soal 3.1.5
Ax <- function(delta, age, benefit, B, C, w=500) {
int <- function(t) {
benefit*exp(-delta*t)*
(exp((-B/log(C))*(C^(age+t)-1)))/
(exp((-B/log(C))*(C^age-1)))*(B*C^(age+t))
}
Ax.value <- integrate(int, 0, w-age)$value
Ax.value
}
mAX <- function(delta, age, benefit, B, C, m, w=500) {
int <- function(t) {
benefit*exp(-delta*t)*
(exp((-B/log(C))*(C^(age+t)-1)))/
(exp((-B/log(C))*(C^age-1)))*(B*C^(age+t))
}
mAX.value <- integrate(int, m, w-age)$value
mAX.value
}
Axn <- function(delta, age, benefit, B, C, n) {
int <- function(t) {
benefit*exp(-delta*t)*
(exp((-B/log(C))*(C^(age+t)-1)))/
(exp((-B/log(C))*(C^age-1)))*(B*C^(age+t))
}
Axn.value <- integrate(int, 0, n)$value
Axn.value
}
mAxn <- function(delta, age, benefit, B, C, n, m) {
int <- function(t) {
benefit*exp(-delta*t)*
(exp((-B/log(C))*(C^(age+t)-1)))/
(exp((-B/log(C))*(C^age-1)))*(B*C^(age+t))
}
mAxn.value <- integrate(int, m, m+n)$value
mAxn.value
}
Exn <- function(delta, age, benefit, B, C, n) {
Exn.value <- benefit*exp(-delta*n)*
(exp((-B/log(C))*(C^(age+n)-1)))/
(exp((-B/log(C))*(C^age-1)))
Exn.value
}
endowment <- function(delta, age, benefit, B, C, n) {
int <- function(t) {
benefit*exp(-delta*t)*
(exp((-B/log(C))*(C^(age+t)-1)))/
(exp((-B/log(C))*(C^age-1)))*(B*C^(age+t))
}
Axn.value <- integrate(int, 0, n)$value
Exn.value <- benefit*exp(-delta*n)*
(exp((-B/log(C))*(C^(age+n)-1)))/
(exp((-B/log(C))*(C^age-1)))
endowment.value = Axn.value + Exn.value
endowment.value
}
IAxn <- function(delta, age, benefit, B, C, n, increase) {
int <- function(t) {
(benefit+increase*t)*
exp(-delta*t)*(B*C^(age+t))*
(exp((-B/log(C))*(C^(age+t)-1)))/
(exp((-B/log(C))*(C^age-1)))
}
IAxn.value <- integrate(int, 0, n)$value
IAxn.value
}
DAxn <- function(delta, age, benefit, B, C, n, decrease) {
int <- function(t) {
(benefit-decrease*t)*
exp(-delta*t)*(B*C^(age+t))*
(exp((-B/log(C))*(C^(age+t)-1)))/
(exp((-B/log(C))*(C^age-1)))
}
DAxn.value <- integrate(int, 0, n)$value
DAxn.value
}
Ax(delta=0.05, age=30, benefit=1e+7, B=1e-5, C=1.09)
## [1] 456884.7
mAX(delta=0.05, age=30, benefit=1e+7, B=1e-5, C=1.09, m=5)
## [1] 449615.9
Axn(delta=0.05, age=30, benefit=1e+7, B=1e-5, C=1.09, n=20)
## [1] 38822.14
mAxn(delta=0.05, age=30, benefit=1e+7, B=1e-5, C=1.09, n=20, m=10)
## [1] 55400.56
Exn(delta=0.05, age=30, benefit=1e+7, B=1e-5, C=1.09, n=15)
## [1] 4704487
endowment(delta=0.05, age=30, benefit=1e+7, B=1e-5, C=1.09, n=30)
## [1] 2260925
IAxn(delta=0.05, age=30, benefit=1e+7, B=1e-5, C=1.09, n=4, increase=5e+6)
## [1] 11554.09
DAxn(delta=0.05, age=30, benefit=1e+7, B=1e-5, C=1.09, n=5, decrease=1e+6)
## [1] 5397.108