library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(pastecs)
##
## Attaching package: 'pastecs'
##
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## The following object is masked from 'package:tidyr':
##
## extract
library(readr)
Workers_Compensation_Claims_Data <- read_csv("Workers__Compensation_Claims_Data.csv")
## Rows: 56 Columns: 18
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (18): Year, Subject employers, Subject employees, Accepted disabling cla...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
stat.desc(Workers_Compensation_Claims_Data$`Denied claims`,norm=T)
## nbr.val nbr.null nbr.na min max
## 5.400000e+01 0.000000e+00 2.000000e+00 1.709000e+03 2.091500e+04
## range sum median mean SE.mean
## 1.920600e+04 6.152410e+05 1.026450e+04 1.139335e+04 7.983136e+02
## CI.mean.0.95 var std.dev coef.var skewness
## 1.601214e+03 3.441445e+07 5.866383e+03 5.148953e-01 1.380053e-01
## skew.2SE kurtosis kurt.2SE normtest.W normtest.p
## 2.126061e-01 -1.122192e+00 -8.782316e-01 9.350957e-01 5.851845e-03
library(dplyr)
claims_4<-Workers_Compensation_Claims_Data %>% select(`Denied claims`,`Subject employees`) %>% arrange(-`Denied claims`,`Subject employees`)
hist(claims_4$`Denied claims`, main="Histogram of Denied Claims", xlab="Denied Claims", breaks=50)

ggplot(claims_4,aes(x=`Denied claims`,y=`Subject employees`)) + geom_point() + ggtitle("Untransformed Data")
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_point()`).

claims_4<-Workers_Compensation_Claims_Data %>% mutate(Employees=log(`Subject employees`)) %>% select(`Denied claims`,Employees)
head(claims_4)
## # A tibble: 6 × 2
## `Denied claims` Employees
## <dbl> <dbl>
## 1 NA 13.4
## 2 NA 13.5
## 3 1935 13.5
## 4 1709 13.5
## 5 2177 13.6
## 6 2408 13.6
hist(claims_4$`Denied claims`,breaks=10,probability = T)

hist(claims_4$`Denied claims`,breaks=10,probability = T)
lines(density(claims_4$Employees),col='red',lwd=2)
