiAgIyBBZGQgdGhyZXNob2xkIGxpbmVzCiAgZ2VvbV92bGluZSh4aW50ZXJjZXB0ID0gYygtMiwgMiksIGxpbmV0eXBlID0gImRhc2hlZCIsIGNvbG9yID0gImJsYWNrIikgKyAgIyBsb2dGQyB0aHJlc2hvbGRzCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gLWxvZzEwKDAuMDUpLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJibGFjayIpICsgICMgcC12YWx1ZSB0aHJlc2hvbGQKCiAgeWxpbSgwLCA3MCkgICMgU2V0IG1heCB5LWF4aXMgbGltaXQgdG8gYXZvaWQgZXh0cmVtZSB2YWx1ZXMKCgpgYGAKIyMgVm9sY2FubyBQbG90CmBgYHtyICwgZmlnLmhlaWdodD0xNCwgZmlnLndpZHRoPTE4fQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkoZ2dyZXBlbCkKCgojIEVuc3VyZSBjb3JyZWN0IGNvbHVtbiBuYW1lcwpjb2xuYW1lcyhERV9yZXN1bHRzX2RmKQoKIyBEZWZpbmUgc2lnbmlmaWNhbmNlIGNhdGVnb3JpZXMKdm9sY2Fub19kYXRhIDwtIERFX3Jlc3VsdHNfZGYgJT4lCiAgbXV0YXRlKAogICAgc2lnbmlmaWNhbmNlID0gY2FzZV93aGVuKAogICAgICBwX3ZhbF9hZGogPCAxZS0yMCAmIGF2Z19sb2dGQyA+IDIgfiAiTW9zdCBVcHJlZ3VsYXRlZCIsCiAgICAgIHBfdmFsX2FkaiA8IDFlLTIwICYgYXZnX2xvZ0ZDIDwgLTIgfiAiTW9zdCBEb3ducmVndWxhdGVkIiwKICAgICAgcF92YWxfYWRqIDwgMC4wNSAmIGF2Z19sb2dGQyA+IDIgfiAiVXByZWd1bGF0ZWQiLAogICAgICBwX3ZhbF9hZGogPCAwLjA1ICYgYXZnX2xvZ0ZDIDwgLTIgfiAiRG93bnJlZ3VsYXRlZCIsCiAgICAgIFRSVUUgfiAiTm90IFNpZ25pZmljYW50IgogICAgKQogICkKCiMgU2VsZWN0IG9ubHkgdmVyeSBzaWduaWZpY2FudCBnZW5lcyBmb3IgbGFiZWxpbmcKdG9wX2dlbmVzIDwtIHZvbGNhbm9fZGF0YSAlPiUKICBmaWx0ZXIocF92YWxfYWRqIDwgMC4wNSAmIChhdmdfbG9nRkMgPiAyIHwgYXZnX2xvZ0ZDIDwgLTIpKQoKZ2dwbG90KHZvbGNhbm9fZGF0YSwgYWVzKHggPSBhdmdfbG9nRkMsIHkgPSAtbG9nMTAocF92YWxfYWRqKSwgY29sb3IgPSBzaWduaWZpY2FuY2UpKSArCiAgCiAgIyBNYWluIHBvaW50cwogIGdlb21fcG9pbnQoYWxwaGEgPSAwLjcsIHNpemUgPSAyLjUpICsKICAKICAjIEhpZ2hsaWdodCBoaWdobHkgc2lnbmlmaWNhbnQgZ2VuZXMgd2l0aCBsYXJnZXIgcG9pbnRzCiAgZ2VvbV9wb2ludChkYXRhID0gdG9wX2dlbmVzLCBhZXMoeCA9IGF2Z19sb2dGQywgeSA9IC1sb2cxMChwX3ZhbF9hZGopKSwgCiAgICAgICAgICAgICBjb2xvciA9ICJibGFjayIsIHNpemUgPSAzLCBzaGFwZSA9IDIxLCBmaWxsID0gImJsYWNrIikgKwoKICAjIEN1c3RvbSBjb2xvciBzY2hlbWUKICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzID0gYygKICAgICJNb3N0IFVwcmVndWxhdGVkIiA9ICJkYXJrcmVkIiwKICAgICJNb3N0IERvd25yZWd1bGF0ZWQiID0gImRhcmtibHVlIiwKICAgICJVcHJlZ3VsYXRlZCIgPSAicmVkIiwKICAgICJEb3ducmVndWxhdGVkIiA9ICJibHVlIiwKICAgICJOb3QgU2lnbmlmaWNhbnQiID0gImdyZXkiCiAgKSkgKwoKICAjIEFkZCBnZW5lIGxhYmVscyAob25seSBmb3IgaGlnaGx5IHNpZ25pZmljYW50IGdlbmVzKQogIGdlb21fdGV4dF9yZXBlbChkYXRhID0gdG9wX2dlbmVzLCBhZXMobGFiZWwgPSBnZW5lKSwgIAogICAgICAgICAgICAgICAgICBzaXplID0gNCwgYm94LnBhZGRpbmcgPSAwLjUsIG1heC5vdmVybGFwcyA9IDEwLCBzZWdtZW50LmNvbG9yID0gTkEpICsKICAKICAjIEFkZCB0aHJlc2hvbGQgbGluZXMKICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSBjKC0yLCAyKSwgbGluZXR5cGUgPSAiZGFzaGVkIiwgY29sb3IgPSAiYmxhY2siKSArICAKICBnZW9tX2hsaW5lKHlpbnRlcmNlcHQgPSAtbG9nMTAoMC4wNSksIGxpbmV0eXBlID0gImRhc2hlZCIsIGNvbG9yID0gImJsYWNrIikgKyAgCgogICMgSW1wcm92ZSB0aGVtZQogIHRoZW1lX21pbmltYWwoYmFzZV9zaXplID0gMTQpICsKICBsYWJzKHRpdGxlID0gIlZvbGNhbm8gUGxvdDogUHNldWRvYnVsayBERVNlcTIgQW5hbHlzaXMiLAogICAgICAgeCA9ICJMb2cyIEZvbGQgQ2hhbmdlIiwKICAgICAgIHkgPSAiLUxvZzEwIEFkanVzdGVkIFAtVmFsdWUiLAogICAgICAgY29sb3IgPSAiU2lnbmlmaWNhbmNlIikgKwoKICB5bGltKDAsIDUwKSAgIyBBdm9pZCBleHRyZW1lIHNjYWxpbmcgaXNzdWVzCgoKYGBgCgojIDQuIFN1bW1hcml6ZSBNYXJrZXJzCmBgYHtyICwgZmlnLmhlaWdodD0xMiwgZmlnLndpZHRoPTE0fQptYXJrZXJzIDwtIERFX3Jlc3VsdHNfZGYKCiMgTG9hZCBuZWNlc3NhcnkgbGlicmFyeQpsaWJyYXJ5KGRwbHlyKQoKIyBGdW5jdGlvbiB0byBzdW1tYXJpemUgbWFya2VycwpzdW1tYXJpemVfbWFya2VycyA8LSBmdW5jdGlvbihtYXJrZXJzKSB7CiAgIyBGaWx0ZXIgb3V0IE5BIHZhbHVlcyBpbiBwX3ZhbF9hZGoKICBtYXJrZXJzIDwtIG1hcmtlcnMgJT4lIGZpbHRlcighaXMubmEocF92YWxfYWRqKSkKICAKICBudW1fcHZhbDAgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqID09IDApCiAgbnVtX3B2YWwxIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAxKQogIG51bV9zaWduaWZpY2FudCA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPCAwLjA1KQogIG51bV91cHJlZ3VsYXRlZCA8LSBzdW0obWFya2VycyRhdmdfbG9nRkMgPiAxKQogIG51bV9kb3ducmVndWxhdGVkIDwtIHN1bShtYXJrZXJzJGF2Z19sb2dGQyA8IC0xKQogIAogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMDoiLCBudW1fcHZhbDAsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZ2VuZXMgd2l0aCBwX3ZhbF9hZGogPSAxOiIsIG51bV9wdmFsMSwgIlxuIikKICBjYXQoIk51bWJlciBvZiBzaWduaWZpY2FudCBnZW5lcyAocF92YWxfYWRqIDwgMC4wNSk6IiwgbnVtX3NpZ25pZmljYW50LCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzIChhdmdfbG9nRkMgPiAxKToiLCBudW1fdXByZWd1bGF0ZWQsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDIDwgLTEpOiIsIG51bV9kb3ducmVndWxhdGVkLCAiXG4iKQp9CgojIEV4YW1wbGUgdXNhZ2UKY2F0KCJNYXJrZXJzIFN1bW1hcnkgYXQgMWUtNDpcbiIpCnN1bW1hcml6ZV9tYXJrZXJzKG1hcmtlcnMpCgptYXJrZXJzMiA8LSBERV9yZXN1bHRzX2RmCiMgRnVuY3Rpb24gdG8gc3VtbWFyaXplIG1hcmtlcnMKc3VtbWFyaXplX21hcmtlcnMgPC0gZnVuY3Rpb24obWFya2VycykgewogICMgRmlsdGVyIG91dCBOQSB2YWx1ZXMgaW4gcF92YWxfYWRqCiAgbWFya2VycyA8LSBtYXJrZXJzICU+JSBmaWx0ZXIoIWlzLm5hKHBfdmFsX2FkaikpCiAgCiAgbnVtX3B2YWwwIDwtIHN1bShtYXJrZXJzJHBfdmFsX2FkaiA9PSAwKQogIG51bV9wdmFsMSA8LSBzdW0obWFya2VycyRwX3ZhbF9hZGogPT0gMSkKICBudW1fc2lnbmlmaWNhbnQgPC0gc3VtKG1hcmtlcnMkcF92YWxfYWRqIDwgMWUtNCkKICBudW1fdXByZWd1bGF0ZWQgPC0gc3VtKG1hcmtlcnMkYXZnX2xvZ0ZDID4gMSkKICBudW1fZG93bnJlZ3VsYXRlZCA8LSBzdW0obWFya2VycyRhdmdfbG9nRkMgPCAtMSkKICAKICBjYXQoIk51bWJlciBvZiBnZW5lcyB3aXRoIHBfdmFsX2FkaiA9IDA6IiwgbnVtX3B2YWwwLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGdlbmVzIHdpdGggcF92YWxfYWRqID0gMToiLCBudW1fcHZhbDEsICJcbiIpCiAgY2F0KCJOdW1iZXIgb2Ygc2lnbmlmaWNhbnQgZ2VuZXMgKHBfdmFsX2FkaiA8IDFlLTQpOiIsIG51bV9zaWduaWZpY2FudCwgIlxuIikKICBjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyAoYXZnX2xvZ0ZDID4gMSk6IiwgbnVtX3VwcmVndWxhdGVkLCAiXG4iKQogIGNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgKGF2Z19sb2dGQyA8IDEpOiIsIG51bV9kb3ducmVndWxhdGVkLCAiXG4iKQp9CgpjYXQoIk1hcmtlcnMgU3VtbWFyeSBhdCAxZS00OlxuIikKCnN1bW1hcml6ZV9tYXJrZXJzKG1hcmtlcnMyKQoKCgoKYGBgCgoKCiMjIEVuaGFuY2VkVm9sY2FubyBwbG90CmBgYHtyICwgZmlnLmhlaWdodD0xMiwgZmlnLndpZHRoPTE2fQoKbGlicmFyeShkcGx5cikKbGlicmFyeShFbmhhbmNlZFZvbGNhbm8pCgojIEFzc3VtaW5nIHlvdSBoYXZlIGEgZGF0YSBmcmFtZSBuYW1lZCBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMKIyBGaWx0ZXIgZ2VuZXMgYmFzZWQgb24gbG93ZXN0IHAtdmFsdWVzIGJ1dCBpbmNsdWRlIGFsbCBnZW5lcwpmaWx0ZXJlZF9nZW5lcyA8LSBtYXJrZXJzICU+JQogIGFycmFuZ2UocF92YWxfYWRqLCBkZXNjKGFicyhhdmdfbG9nRkMpKSkKCiMgQ3JlYXRlIHRoZSBFbmhhbmNlZFZvbGNhbm8gcGxvdCB3aXRoIHRoZSBmaWx0ZXJlZCBkYXRhCkVuaGFuY2VkVm9sY2FubygKICBmaWx0ZXJlZF9nZW5lcywgCiAgbGFiID0gaWZlbHNlKGZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjAwMDA5MDUgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZ0ZDKSA+PSAxLjAsIGZpbHRlcmVkX2dlbmVzJGdlbmUsIE5BKSwKICB4ID0gImF2Z19sb2dGQyIsIAogIHkgPSAicF92YWxfYWRqIiwKICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMoY2VsbCBsaW5lcykgdnMgbm9ybWFsIENENCBUIGNlbGxzIiwKICBwQ3V0b2ZmID0gMWUtNCwKICBGQ2N1dG9mZiA9IDEuMCwKICBsZWdlbmRQb3NpdGlvbiA9ICdyaWdodCcsIAogIGxhYkNvbCA9ICdibGFjaycsCiAgbGFiRmFjZSA9ICdib2xkJywKICBib3hlZExhYmVscyA9IEZBTFNFLCAgIyBTZXQgdG8gRkFMU0UgdG8gcmVtb3ZlIGJveGVkIGxhYmVscwogIHBvaW50U2l6ZSA9IDMuMCwKICBsYWJTaXplID0gNS4wLAogIGNvbCA9IGMoJ2dyZXk3MCcsICdibGFjaycsICdibHVlJywgJ3JlZCcpLCAgIyBDdXN0b21pemUgcG9pbnQgY29sb3JzCiAgc2VsZWN0TGFiID0gZmlsdGVyZWRfZ2VuZXMkZ2VuZVtmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMC4wNSAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nRkMpID49IDEuMF0gICMgT25seSBsYWJlbCBzaWduaWZpY2FudCBnZW5lcwopCgoKCmBgYAoKCiMjIENyZWF0ZSB0aGUgRW5oYW5jZWRWb2xjYW5vIHBsb3QKYGBge3IgLCBmaWcuaGVpZ2h0PTEyLCBmaWcud2lkdGg9MTZ9CgpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoRW5oYW5jZWRWb2xjYW5vKQpsaWJyYXJ5KGRwbHlyKQoKIyBEZWZpbmUgdGhlIG91dHB1dCBkaXJlY3RvcnkKb3V0cHV0X2RpciA8LSAiTWFsaWduYW50X3ZzX0NvbnRyb2wiCmRpci5jcmVhdGUob3V0cHV0X2Rpciwgc2hvd1dhcm5pbmdzID0gRkFMU0UpCgogTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzIDwtIGZpbHRlcmVkX2dlbmVzCgojIEZpcnN0IFZvbGNhbm8gUGxvdApwMSA8LSBFbmhhbmNlZFZvbGNhbm8oCiAgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzLAogIGxhYiA9IE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRnZW5lLAogIHggPSAiYXZnX2xvZ0ZDIiwKICB5ID0gInBfdmFsX2FkaiIsCiAgdGl0bGUgPSAiTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzIiwKICBwQ3V0b2ZmID0gMWUtNCwKICBGQ2N1dG9mZiA9IDEuMAopCnByaW50KHAxKSAgIyBEaXNwbGF5IGluIG5vdGVib29rCmdnc2F2ZShmaWxlbmFtZSA9IGZpbGUucGF0aChvdXRwdXRfZGlyLCAiVm9sY2Fub1Bsb3QxLnBuZyIpLCBwbG90ID0gcDEsIHdpZHRoID0gMTQsIGhlaWdodCA9IDEwLCBkcGkgPSAzMDApCgojIFNlY29uZCBWb2xjYW5vIFBsb3Qgd2l0aCBzZWxlY3RlZCBnZW5lcwpwMiA8LSBFbmhhbmNlZFZvbGNhbm8oCiAgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzLCAKICBsYWIgPSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkZ2VuZSwKICB4ID0gImF2Z19sb2dGQyIsIAogIHkgPSAicF92YWxfYWRqIiwKICBzZWxlY3RMYWIgPSBjKCdFUENBTScsICdCQ0FUMScsICdLSVIzREwyJywgJ0ZPWE0xJywgJ1RXSVNUMScsICdUTkZTRjknLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0NEODAnLCAgJ0lMMUInLCAnUlBTNFkxJywgIlRPWCIsICJDRDUyIiwgIlRXSVNUMSIsICJDQ1I0IiwgIkNDUjciLCJQRENEMSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdJTDdSJywgJ1RDRjcnLCAgJ01LSTY3JywgJ0NENzAnLCAiRFBQNCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdJTDJSQScsJ1RSQlY2LTInLCAnVFJCVjEwLTMnLCAnVFJCVjQtMicsICdUUkJWOScsICdUUkJWNy05JywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdUUkFWMTItMScsICdDRDhCJywgJ0ZDR1IzQScsICdHTkxZJywgJ0ZPWFAzJywgJ1NFTEwnLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0dJTUFQMScsICdSSVBPUjInLCAnTEVGMScsICdIT1hDOScsICdTUDUnLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnQ0NMMTcnLCAnRVRWNCcsICdUSFkxJywgJ0ZPWEEyJywgJ0lUR0FEJywgJ1MxMDBQJywgJ1RCWDQnLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0lEMScsICdYQ0wxJywgJ1NPWDInLCAnQ0QyNycsICdDRDI4JywnUExTMycsJ0NENzAnLCdSQUIyNScgLCAnVFJCVjI3JywgJ1RSQlYyJyksCiAgdGl0bGUgPSAiTWFsaWduYW50IENENCBUIGNlbGxzKGNlbGwgbGluZXMpIHZzIG5vcm1hbCBDRDQgVCBjZWxscyIsCiAgeGxhYiA9IGJxdW90ZSh+TG9nWzJdfiAnZm9sZCBjaGFuZ2UnKSwKICBwQ3V0b2ZmID0gMC4wNSwKICBGQ2N1dG9mZiA9IDEuNSwgCiAgcG9pbnRTaXplID0gMy4wLAogIGxhYlNpemUgPSA1LjAsCiAgYm94ZWRMYWJlbHMgPSBUUlVFLAogIGNvbEFscGhhID0gMC41LAogIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywKICBsZWdlbmRMYWJTaXplID0gMTAsCiAgbGVnZW5kSWNvblNpemUgPSA0LjAsCiAgZHJhd0Nvbm5lY3RvcnMgPSBUUlVFLAogIHdpZHRoQ29ubmVjdG9ycyA9IDAuNSwKICBjb2xDb25uZWN0b3JzID0gJ2dyZXk1MCcsCiAgYXJyb3doZWFkcyA9IEZBTFNFLAogIG1heC5vdmVybGFwcyA9IDMwCikKcHJpbnQocDIpICAjIERpc3BsYXkgaW4gbm90ZWJvb2sKZ2dzYXZlKGZpbGVuYW1lID0gZmlsZS5wYXRoKG91dHB1dF9kaXIsICJWb2xjYW5vUGxvdDIucG5nIiksIHBsb3QgPSBwMiwgd2lkdGggPSAxNCwgaGVpZ2h0ID0gMTAsIGRwaSA9IDMwMCkKCiMgRmlsdGVyaW5nIGdlbmVzCmZpbHRlcmVkX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyAlPiUKICBhcnJhbmdlKHBfdmFsX2FkaiwgZGVzYyhhYnMoYXZnX2xvZ0ZDKSkpCgojIFRoaXJkIFZvbGNhbm8gUGxvdCAtIEZpbHRlcmluZyBieSBwLXZhbHVlIGFuZCBsb2dGQwpwMyA8LSBFbmhhbmNlZFZvbGNhbm8oCiAgZmlsdGVyZWRfZ2VuZXMsIAogIGxhYiA9IGlmZWxzZShmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMWUtNCAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nRkMpID49IDEuMCwgZmlsdGVyZWRfZ2VuZXMkZ2VuZSwgTkEpLAogIHggPSAiYXZnX2xvZ0ZDIiwgCiAgeSA9ICJwX3ZhbF9hZGoiLAogIHRpdGxlID0gIk1hbGlnbmFudCBDRDQgVCBjZWxscyhjZWxsIGxpbmVzKSB2cyBub3JtYWwgQ0Q0IFQgY2VsbHMiLAogIHBDdXRvZmYgPSAxZS00LAogIEZDY3V0b2ZmID0gMS4wLAogIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywgCiAgbGFiQ29sID0gJ2JsYWNrJywKICBsYWJGYWNlID0gJ2JvbGQnLAogIGJveGVkTGFiZWxzID0gRkFMU0UsICAjIFJlbW92ZSBib3hlZCBsYWJlbHMKICBwb2ludFNpemUgPSAzLjAsCiAgbGFiU2l6ZSA9IDUuMCwKICBjb2wgPSBjKCdncmV5NzAnLCAnYmxhY2snLCAnYmx1ZScsICdyZWQnKSwgICMgQ3VzdG9taXplIHBvaW50IGNvbG9ycwogIHNlbGVjdExhYiA9IGZpbHRlcmVkX2dlbmVzJGdlbmVbZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDAuMDUgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZ0ZDKSA+PSAxLjBdCikKcHJpbnQocDMpICAjIERpc3BsYXkgaW4gbm90ZWJvb2sKZ2dzYXZlKGZpbGVuYW1lID0gZmlsZS5wYXRoKG91dHB1dF9kaXIsICJWb2xjYW5vUGxvdDMucG5nIiksIHBsb3QgPSBwMywgd2lkdGggPSAxNCwgaGVpZ2h0ID0gMTAsIGRwaSA9IDMwMCkKCiMgRm91cnRoIFZvbGNhbm8gUGxvdCAtIE1vcmUgcmVmaW5lZCBmaWx0ZXJpbmcKcDQgPC0gRW5oYW5jZWRWb2xjYW5vKAogIGZpbHRlcmVkX2dlbmVzLCAKICBsYWIgPSBpZmVsc2UoZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDFlLTQgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZ0ZDKSA+PSAxLjAsIGZpbHRlcmVkX2dlbmVzJGdlbmUsIE5BKSwKICB4ID0gImF2Z19sb2dGQyIsIAogIHkgPSAicF92YWxfYWRqIiwKICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMgKGNlbGwgbGluZXMpIHZzIE5vcm1hbCBDRDQgVCBjZWxscyIsCiAgc3VidGl0bGUgPSAiSGlnaGxpZ2h0aW5nIGRpZmZlcmVudGlhbGx5IGV4cHJlc3NlZCBnZW5lcyIsCiAgcEN1dG9mZiA9IDFlLTQsCiAgRkNjdXRvZmYgPSAxLjAsCiAgbGVnZW5kUG9zaXRpb24gPSAncmlnaHQnLAogIGNvbEFscGhhID0gMC44LCAgIyBTbGlnaHQgdHJhbnNwYXJlbmN5IGZvciBub24tc2lnbmlmaWNhbnQgcG9pbnRzCiAgY29sID0gYygnZ3JleTcwJywgJ2JsYWNrJywgJ2JsdWUnLCAncmVkJyksICAjIEN1c3RvbSBjb2xvciBzY2hlbWUKICBncmlkbGluZXMubWFqb3IgPSBUUlVFLAogIGdyaWRsaW5lcy5taW5vciA9IEZBTFNFLAogIHNlbGVjdExhYiA9IGZpbHRlcmVkX2dlbmVzJGdlbmVbZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDAuMDUgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZ0ZDKSA+PSAxLjBdCikKcHJpbnQocDQpICAjIERpc3BsYXkgaW4gbm90ZWJvb2sKZ2dzYXZlKGZpbGVuYW1lID0gZmlsZS5wYXRoKG91dHB1dF9kaXIsICJWb2xjYW5vUGxvdDQucG5nIiksIHBsb3QgPSBwNCwgd2lkdGggPSAxNCwgaGVpZ2h0ID0gMTAsIGRwaSA9IDMwMCkKCm1lc3NhZ2UoIkFsbCB2b2xjYW5vIHBsb3RzIGhhdmUgYmVlbiBkaXNwbGF5ZWQgYW5kIHNhdmVkIHN1Y2Nlc3NmdWxseSBpbiB0aGUgJ0wxX3ZzX0NvbnRyb2wnIGZvbGRlci4iKQoKCgpgYGAKCgojIDUuIEVucmljaG1lbnQgQW5hbHlzaXMtQWxsX1BhdGh3YXlzCmBgYHtyICwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CiMgTG9hZCBuZWNlc3NhcnkgbGlicmFyaWVzCmxpYnJhcnkoY2x1c3RlclByb2ZpbGVyKQpsaWJyYXJ5KG9yZy5Icy5lZy5kYikKbGlicmFyeShlbnJpY2hwbG90KQpsaWJyYXJ5KFJlYWN0b21lUEEpCmxpYnJhcnkoRE9TRSkgIyBGb3IgR1NFQSBhbmFseXNpcwpsaWJyYXJ5KGdncGxvdDIpICMgRW5zdXJlIGdncGxvdDIgaXMgYXZhaWxhYmxlIGZvciBwbG90dGluZwoKIyBEZWZpbmUgdGhyZXNob2xkIGZvciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBzZWxlY3Rpb24gKG1vZGlmaWVkIHRocmVzaG9sZHMpCmxvZ0ZDX3VwX3RocmVzaG9sZCA8LSAxICAgICAgICAgICMgVXByZWd1bGF0ZWQgbG9nRkMgdGhyZXNob2xkCmxvZ0ZDX2Rvd25fdGhyZXNob2xkIDwtIC0xICAgICAgICMgRG93bnJlZ3VsYXRlZCBsb2dGQyB0aHJlc2hvbGQKcHZhbF90aHJlc2hvbGQgPC0gMC4wNSAgICAgICAgICAgIyBwLXZhbHVlIHRocmVzaG9sZCBhcyBzcGVjaWZpZWQKCiMgTG9hZCB5b3VyIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIHJlc3VsdHMgKG1vZGlmeSBiYXNlZCBvbiBhY3R1YWwgZGF0YSBzdHJ1Y3R1cmUpCiMgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzIDwtIHJlYWQuY3N2KCJZb3VyX0RFX1Jlc3VsdHNfRmlsZS5jc3YiKQoKIyBTZWxlY3QgdXByZWd1bGF0ZWQgYW5kIGRvd25yZWd1bGF0ZWQgZ2VuZXMKdXByZWd1bGF0ZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzWwogIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nRkMgPiBsb2dGQ191cF90aHJlc2hvbGQgJiAKICBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkcF92YWxfYWRqIDwgcHZhbF90aHJlc2hvbGQsIF0KCmRvd25yZWd1bGF0ZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzWwogIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nRkMgPCBsb2dGQ19kb3duX3RocmVzaG9sZCAmIAogIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRwX3ZhbF9hZGogPCBwdmFsX3RocmVzaG9sZCwgXQoKIyBDaGVjayBmb3IgbWlzc2luZyBnZW5lcyAoTkFzKSBpbiB0aGUgZ2VuZSBjb2x1bW4gYW5kIHJlbW92ZSB0aGVtCnVwcmVndWxhdGVkX2dlbmVzIDwtIG5hLm9taXQodXByZWd1bGF0ZWRfZ2VuZXMpCmRvd25yZWd1bGF0ZWRfZ2VuZXMgPC0gbmEub21pdChkb3ducmVndWxhdGVkX2dlbmVzKQoKIyBTYXZlIHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmUgcmVzdWx0cyB0byBDU1YKd3JpdGUuY3N2KHVwcmVndWxhdGVkX2dlbmVzLCAiTWFsaWduYW50X3ZzX0NvbnRyb2wvdXByZWd1bGF0ZWRfZ2VuZXMuY3N2Iiwgcm93Lm5hbWVzID0gRkFMU0UpCndyaXRlLmNzdihkb3ducmVndWxhdGVkX2dlbmVzLCAiTWFsaWduYW50X3ZzX0NvbnRyb2wvZG93bnJlZ3VsYXRlZF9nZW5lcy5jc3YiLCByb3cubmFtZXMgPSBGQUxTRSkKCiMgQ29udmVydCBnZW5lIHN5bWJvbHMgdG8gRW50cmV6IElEcyBmb3IgZW5yaWNobWVudCBhbmFseXNpcywgd2l0aCBjaGVja3MgZm9yIG1pc3NpbmcgdmFsdWVzCnVwcmVndWxhdGVkX2VudHJleiA8LSBiaXRyKHVwcmVndWxhdGVkX2dlbmVzJGdlbmUsIGZyb21UeXBlID0gIlNZTUJPTCIsIHRvVHlwZSA9ICJFTlRSRVpJRCIsIE9yZ0RiID0gb3JnLkhzLmVnLmRiKQpkb3ducmVndWxhdGVkX2VudHJleiA8LSBiaXRyKGRvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgZnJvbVR5cGUgPSAiU1lNQk9MIiwgdG9UeXBlID0gIkVOVFJFWklEIiwgT3JnRGIgPSBvcmcuSHMuZWcuZGIpCgojIENoZWNrIGZvciBtaXNzaW5nIEVudHJleiBJRHMKbWlzc2luZ191cHJlZ3VsYXRlZCA8LSB1cHJlZ3VsYXRlZF9nZW5lcyRnZW5lW2lzLm5hKHVwcmVndWxhdGVkX2VudHJleiRFTlRSRVpJRCldCm1pc3NpbmdfZG93bnJlZ3VsYXRlZCA8LSBkb3ducmVndWxhdGVkX2dlbmVzJGdlbmVbaXMubmEoZG93bnJlZ3VsYXRlZF9lbnRyZXokRU5UUkVaSUQpXQoKIyBQcmludCBvdXQgdGhlIG1pc3NpbmcgZ2VuZSBzeW1ib2xzIGZvciBkZWJ1Z2dpbmcKY2F0KCJNaXNzaW5nIHVwcmVndWxhdGVkIGdlbmVzOlxuIiwgbWlzc2luZ191cHJlZ3VsYXRlZCwgIlxuIikKY2F0KCJNaXNzaW5nIGRvd25yZWd1bGF0ZWQgZ2VuZXM6XG4iLCBtaXNzaW5nX2Rvd25yZWd1bGF0ZWQsICJcbiIpCgojIFJlbW92ZSBnZW5lcyB0aGF0IGNvdWxkbid0IGJlIG1hcHBlZCB0byBFbnRyZXogSURzCnVwcmVndWxhdGVkX2VudHJleiA8LSB1cHJlZ3VsYXRlZF9lbnRyZXokRU5UUkVaSURbIWlzLm5hKHVwcmVndWxhdGVkX2VudHJleiRFTlRSRVpJRCldCmRvd25yZWd1bGF0ZWRfZW50cmV6IDwtIGRvd25yZWd1bGF0ZWRfZW50cmV6JEVOVFJFWklEWyFpcy5uYShkb3ducmVndWxhdGVkX2VudHJleiRFTlRSRVpJRCldCgojIERlZmluZSBhIGZ1bmN0aW9uIHRvIHNhZmVseSBydW4gZW5yaWNobWVudCwgcGxvdCByZXN1bHRzLCBhbmQgc2F2ZSB0aGVtCnNhZmVfZW5yaWNoR08gPC0gZnVuY3Rpb24oZ2VuZV9saXN0LCB0aXRsZSwgZmlsZW5hbWUpIHsKICBpZiAobGVuZ3RoKGdlbmVfbGlzdCkgPiAwKSB7CiAgICByZXN1bHQgPC0gZW5yaWNoR08oZ2VuZSA9IGdlbmVfbGlzdCwgT3JnRGIgPSBvcmcuSHMuZWcuZGIsIGtleVR5cGUgPSAiU1lNQk9MIiwKICAgICAgICAgICAgICAgICAgICAgICBvbnQgPSAiQlAiLCBwQWRqdXN0TWV0aG9kID0gIkJIIiwgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAgIGlmICghaXMubnVsbChyZXN1bHQpICYmIG5yb3coYXMuZGF0YS5mcmFtZShyZXN1bHQpKSA+IDApIHsKICAgICAgcCA8LSBkb3RwbG90KHJlc3VsdCwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gdGl0bGUpCiAgICAgIHByaW50KHApICAKICAgICAgZ2dzYXZlKHBhc3RlMCgiTWFsaWduYW50X3ZzX0NvbnRyb2wvIiwgZ3N1YigiLmNzdiIsICJfZG90cGxvdC5wbmciLCBmaWxlbmFtZSkpLCBwbG90ID0gcCwgd2lkdGggPSA4LCBoZWlnaHQgPSA2KQogICAgICB3cml0ZS5jc3YoYXMuZGF0YS5mcmFtZShyZXN1bHQpLCBmaWxlID0gcGFzdGUwKCJNYWxpZ25hbnRfdnNfQ29udHJvbC8iLCBmaWxlbmFtZSksIHJvdy5uYW1lcyA9IEZBTFNFKQogICAgfSBlbHNlIHsKICAgICAgbWVzc2FnZShwYXN0ZSgiTm8gc2lnbmlmaWNhbnQgZW5yaWNobWVudCBmb3VuZCBmb3I6IiwgdGl0bGUpKQogICAgfQogIH0gZWxzZSB7CiAgICBtZXNzYWdlKHBhc3RlKCJObyBnZW5lcyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogIH0KfQoKc2FmZV9lbnJpY2hLRUdHIDwtIGZ1bmN0aW9uKGVudHJlel9saXN0LCB0aXRsZSwgZmlsZW5hbWUpIHsKICBpZiAobGVuZ3RoKGVudHJlel9saXN0KSA+IDApIHsKICAgIHJlc3VsdCA8LSBlbnJpY2hLRUdHKGdlbmUgPSBlbnRyZXpfbGlzdCwgb3JnYW5pc20gPSAiaHNhIiwgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAgIGlmICghaXMubnVsbChyZXN1bHQpICYmIG5yb3coYXMuZGF0YS5mcmFtZShyZXN1bHQpKSA+IDApIHsKICAgICAgcCA8LSBkb3RwbG90KHJlc3VsdCwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gdGl0bGUpCiAgICAgIHByaW50KHApCiAgICAgIGdnc2F2ZShwYXN0ZTAoIk1hbGlnbmFudF92c19Db250cm9sLyIsIGdzdWIoIi5jc3YiLCAiX2RvdHBsb3QucG5nIiwgZmlsZW5hbWUpKSwgcGxvdCA9IHAsIHdpZHRoID0gOCwgaGVpZ2h0ID0gNikKICAgICAgd3JpdGUuY3N2KGFzLmRhdGEuZnJhbWUocmVzdWx0KSwgZmlsZSA9IHBhc3RlMCgiTWFsaWduYW50X3ZzX0NvbnRyb2wvIiwgZmlsZW5hbWUpLCByb3cubmFtZXMgPSBGQUxTRSkKICAgIH0gZWxzZSB7CiAgICAgIG1lc3NhZ2UocGFzdGUoIk5vIHNpZ25pZmljYW50IEtFR0cgcGF0aHdheXMgZm91bmQgZm9yOiIsIHRpdGxlKSkKICAgIH0KICB9IGVsc2UgewogICAgbWVzc2FnZShwYXN0ZSgiTm8gZ2VuZXMgZm91bmQgZm9yOiIsIHRpdGxlKSkKICB9Cn0KCnNhZmVfZW5yaWNoUmVhY3RvbWUgPC0gZnVuY3Rpb24oZW50cmV6X2xpc3QsIHRpdGxlLCBmaWxlbmFtZSkgewogIGlmIChsZW5ndGgoZW50cmV6X2xpc3QpID4gMCkgewogICAgcmVzdWx0IDwtIGVucmljaFBhdGh3YXkoZ2VuZSA9IGVudHJlel9saXN0LCBvcmdhbmlzbSA9ICJodW1hbiIsIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCiAgICBpZiAoIWlzLm51bGwocmVzdWx0KSAmJiBucm93KGFzLmRhdGEuZnJhbWUocmVzdWx0KSkgPiAwKSB7CiAgICAgIHAgPC0gZG90cGxvdChyZXN1bHQsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9IHRpdGxlKQogICAgICBwcmludChwKQogICAgICBnZ3NhdmUocGFzdGUwKCJNYWxpZ25hbnRfdnNfQ29udHJvbC8iLCBnc3ViKCIuY3N2IiwgIl9kb3RwbG90LnBuZyIsIGZpbGVuYW1lKSksIHBsb3QgPSBwLCB3aWR0aCA9IDgsIGhlaWdodCA9IDYpCiAgICAgIHdyaXRlLmNzdihhcy5kYXRhLmZyYW1lKHJlc3VsdCksIGZpbGUgPSBwYXN0ZTAoIk1hbGlnbmFudF92c19Db250cm9sLyIsIGZpbGVuYW1lKSwgcm93Lm5hbWVzID0gRkFMU0UpCiAgICB9IGVsc2UgewogICAgICBtZXNzYWdlKHBhc3RlKCJObyBzaWduaWZpY2FudCBSZWFjdG9tZSBwYXRod2F5cyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogICAgfQogIH0gZWxzZSB7CiAgICBtZXNzYWdlKHBhc3RlKCJObyBnZW5lcyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogIH0KfQoKIyBQZXJmb3JtIGVucmljaG1lbnQgYW5hbHlzZXMsIGdlbmVyYXRlIHBsb3RzLCBhbmQgc2F2ZSByZXN1bHRzCnNhZmVfZW5yaWNoR08odXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgIkdPIEVucmljaG1lbnQgZm9yIFVwcmVndWxhdGVkIEdlbmVzIiwgInVwcmVndWxhdGVkX0dPX3Jlc3VsdHMuY3N2IikKc2FmZV9lbnJpY2hHTyhkb3ducmVndWxhdGVkX2dlbmVzJGdlbmUsICJHTyBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIiwgImRvd25yZWd1bGF0ZWRfR09fcmVzdWx0cy5jc3YiKQoKc2FmZV9lbnJpY2hLRUdHKHVwcmVndWxhdGVkX2VudHJleiwgIktFR0cgUGF0aHdheSBFbnJpY2htZW50IGZvciBVcHJlZ3VsYXRlZCBHZW5lcyIsICJ1cHJlZ3VsYXRlZF9LRUdHX3Jlc3VsdHMuY3N2IikKc2FmZV9lbnJpY2hLRUdHKGRvd25yZWd1bGF0ZWRfZW50cmV6LCAiS0VHRyBQYXRod2F5IEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiLCAiZG93bnJlZ3VsYXRlZF9LRUdHX3Jlc3VsdHMuY3N2IikKCnNhZmVfZW5yaWNoUmVhY3RvbWUodXByZWd1bGF0ZWRfZW50cmV6LCAiUmVhY3RvbWUgUGF0aHdheSBFbnJpY2htZW50IGZvciBVcHJlZ3VsYXRlZCBHZW5lcyIsICJ1cHJlZ3VsYXRlZF9SZWFjdG9tZV9yZXN1bHRzLmNzdiIpCnNhZmVfZW5yaWNoUmVhY3RvbWUoZG93bnJlZ3VsYXRlZF9lbnRyZXosICJSZWFjdG9tZSBQYXRod2F5IEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiLCAiZG93bnJlZ3VsYXRlZF9SZWFjdG9tZV9yZXN1bHRzLmNzdiIpCgoKYGBgCgoKCgojIyBFbnJpY2htZW50IEFuYWx5c2lzX0hhbGxtYXJrCmBgYHtyICwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CgojIExvYWQgbmVjZXNzYXJ5IGxpYnJhcmllcwpsaWJyYXJ5KGNsdXN0ZXJQcm9maWxlcikKbGlicmFyeShvcmcuSHMuZWcuZGIpCmxpYnJhcnkobXNpZ2RicikKbGlicmFyeShlbnJpY2hwbG90KQoKIyBMb2FkIEhhbGxtYXJrIGdlbmUgc2V0cyBmcm9tIG1zaWdkYnIKaGFsbG1hcmtfc2V0cyA8LSBtc2lnZGJyKHNwZWNpZXMgPSAiSG9tbyBzYXBpZW5zIiwgY2F0ZWdvcnkgPSAiSCIpICAjICJIIiBpcyBmb3IgSGFsbG1hcmsgZ2VuZSBzZXRzCgojIENvbnZlcnQgZ2VuZSBzeW1ib2xzIHRvIHVwcGVyY2FzZSBmb3IgY29uc2lzdGVuY3kKdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSA8LSB0b3VwcGVyKHVwcmVndWxhdGVkX2dlbmVzJGdlbmUpCmRvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSA8LSB0b3VwcGVyKGRvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSkKCiMgQ2hlY2sgZm9yIG92ZXJsYXAgYmV0d2VlbiB5b3VyIHVwcmVndWxhdGVkL2Rvd25yZWd1bGF0ZWQgZ2VuZXMgYW5kIEhhbGxtYXJrIGdlbmUgc2V0cwp1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyayA8LSBpbnRlcnNlY3QodXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgaGFsbG1hcmtfc2V0cyRnZW5lX3N5bWJvbCkKZG93bnJlZ3VsYXRlZF9pbl9oYWxsbWFyayA8LSBpbnRlcnNlY3QoZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBoYWxsbWFya19zZXRzJGdlbmVfc3ltYm9sKQoKIyBQcmludCB0aGUgbnVtYmVyIG9mIG92ZXJsYXBwaW5nIGdlbmVzIGZvciBib3RoIHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmVzCmNhdCgiTnVtYmVyIG9mIHVwcmVndWxhdGVkIGdlbmVzIGluIEhhbGxtYXJrIGdlbmUgc2V0czoiLCBsZW5ndGgodXByZWd1bGF0ZWRfaW5faGFsbG1hcmspLCAiXG4iKQpjYXQoIk51bWJlciBvZiBkb3ducmVndWxhdGVkIGdlbmVzIGluIEhhbGxtYXJrIGdlbmUgc2V0czoiLCBsZW5ndGgoZG93bnJlZ3VsYXRlZF9pbl9oYWxsbWFyayksICJcbiIpCgojIERlZmluZSB0aGUgb3V0cHV0IGZvbGRlciB3aGVyZSB0aGUgcmVzdWx0cyB3aWxsIGJlIHNhdmVkCm91dHB1dF9mb2xkZXIgPC0gIk1hbGlnbmFudF92c19Db250cm9sLyIKCiMgSWYgdGhlcmUgYXJlIGdlbmVzIHRvIGFuYWx5emUsIHByb2NlZWQgd2l0aCBlbnJpY2htZW50IGFuYWx5c2lzCmlmIChsZW5ndGgodXByZWd1bGF0ZWRfaW5faGFsbG1hcmspID4gMCkgewogICMgUGVyZm9ybSBlbnJpY2htZW50IGFuYWx5c2lzIGZvciB1cHJlZ3VsYXRlZCBnZW5lcyB1c2luZyBIYWxsbWFyayBnZW5lIHNldHMKICBoYWxsbWFya191cCA8LSBlbnJpY2hlcihnZW5lID0gdXByZWd1bGF0ZWRfaW5faGFsbG1hcmssIAogICAgICAgICAgICAgICAgICAgICAgICAgIFRFUk0yR0VORSA9IGhhbGxtYXJrX3NldHNbLCBjKCJnc19uYW1lIiwgImdlbmVfc3ltYm9sIildLCAgIyBFbnN1cmUgVEVSTTJHRU5FIHVzZXMgY29ycmVjdCBjb2x1bW5zCiAgICAgICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAjIENoZWNrIGlmIHJlc3VsdHMgZXhpc3QKICBpZiAoIWlzLm51bGwoaGFsbG1hcmtfdXApICYmIG5yb3coaGFsbG1hcmtfdXApID4gMCkgewogICAgIyBWaXN1YWxpemUgcmVzdWx0cyBpZiBhdmFpbGFibGUKICAgIHVwX2RvdHBsb3QgPC0gZG90cGxvdChoYWxsbWFya191cCwgc2hvd0NhdGVnb3J5ID0gMjAsIHRpdGxlID0gIkhhbGxtYXJrIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiKQogICAgCiAgICAjIERpc3BsYXkgdGhlIHBsb3QgaW4gdGhlIG5vdGVib29rCiAgICBwcmludCh1cF9kb3RwbG90KQogICAgCiAgICAjIFNhdmUgdGhlIGRvdHBsb3QgdG8gYSBQTkcgZmlsZQogICAgZ2dzYXZlKHBhc3RlMChvdXRwdXRfZm9sZGVyLCAiaGFsbG1hcmtfdXByZWd1bGF0ZWRfZG90cGxvdC5wbmciKSwgcGxvdCA9IHVwX2RvdHBsb3QsIHdpZHRoID0gMTAsIGhlaWdodCA9IDgpCiAgICAKICAgICMgT3B0aW9uYWxseSwgc2F2ZSB0aGUgcmVzdWx0cyBhcyBDU1YKICAgIHdyaXRlLmNzdihhcy5kYXRhLmZyYW1lKGhhbGxtYXJrX3VwKSwgZmlsZSA9IHBhc3RlMChvdXRwdXRfZm9sZGVyLCAiaGFsbG1hcmtfdXByZWd1bGF0ZWRfZW5yaWNobWVudC5jc3YiKSwgcm93Lm5hbWVzID0gRkFMU0UpCiAgfSBlbHNlIHsKICAgIGNhdCgiTm8gc2lnbmlmaWNhbnQgZW5yaWNobWVudCBmb3VuZCBmb3IgdXByZWd1bGF0ZWQgZ2VuZXMuXG4iKQogIH0KfSBlbHNlIHsKICBjYXQoIk5vIHVwcmVndWxhdGVkIGdlbmVzIG92ZXJsYXAgd2l0aCBIYWxsbWFyayBnZW5lIHNldHMuXG4iKQp9CgppZiAobGVuZ3RoKGRvd25yZWd1bGF0ZWRfaW5faGFsbG1hcmspID4gMCkgewogICMgUGVyZm9ybSBlbnJpY2htZW50IGFuYWx5c2lzIGZvciBkb3ducmVndWxhdGVkIGdlbmVzIHVzaW5nIEhhbGxtYXJrIGdlbmUgc2V0cwogIGhhbGxtYXJrX2Rvd24gPC0gZW5yaWNoZXIoZ2VuZSA9IGRvd25yZWd1bGF0ZWRfaW5faGFsbG1hcmssIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgVEVSTTJHRU5FID0gaGFsbG1hcmtfc2V0c1ssIGMoImdzX25hbWUiLCAiZ2VuZV9zeW1ib2wiKV0sICAjIEVuc3VyZSBURVJNMkdFTkUgdXNlcyBjb3JyZWN0IGNvbHVtbnMKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCiAgIyBDaGVjayBpZiByZXN1bHRzIGV4aXN0CiAgaWYgKCFpcy5udWxsKGhhbGxtYXJrX2Rvd24pICYmIG5yb3coaGFsbG1hcmtfZG93bikgPiAwKSB7CiAgICAjIFZpc3VhbGl6ZSByZXN1bHRzIGlmIGF2YWlsYWJsZQogICAgZG93bl9kb3RwbG90IDwtIGRvdHBsb3QoaGFsbG1hcmtfZG93biwgc2hvd0NhdGVnb3J5ID0gMjAsIHRpdGxlID0gIkhhbGxtYXJrIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgRG93bnJlZ3VsYXRlZCBHZW5lcyIpCiAgICAKICAgICMgRGlzcGxheSB0aGUgcGxvdCBpbiB0aGUgbm90ZWJvb2sKICAgIHByaW50KGRvd25fZG90cGxvdCkKICAgIAogICAgIyBTYXZlIHRoZSBkb3RwbG90IHRvIGEgUE5HIGZpbGUKICAgIGdnc2F2ZShwYXN0ZTAob3V0cHV0X2ZvbGRlciwgImhhbGxtYXJrX2Rvd25yZWd1bGF0ZWRfZG90cGxvdC5wbmciKSwgcGxvdCA9IGRvd25fZG90cGxvdCwgd2lkdGggPSAxMCwgaGVpZ2h0ID0gOCkKICAgIAogICAgIyBPcHRpb25hbGx5LCBzYXZlIHRoZSByZXN1bHRzIGFzIENTVgogICAgd3JpdGUuY3N2KGFzLmRhdGEuZnJhbWUoaGFsbG1hcmtfZG93biksIGZpbGUgPSBwYXN0ZTAob3V0cHV0X2ZvbGRlciwgImhhbGxtYXJrX2Rvd25yZWd1bGF0ZWRfZW5yaWNobWVudC5jc3YiKSwgcm93Lm5hbWVzID0gRkFMU0UpCiAgfSBlbHNlIHsKICAgIGNhdCgiTm8gc2lnbmlmaWNhbnQgZW5yaWNobWVudCBmb3VuZCBmb3IgZG93bnJlZ3VsYXRlZCBnZW5lcy5cbiIpCiAgfQp9IGVsc2UgewogIGNhdCgiTm8gZG93bnJlZ3VsYXRlZCBnZW5lcyBvdmVybGFwIHdpdGggSGFsbG1hcmsgZ2VuZSBzZXRzLlxuIikKfQoKCmBgYAoKCgoKCgoK