library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(readr)
library(RColorBrewer)
setwd("~/Library/CloudStorage/OneDrive-montgomerycollege.edu/DATA 110 - Mais Alraee/week 6 3:3 - 3:9")
nations <- read_csv("nations.csv")
## Rows: 5275 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (5): iso2c, iso3c, country, region, income
## dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(nations)
## # A tibble: 6 × 10
## iso2c iso3c country year gdp_percap population birth_rate neonat_mortal_rate
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AD AND Andorra 1996 NA 64291 10.9 2.8
## 2 AD AND Andorra 1994 NA 62707 10.9 3.2
## 3 AD AND Andorra 2003 NA 74783 10.3 2
## 4 AD AND Andorra 1990 NA 54511 11.9 4.3
## 5 AD AND Andorra 2009 NA 85474 9.9 1.7
## 6 AD AND Andorra 2011 NA 82326 NA 1.6
## # ℹ 2 more variables: region <chr>, income <chr>
nations <- nations |>
mutate(gdp_trillions = (gdp_percap * population) / 1e12)
countries <- c("United States", "China", "Japan", "Germany")
nations_clean <- nations |>
filter(country %in% countries)
chart1 <- ggplot(nations_clean, aes(x = year, y = gdp_trillions, color = country)) +
geom_line(size = 1) +
geom_point(size = 2) +
scale_color_brewer(palette = "Set1") +
labs(title = "China's Rise to Become the Largest Economy",
x = "Year",
y = "GDP (Trillions of $)",
color = "Country") +
theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
chart1

nations_region <- nations |>
group_by(region, year) |>
summarise(GDP = sum(gdp_trillions, na.rm = TRUE))
## `summarise()` has grouped output by 'region'. You can override using the
## `.groups` argument.
chart2 <- ggplot(nations_region, aes(x = year, y = GDP, fill = region)) +
geom_area(color = "white", size = 0.2) +
scale_fill_brewer(palette = "Set2") +
labs(title = "GDP by World Bank Region",
x = "Year",
y = "GDP ($ Trillions) ",
fill = "Region") +
theme_bw()
chart2
