Summary

Ran a pilot of N = 200 on 3/18/25. We manipulated the gender of a norm deviant on a timeliness norm. We measured their credibility in two ways (face valid and our composite measure of ability and intent), as well as prescriptive norm perceptions and influence.

Results:

  1. Women are seen as marginally more credible on our composite measure of credibility (p = .07). This appears to be driven by perceptions of ability (women are seen as more able as compared to men, but not more well intended). Women are also seen as more credible on the FV credibility item (p = .01)

  2. There is no difference in influence based on gender.

  3. Credibility (our composite and face valid measures) does not predict influence. When broken down into ability and intent, they also do not predict influence.

  4. Prescriptive norm perceptions do not vary by gender.

  5. Credibility (our composite and face valid measures) predicts prescriptive norm perceptions. When our composite is broken down into ability and intent, it is intent that is predicting prescriptive norm perceptions.

My thoughts:

  1. It is interesting that women are seen as more credible here. Specifically more able. This seems to disagree with the majority of the literature so idk how much stock to put into this finding (e.g., Ridgeway and Correll)

  2. It is also cool that perceived credibility of a norm violator predicts prescriptive norm perceptions. Specifically that intent is predictive of prescriptive norm perceptions. This explains why prescrtive norm perceptions don’t vary by gender – since women and men are seen as equally intended in this data.

My thoughts on next steps:

  1. On the whole, these pilot data are pretty meh.

  2. I don’t think we are doing enough to see differences in influence based on credibility. We should explore how we can do this (I might vote for returning to the tipping point paradigm, although this is a different version of influence).

  3. We need to explore what attributes affect the credibility of a deviant. If not gender, then what makes people more or less credible in a workplace? I think there is likely still a story about the attributes of the deviant, but maybe we need to shift a little? Or we lean more on theory here (status characteristics, big two, …).

  4. I think it could be interesting to run a tipping point study where we specifically say a source is either credible or not, then look at what number of actions –> perceived norm change by condition.

Load library and data

library(tidyverse) 
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data <- read.csv("~/Google Drive/My Drive/YEAR 2/PROJECTS/DEREK/Gender of deviant/pilot_data.csv") %>% 
  slice(-c(1:2)) %>% 
  filter(attn == 24) 
data <- data %>% 
  unite(geolocation, LocationLatitude, LocationLongitude) %>% 
  group_by(geolocation) %>%
  mutate(geo_frequency = n()) %>%
  filter(geo_frequency < 3) %>% 
  ungroup()

N = 183 after exclusions

Are women seen as less credible?

Our measure of credibility

data <- data %>% 
  mutate(credibility_1 = as.numeric(credibility_1)) %>% 
  mutate(credibility_2 = as.numeric(credibility_2)) %>% 
  mutate(credibility_3 = as.numeric(credibility_3)) %>% 
  mutate(credibility_4 = as.numeric(credibility_4)) %>% 
  mutate(credibility_5 = as.numeric(credibility_5)) %>% 
  mutate(credibility_6 = as.numeric(credibility_6)) %>% 
  rowwise() %>% 
  mutate(credibility_avg = mean(c(credibility_1, credibility_2, credibility_3, credibility_4, credibility_5, credibility_6), na.rm = T)) %>% 
  ungroup()
ggplot(data = data, 
       aes(x = condition, y = credibility_avg)) +
  geom_point(alpha = 0.1,
             size = 2,
             position = position_jitter(0.1)) +
  stat_summary(fun.data = "mean_cl_boot",
               size = 1,
               geom = "linerange",
               color = "grey50")+
  stat_summary(fun = "mean",
               size = 0.3)+
  theme_bw() 
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_segment()`).

t.test(credibility_avg ~ condition, data = data, var.equal = F)
## 
##  Welch Two Sample t-test
## 
## data:  credibility_avg by condition
## t = -1.7964, df = 180.87, p-value = 0.0741
## alternative hypothesis: true difference in means between group man and group woman is not equal to 0
## 95 percent confidence interval:
##  -0.47192539  0.02213243
## sample estimates:
##   mean in group man mean in group woman 
##            2.976190            3.201087

FV measure of credibility

ggplot(data = data, 
       aes(x = condition, y = as.numeric(credibility))) +
  geom_point(alpha = 0.1,
             size = 2,
             position = position_jitter(0.1)) +
  stat_summary(fun.data = "mean_cl_boot",
               size = 1,
               geom = "linerange",
               color = "grey50")+
  stat_summary(fun = "mean",
               size = 0.3)+
  theme_bw() 
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_segment()`).

t.test(as.numeric(credibility) ~ condition, data = data, var.equal = F)
## 
##  Welch Two Sample t-test
## 
## data:  as.numeric(credibility) by condition
## t = -2.3919, df = 180.41, p-value = 0.01779
## alternative hypothesis: true difference in means between group man and group woman is not equal to 0
## 95 percent confidence interval:
##  -0.45951083 -0.04407254
## sample estimates:
##   mean in group man mean in group woman 
##            2.835165            3.086957

Uhhh… women deviants are seen as more credible. Interesting… We can probably generate a few hypotheses as to why?

Who is more influential?

data <- data %>% 
  mutate(influence = as.numeric(influence_1))

The higher the number = the later they would arrive

ggplot(data = data, 
       aes(x = condition, y = influence)) +
  geom_point(alpha = 0.1,
             size = 2,
             position = position_jitter(0.1)) +
  stat_summary(fun.data = "mean_cl_boot",
               size = 1,
               geom = "linerange",
               color = "grey50")+
  stat_summary(fun = "mean",
               size = 0.3)+
  theme_bw() 
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_segment()`).

t.test(influence ~ condition, data = data, var.equal = F)
## 
##  Welch Two Sample t-test
## 
## data:  influence by condition
## t = -1.233, df = 180.45, p-value = 0.2192
## alternative hypothesis: true difference in means between group man and group woman is not equal to 0
## 95 percent confidence interval:
##  -3.0376438  0.7012845
## sample estimates:
##   mean in group man mean in group woman 
##            25.52747            26.69565

No significant difference.

The time as compared to Alex’s arrival time

52 = Alex’s arrival time (8:22)

data <- data %>% 
  rowwise() %>% 
  mutate(influence_centered = influence - 52) %>% 
  ungroup()
ggplot(data = data, 
       aes(x = condition, y = influence_centered)) +
  geom_point(alpha = 0.1,
             size = 2,
             position = position_jitter(0.1)) +
  stat_summary(fun.data = "mean_cl_boot",
               size = 1,
               geom = "linerange",
               color = "grey50")+
  stat_summary(fun = "mean",
               size = 0.3)+
  geom_hline(yintercept = 0) + 
  theme_bw() 
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_segment()`).

The time as compared to the norm (8:00am)

30 = the norm (8:00AM)

data <- data %>% 
  rowwise() %>% 
  mutate(influence_centered_norm = influence - 30) %>% 
  ungroup()
ggplot(data = data, 
       aes(x = condition, y = influence_centered_norm)) +
  geom_point(alpha = 0.1,
             size = 2,
             position = position_jitter(0.1)) +
  stat_summary(fun.data = "mean_cl_boot",
               size = 1,
               geom = "linerange",
               color = "grey50")+
  stat_summary(fun = "mean",
               size = 0.3)+
  geom_hline(yintercept = 0) + 
  theme_bw() 
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_segment()`).

All are arriving early

Does credibility predict influence?

lm(influence ~ credibility_avg, data = data) %>%  summary()
## 
## Call:
## lm(formula = influence ~ credibility_avg, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -25.262  -1.664   0.044   3.341  33.136 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      24.2534     1.7884  13.561   <2e-16 ***
## credibility_avg   0.6025     0.5582   1.079    0.282    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.417 on 181 degrees of freedom
## Multiple R-squared:  0.006396,   Adjusted R-squared:  0.0009068 
## F-statistic: 1.165 on 1 and 181 DF,  p-value: 0.2818
lm(influence ~ as.numeric(credibility), data = data) %>%  summary()
## 
## Call:
## lm(formula = influence ~ as.numeric(credibility), data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -25.701  -1.562  -0.131   3.438  33.438 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              24.8391     2.0135  12.336   <2e-16 ***
## as.numeric(credibility)   0.4307     0.6606   0.652    0.515    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.43 on 181 degrees of freedom
## Multiple R-squared:  0.002343,   Adjusted R-squared:  -0.003169 
## F-statistic: 0.4251 on 1 and 181 DF,  p-value: 0.5152

Is there an interaction between credibility and gender?

lm(influence ~ credibility_avg * condition, data = data) %>%  summary()
## 
## Call:
## lm(formula = influence ~ credibility_avg * condition, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.926  -1.778   0.210   3.430  32.597 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     24.3142     2.5206   9.646   <2e-16 ***
## credibility_avg                  0.4076     0.8161   0.500    0.618    
## conditionwoman                   0.3830     3.6134   0.106    0.916    
## credibility_avg:conditionwoman   0.2166     1.1297   0.192    0.848    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.43 on 179 degrees of freedom
## Multiple R-squared:  0.01322,    Adjusted R-squared:  -0.003319 
## F-statistic: 0.7993 on 3 and 179 DF,  p-value: 0.4957
lm(influence ~ as.numeric(credibility) * condition, data = data) %>%  summary()
## 
## Call:
## lm(formula = influence ~ as.numeric(credibility) * condition, 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -25.608  -1.640   0.085   3.360  32.722 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                            25.80000    2.87888   8.962 4.14e-16 ***
## as.numeric(credibility)                -0.09612    0.98713  -0.097    0.923    
## conditionwoman                         -1.07249    4.09239  -0.262    0.794    
## as.numeric(credibility):conditionwoman  0.73369    1.34719   0.545    0.587    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.437 on 179 degrees of freedom
## Multiple R-squared:  0.01105,    Adjusted R-squared:  -0.005527 
## F-statistic: 0.6666 on 3 and 179 DF,  p-value: 0.5736

What about prescriptive norm perceptions? Are there gender differences?

The higher the number = the later they would find acceptable

data <- data %>% 
  rowwise() %>% 
  mutate(presc_comfort = as.numeric(presc_comfort_1)) %>% 
  mutate(presc_accept = as.numeric(presc_accept_1)) %>% 
  mutate(presc_approp = as.numeric(presc_approp_1)) %>% 
  mutate(presc_perception = mean(c(presc_comfort, presc_accept, presc_approp), na.rm = T)) %>% 
  ungroup()
ggplot(data = data, 
       aes(x = condition, y = presc_perception)) +
  geom_point(alpha = 0.1,
             size = 2,
             position = position_jitter(0.1)) +
  stat_summary(fun.data = "mean_cl_boot",
               size = 1,
               geom = "linerange",
               color = "grey50")+
  stat_summary(fun = "mean",
               size = 0.3)+
  geom_hline(yintercept = 45) + 
  theme_bw() 
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_segment()`).

t.test(presc_perception ~ condition, data = data, var.equal = F)
## 
##  Welch Two Sample t-test
## 
## data:  presc_perception by condition
## t = -0.42938, df = 180.87, p-value = 0.6682
## alternative hypothesis: true difference in means between group man and group woman is not equal to 0
## 95 percent confidence interval:
##  -2.732626  1.755879
## sample estimates:
##   mean in group man mean in group woman 
##            17.73626            18.22464

Does credibility predict prescriptive norm perceptions?

lm(presc_perception ~ credibility_avg, data = data) %>%  summary()
## 
## Call:
## lm(formula = presc_perception ~ credibility_avg, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.337  -3.821  -1.792   1.239  40.694 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      13.4892     2.1169   6.372  1.5e-09 ***
## credibility_avg   1.4543     0.6607   2.201    0.029 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.595 on 181 degrees of freedom
## Multiple R-squared:  0.02607,    Adjusted R-squared:  0.02069 
## F-statistic: 4.845 on 1 and 181 DF,  p-value: 0.02899
lm(presc_perception ~ as.numeric(credibility), data = data) %>%  summary()
## 
## Call:
## lm(formula = presc_perception ~ as.numeric(credibility), data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.043  -4.043  -1.780   1.624  40.361 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              13.2544     2.3828   5.563 9.43e-08 ***
## as.numeric(credibility)   1.5961     0.7818   2.042   0.0426 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.609 on 181 degrees of freedom
## Multiple R-squared:  0.02251,    Adjusted R-squared:  0.01711 
## F-statistic: 4.168 on 1 and 181 DF,  p-value: 0.04264
lm(presc_perception ~ credibility_avg * condition, data = data) %>%  summary()
## 
## Call:
## lm(formula = presc_perception ~ credibility_avg * condition, 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.280  -3.897  -1.678   1.165  40.705 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     13.2044     2.9936   4.411 1.77e-05 ***
## credibility_avg                  1.5227     0.9692   1.571    0.118    
## conditionwoman                   0.6441     4.2914   0.150    0.881    
## credibility_avg:conditionwoman  -0.1556     1.3417  -0.116    0.908    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.637 on 179 degrees of freedom
## Multiple R-squared:  0.02626,    Adjusted R-squared:  0.009936 
## F-statistic: 1.609 on 3 and 179 DF,  p-value: 0.189
lm(presc_perception ~ as.numeric(credibility) * condition, data = data) %>%  summary()
## 
## Call:
## lm(formula = presc_perception ~ as.numeric(credibility) * condition, 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -17.984  -3.984  -1.812   1.586  40.510 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             13.4667     3.4217   3.936 0.000119 ***
## as.numeric(credibility)                  1.5059     1.1733   1.284 0.200958    
## conditionwoman                          -0.3470     4.8641  -0.071 0.943202    
## as.numeric(credibility):conditionwoman   0.1478     1.6012   0.092 0.926564    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.651 on 179 degrees of freedom
## Multiple R-squared:  0.02259,    Adjusted R-squared:  0.00621 
## F-statistic: 1.379 on 3 and 179 DF,  p-value: 0.2507

What about if we break down ability and intent. Do they vary by gender?

data <- data %>% 
  rowwise() %>% 
  mutate(ability = mean(c(credibility_1, credibility_2, credibility_3), na.rm = T)) %>% 
  mutate(intent = mean(c(credibility_4, credibility_5, credibility_6), na.rm = T)) %>% 
  ungroup()

Ability

ggplot(data = data, 
       aes(x = condition, y = ability)) +
  geom_point(alpha = 0.1,
             size = 2,
             position = position_jitter(0.1)) +
  stat_summary(fun.data = "mean_cl_boot",
               size = 1,
               geom = "linerange",
               color = "grey50")+
  stat_summary(fun = "mean",
               size = 0.3)+
  theme_bw() 
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_segment()`).

t.test(ability ~ condition, data = data, var.equal = F)
## 
##  Welch Two Sample t-test
## 
## data:  ability by condition
## t = -2.0865, df = 181, p-value = 0.03834
## alternative hypothesis: true difference in means between group man and group woman is not equal to 0
## 95 percent confidence interval:
##  -0.53274643 -0.01487262
## sample estimates:
##   mean in group man mean in group woman 
##            3.142857            3.416667

Intent

ggplot(data = data, 
       aes(x = condition, y = intent)) +
  geom_point(alpha = 0.1,
             size = 2,
             position = position_jitter(0.1)) +
  stat_summary(fun.data = "mean_cl_boot",
               size = 1,
               geom = "linerange",
               color = "grey50")+
  stat_summary(fun = "mean",
               size = 0.3)+
  theme_bw() 
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_segment()`).

t.test(intent ~ condition, data = data, var.equal = F)
## 
##  Welch Two Sample t-test
## 
## data:  intent by condition
## t = -1.3614, df = 180.51, p-value = 0.1751
## alternative hypothesis: true difference in means between group man and group woman is not equal to 0
## 95 percent confidence interval:
##  -0.43104665  0.07907977
## sample estimates:
##   mean in group man mean in group woman 
##            2.809524            2.985507

Do ability and intent predict influence?

lm(influence ~ ability + intent, data = data) %>%  summary()
## 
## Call:
## lm(formula = influence ~ ability + intent, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -26.073  -1.863   0.325   3.248  32.580 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   24.672      1.809  13.636   <2e-16 ***
## ability       -1.032      1.002  -1.030    0.304    
## intent         1.666      1.024   1.627    0.106    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.401 on 180 degrees of freedom
## Multiple R-squared:  0.01687,    Adjusted R-squared:  0.005947 
## F-statistic: 1.544 on 2 and 180 DF,  p-value: 0.2163
lm(influence ~ ability * condition, data = data) %>%  summary()
## 
## Call:
## lm(formula = influence ~ ability * condition, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.957  -1.806   0.186   3.389  33.119 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             24.5369     2.5081   9.783   <2e-16 ***
## ability                  0.3152     0.7686   0.410    0.682    
## conditionwoman           1.4662     3.6656   0.400    0.690    
## ability:conditionwoman  -0.1125     1.0790  -0.104    0.917    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.442 on 179 degrees of freedom
## Multiple R-squared:  0.00965,    Adjusted R-squared:  -0.006948 
## F-statistic: 0.5814 on 3 and 179 DF,  p-value: 0.6279
lm(influence ~ intent * condition, data = data) %>%  summary()
## 
## Call:
## lm(formula = influence ~ intent * condition, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -25.023  -1.761   0.272   3.388  32.030 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            24.2866     2.3420  10.370   <2e-16 ***
## intent                  0.4417     0.7985   0.553    0.581    
## conditionwoman         -0.4129     3.2993  -0.125    0.901    
## intent:conditionwoman   0.5036     1.0924   0.461    0.645    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.412 on 179 degrees of freedom
## Multiple R-squared:  0.01881,    Adjusted R-squared:  0.002368 
## F-statistic: 1.144 on 3 and 179 DF,  p-value: 0.3328

Do ability and intent predict prescriptive norm perceptions?

lm(presc_perception ~ ability + intent, data = data) %>%  summary()
## 
## Call:
## lm(formula = presc_perception ~ ability + intent, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -16.247  -3.878  -1.838   2.110  39.801 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   14.176      2.131   6.652 3.36e-10 ***
## ability       -1.459      1.181  -1.235   0.2183    
## intent         2.965      1.206   2.457   0.0149 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.539 on 180 degrees of freedom
## Multiple R-squared:  0.04576,    Adjusted R-squared:  0.03515 
## F-statistic: 4.316 on 2 and 180 DF,  p-value: 0.01477
lm(presc_perception ~ ability * condition, data = data) %>%  summary()
## 
## Call:
## lm(formula = presc_perception ~ ability * condition, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.627  -3.835  -1.835   1.285  41.373 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             14.4713     2.9920   4.837 2.84e-06 ***
## ability                  1.0389     0.9169   1.133    0.259    
## conditionwoman           0.5610     4.3728   0.128    0.898    
## ability:conditionwoman  -0.1045     1.2872  -0.081    0.935    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.685 on 179 degrees of freedom
## Multiple R-squared:  0.01398,    Adjusted R-squared:  -0.002543 
## F-statistic: 0.8461 on 3 and 179 DF,  p-value: 0.4703
lm(presc_perception ~ intent * condition, data = data) %>%  summary()
## 
## Call:
## lm(formula = presc_perception ~ intent * condition, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -17.479  -3.739  -1.581   1.288  40.120 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            12.6775     2.7726   4.572 8.97e-06 ***
## intent                  1.8006     0.9453   1.905   0.0584 .  
## conditionwoman          0.8001     3.9059   0.205   0.8379    
## intent:conditionwoman  -0.2105     1.2933  -0.163   0.8709    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.591 on 179 degrees of freedom
## Multiple R-squared:  0.03796,    Adjusted R-squared:  0.02184 
## F-statistic: 2.354 on 3 and 179 DF,  p-value: 0.07361