第一题 编写代码
利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。
计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)
# A tibble: 336,776 × 19
year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
<int> <int> <int> <int> <int> <dbl> <int> <int>
1 2013 1 1 517 515 2 830 819
2 2013 1 1 533 529 4 850 830
3 2013 1 1 542 540 2 923 850
4 2013 1 1 544 545 -1 1004 1022
5 2013 1 1 554 600 -6 812 837
6 2013 1 1 554 558 -4 740 728
7 2013 1 1 555 600 -5 913 854
8 2013 1 1 557 600 -3 709 723
9 2013 1 1 557 600 -3 838 846
10 2013 1 1 558 600 -2 753 745
# ℹ 336,766 more rows
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
# hour <dbl>, minute <dbl>, time_hour <dttm>
flights %>%
group_by (origin) %>%
summarise (n= n (),depm= mean (dep_delay,na.rm= T))
# A tibble: 3 × 3
origin n depm
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
计算不同航空公司2013从纽约起飞航班数和平均延误时间
flights %>%
group_by (carrier) %>%
summarise (n= n (),depm= mean (dep_delay,na.rm= T)) %>%
arrange (desc (n))
# A tibble: 16 × 3
carrier n depm
<chr> <int> <dbl>
1 UA 58665 12.1
2 B6 54635 13.0
3 EV 54173 20.0
4 DL 48110 9.26
5 AA 32729 8.59
6 MQ 26397 10.6
7 US 20536 3.78
8 9E 18460 16.7
9 WN 12275 17.7
10 VX 5162 12.9
11 FL 3260 18.7
12 AS 714 5.80
13 F9 685 20.2
14 YV 601 19.0
15 HA 342 4.90
16 OO 32 12.6
计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)
flights %>%
group_by (origin,dest) %>%
summarise (n= n (),distm= mean (distance)) %>%
slice_max (n,n= 3 )
`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.
# A tibble: 9 × 4
# Groups: origin [3]
origin dest n distm
<chr> <chr> <int> <dbl>
1 EWR ORD 6100 719
2 EWR BOS 5327 200
3 EWR SFO 5127 2565
4 JFK LAX 11262 2475
5 JFK SFO 8204 2586
6 JFK BOS 5898 187
7 LGA ATL 10263 762
8 LGA ORD 8857 733
9 LGA CLT 6168 544
第二题 解释代码
代码含义:用管道操作符 %>% 将数据框 iris 转换为 tibble 格式,arrange
的第一个参数是数据框(在这里是 tibble(iris)
),后面的参数指定了排序的列和顺序,已品种为首,其次是sepal,降序排列
tibble (iris) %>%
arrange (Species,across (starts_with ("Sepal" ), desc))
# A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.8 4 1.2 0.2 setosa
2 5.7 4.4 1.5 0.4 setosa
3 5.7 3.8 1.7 0.3 setosa
4 5.5 4.2 1.4 0.2 setosa
5 5.5 3.5 1.3 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 5.4 3.9 1.3 0.4 setosa
8 5.4 3.7 1.5 0.2 setosa
9 5.4 3.4 1.7 0.2 setosa
10 5.4 3.4 1.5 0.4 setosa
# ℹ 140 more rows
代码含义:将 starwars
数据集按照 gender
列进行分组。对每个性别组,计算该组中 mass
列的平均值(忽略缺失值)。筛选出每个组中 mass
大于组内平均值的角色
starwars %>%
group_by (gender) %>%
filter (mass > mean (mass, na.rm = TRUE ))
# A tibble: 15 × 14
# Groups: gender [3]
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Darth … 202 136 none white yellow 41.9 male mascu…
2 Owen L… 178 120 brown, gr… light blue 52 male mascu…
3 Beru W… 165 75 brown light blue 47 fema… femin…
4 Chewba… 228 112 brown unknown blue 200 male mascu…
5 Jabba … 175 1358 <NA> green-tan… orange 600 herm… mascu…
6 Jek To… 180 110 brown fair blue NA <NA> <NA>
7 IG-88 200 140 none metal red 15 none mascu…
8 Bossk 190 113 none green red 53 male mascu…
9 Ayla S… 178 55 none blue hazel 48 fema… femin…
10 Gregar… 185 85 black dark brown NA <NA> <NA>
11 Lumina… 170 56.2 black yellow blue 58 fema… femin…
12 Zam We… 168 55 blonde fair, gre… yellow NA fema… femin…
13 Shaak … 178 57 none red, blue… black NA fema… femin…
14 Grievo… 216 159 none brown, wh… green, y… NA male mascu…
15 Tarfful 234 136 brown brown blue NA male mascu…
# ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
# vehicles <list>, starships <list>
代码含义:从 starwars
数据集中选择 name
、homeworld
和 species
三列。将 homeworld
和 species
列转换为因子类型。
starwars %>%
select (name, homeworld, species) %>%
mutate (across (! name, as.factor))
# A tibble: 87 × 3
name homeworld species
<chr> <fct> <fct>
1 Luke Skywalker Tatooine Human
2 C-3PO Tatooine Droid
3 R2-D2 Naboo Droid
4 Darth Vader Tatooine Human
5 Leia Organa Alderaan Human
6 Owen Lars Tatooine Human
7 Beru Whitesun Lars Tatooine Human
8 R5-D4 Tatooine Droid
9 Biggs Darklighter Tatooine Human
10 Obi-Wan Kenobi Stewjon Human
# ℹ 77 more rows
代码含义:将 mtcars
数据集转换为 tibble
格式。按照 vs
列(发动机类型)进行分组。在每个 vs
组内,将 hp
列(马力)分成3个区间,并创建一个新列 hp_cut
来存储分箱结果。最后,按照 hp_cut
列(马力区间)重新分组
tibble (mtcars) %>%
group_by (vs) %>%
mutate (hp_cut = cut (hp, 3 )) %>%
group_by (hp_cut)
# A tibble: 32 × 12
# Groups: hp_cut [6]
mpg cyl disp hp drat wt qsec vs am gear carb hp_cut
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 (90.8,172]
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 (90.8,172]
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 (75.7,99.3]
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 (99.3,123]
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 (172,254]
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 (99.3,123]
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 (172,254]
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 (51.9,75.7]
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 (75.7,99.3]
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 (99.3,123]
# ℹ 22 more rows
第三题 查找帮助理解函数
阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。
inner_join()
:
library (dplyr)
students <- tibble (
id = 1 : 3 ,
name = c ("Alice" , "Bob" , "Charlie" )
)
scores <- tibble (
id = c (2 , 3 , 4 ),
score = c (90 , 85 , 70 )
)
inner_join (students, scores, by = "id" )
# A tibble: 2 × 3
id name score
<dbl> <chr> <dbl>
1 2 Bob 90
2 3 Charlie 85
left_join()
:
library (dplyr)
students <- tibble (
id = c (1 , 2 , 3 ),
name = c ("Alice" , "Bob" , "Charlie" )
)
scores <- tibble (
id = c (1 , 2 , 4 ),
score = c (90 , 85 , 88 )
)
result <- left_join (students, scores, by = "id" )
print (result)
# A tibble: 3 × 3
id name score
<dbl> <chr> <dbl>
1 1 Alice 90
2 2 Bob 85
3 3 Charlie NA
right_join()
:
result <- right_join (students, scores, by = "id" )
print (result)
# A tibble: 3 × 3
id name score
<dbl> <chr> <dbl>
1 1 Alice 90
2 2 Bob 85
3 4 <NA> 88
full_join()
:
result <- full_join (students, scores, by = "id" )
print (result)
# A tibble: 4 × 3
id name score
<dbl> <chr> <dbl>
1 1 Alice 90
2 2 Bob 85
3 3 Charlie NA
4 4 <NA> 88