The cost of renting a home in the Nashville area ranges from $1,270 for a tiny studio apartment on the area’s western fringe to $4,260 for a four-bedroom home in the posh Oak Hill neighborhood, the latest federal data show.
Below is a breakdown of estimated rents by rental home size for each of 80 major ZIP codes in the Nashville area, followed by a table of summary data for two-bedroom rents and a clickable rent data map. Data come from the U.S. Department of Housing and Urban Development’s Small-Area Fair Market Rent program.
Rent information by ZIP code
Nashville-area FMR, by size and ZIP | |||||||
ZIP | Studio | BR1 | BR2 | BR3 | BR4 | ZIP_Average | Rent_Category |
---|---|---|---|---|---|---|---|
37069 | 2380 | 2470 | 2740 | 3460 | 4260 | 3062 | Above average |
37135 | 2380 | 2470 | 2740 | 3460 | 4260 | 3062 | Above average |
37220 | 2380 | 2470 | 2740 | 3460 | 4260 | 3062 | Above average |
37179 | 2350 | 2440 | 2700 | 3410 | 4200 | 3020 | Above average |
37201 | 2260 | 2350 | 2600 | 3280 | 4040 | 2906 | Above average |
37027 | 2220 | 2300 | 2550 | 3220 | 3960 | 2850 | Above average |
37219 | 2170 | 2260 | 2500 | 3160 | 3890 | 2796 | Above average |
37065 | 2150 | 2230 | 2470 | 3120 | 3840 | 2762 | Above average |
37068 | 2150 | 2230 | 2470 | 3120 | 3840 | 2762 | Above average |
37067 | 2120 | 2200 | 2440 | 3080 | 3790 | 2726 | Above average |
37215 | 2080 | 2160 | 2390 | 3020 | 3720 | 2674 | Above average |
37205 | 2070 | 2150 | 2380 | 3010 | 3700 | 2662 | Above average |
37014 | 2070 | 2150 | 2380 | 3000 | 3700 | 2660 | Above average |
37204 | 2040 | 2120 | 2350 | 2970 | 3650 | 2626 | Above average |
37122 | 2030 | 2100 | 2330 | 2940 | 3620 | 2604 | Above average |
37064 | 1980 | 2060 | 2280 | 2880 | 3540 | 2548 | Above average |
37221 | 1950 | 2020 | 2240 | 2830 | 3480 | 2504 | Above average |
37037 | 1940 | 2010 | 2230 | 2820 | 3470 | 2494 | Above average |
37174 | 1840 | 1890 | 2220 | 2810 | 3230 | 2398 | Above average |
37086 | 1820 | 1890 | 2090 | 2640 | 3250 | 2338 | Above average |
37214 | 1780 | 1850 | 2050 | 2590 | 3190 | 2292 | Above average |
37153 | 1760 | 1830 | 2020 | 2560 | 3140 | 2262 | Above average |
37203 | 1740 | 1810 | 2000 | 2530 | 3110 | 2238 | Above average |
37046 | 1700 | 1770 | 2000 | 2550 | 3030 | 2210 | Above average |
37209 | 1700 | 1770 | 1960 | 2480 | 3050 | 2192 | Above average |
37013 | 1680 | 1740 | 1930 | 2440 | 3000 | 2158 | Above average |
37128 | 1680 | 1740 | 1930 | 2440 | 3000 | 2158 | Above average |
37212 | 1680 | 1740 | 1930 | 2440 | 3000 | 2158 | Above average |
37208 | 1670 | 1730 | 1920 | 2430 | 2980 | 2146 | Below average |
37213 | 1670 | 1740 | 1920 | 2420 | 2980 | 2146 | Below average |
37206 | 1640 | 1710 | 1890 | 2390 | 2940 | 2114 | Below average |
37216 | 1640 | 1710 | 1890 | 2390 | 2940 | 2114 | Below average |
37228 | 1640 | 1710 | 1890 | 2390 | 2940 | 2114 | Below average |
37011 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37024 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37062 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37070 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37116 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37129 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37202 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37222 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37224 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37229 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37232 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37236 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37238 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37240 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37243 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37246 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37076 | 1570 | 1630 | 1810 | 2290 | 2810 | 2022 | Below average |
37138 | 1550 | 1610 | 1780 | 2250 | 2770 | 1992 | Below average |
37211 | 1550 | 1610 | 1780 | 2250 | 2770 | 1992 | Below average |
37217 | 1550 | 1610 | 1780 | 2250 | 2770 | 1992 | Below average |
37072 | 1520 | 1580 | 1750 | 2210 | 2720 | 1956 | Below average |
37089 | 1520 | 1580 | 1750 | 2210 | 2720 | 1956 | Below average |
37131 | 1520 | 1580 | 1750 | 2210 | 2720 | 1956 | Below average |
37133 | 1520 | 1580 | 1750 | 2210 | 2720 | 1956 | Below average |
37090 | 1500 | 1560 | 1730 | 2180 | 2680 | 1930 | Below average |
37060 | 1470 | 1540 | 1710 | 2170 | 2620 | 1902 | Below average |
37167 | 1450 | 1510 | 1670 | 2110 | 2600 | 1868 | Below average |
37115 | 1440 | 1500 | 1660 | 2100 | 2580 | 1856 | Below average |
37210 | 1430 | 1490 | 1650 | 2080 | 2560 | 1842 | Below average |
37127 | 1410 | 1460 | 1620 | 2050 | 2520 | 1812 | Below average |
37218 | 1410 | 1460 | 1620 | 2050 | 2520 | 1812 | Below average |
37143 | 1400 | 1450 | 1610 | 2030 | 2500 | 1798 | Below average |
37189 | 1370 | 1420 | 1570 | 1980 | 2440 | 1756 | Below average |
37085 | 1350 | 1410 | 1550 | 1960 | 2420 | 1738 | Below average |
37015 | 1330 | 1390 | 1540 | 1940 | 2390 | 1718 | Below average |
37130 | 1300 | 1350 | 1490 | 1880 | 2320 | 1668 | Below average |
37132 | 1300 | 1350 | 1490 | 1880 | 2320 | 1668 | Below average |
38476 | 1270 | 1310 | 1470 | 1860 | 2280 | 1638 | Below average |
37020 | 1270 | 1300 | 1460 | 1890 | 2240 | 1632 | Below average |
37207 | 1270 | 1320 | 1460 | 1840 | 2270 | 1632 | Below average |
37025 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
37080 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
37118 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
37149 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
37160 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
37180 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
38401 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
Two-bedroom rent summary table
Two-bedroom stats, by rent category | ||||
Rent_Category | Count | Minimum | Average | Maximum |
---|---|---|---|---|
Above average | 28 | 1930 | 2309 | 2740 |
Below average | 52 | 1460 | 1713 | 1920 |
Clickable data map
# Getting and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("openxlsx"))
install.packages("openxlsx")
if (!require("gtExtras"))
install.packages("gtExtras")
if (!require("leafpop"))
install.packages("leafpop")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("RColorBrewer"))
install.packages("RColorBrewer")
if (!require("tidycensus"))
install.packages("tidycensus")
library(tidyverse)
library(openxlsx)
library(gtExtras)
library(readxl)
library(sf)
library(mapview)
library(leafpop)
library(RColorBrewer)
library(tidycensus)
# Reading data from:
# https://www.huduser.gov/portal/datasets/fmr/fmr2025/fy2025_safmrs.xlsx
# Note that you are downloading the 2025 data. We have been working with 2024 data.
# The data frame should have 51,899 observations of 18 variables
download.file(
"https://www.huduser.gov/portal/datasets/fmr/fmr2025/fy2025_safmrs.xlsx",
"rent.xlsx",
mode = "wb"
)
FMR <- read_xlsx(path = "rent.xlsx", .name_repair = "universal")
# Making a list of Nashville-area ZIP codes
ZIPList <- c(
"37135",
"37215",
"37064",
"37060",
"37014",
"37122",
"37027",
"37046",
"37221",
"37153",
"37210",
"37202",
"37024",
"37218",
"37062",
"37179",
"37025",
"37206",
"37065",
"37214",
"37067",
"37246",
"37068",
"37167",
"37069",
"37189",
"37070",
"37204",
"37072",
"37208",
"37076",
"37212",
"37080",
"37216",
"37085",
"37020",
"37086",
"38476",
"37089",
"37160",
"37090",
"37174",
"37115",
"37180",
"37116",
"37201",
"37118",
"37203",
"37015",
"37205",
"37127",
"37207",
"37128",
"37209",
"37129",
"37211",
"37130",
"37213",
"37220",
"37037",
"37222",
"37217",
"37228",
"37219",
"37232",
"37013",
"37131",
"37224",
"37132",
"37229",
"37133",
"37236",
"37238",
"37240",
"37243",
"37138",
"38401",
"37143",
"37011",
"37149"
)
# Filtering for Nashville-area ZIP codes and
# selecting columns of interest
# FMR_Nash data frame should have 80 observations of six variables
FMR_Nash <- FMR %>%
filter(ZIP.Code %in% ZIPList) %>%
select(ZIP.Code, SAFMR.0BR, SAFMR.1BR, SAFMR.2BR, SAFMR.3BR, SAFMR.4BR) %>%
distinct()
# Renaming the columns
colnames(FMR_Nash) <- c("ZIP", "Studio", "BR1", "BR2", "BR3", "BR4")
########################### END OF HINT CODE ################
# Averaging estimates
FMR_Nash <- FMR_Nash %>%
mutate(ZIP_Average = (Studio + BR1 + BR2 + BR3 + BR4) / 5)
# Sorting in descending order by ZIP_Average
FMR_Nash <- FMR_Nash %>%
arrange(desc(ZIP_Average))
# Averaging ZIP_Average
Average_ZIP_Average <- mean(FMR_Nash$ZIP_Average)
# Categorizing by ZIP_Average
FMR_Nash <- FMR_Nash %>%
mutate(
Rent_Category = case_when(
ZIP_Average > Average_ZIP_Average ~ "Above average",
ZIP_Average == Average_ZIP_Average ~ "Average",
ZIP_Average < Average_ZIP_Average ~ "Below average",
.default = "Error"
)
)
# Showing the data as a table
FMR_Nash_table <- gt(FMR_Nash) %>%
tab_header("Nashville-area FMR, by size and ZIP") %>%
cols_align(align = "left") %>%
gt_theme_538
FMR_Nash_table
# Grouping and summarizing
Summary_BR2 <- FMR_Nash %>%
group_by(Rent_Category) %>%
summarize(
Count = n(),
Minimum = min(BR2),
Average = round(mean(BR2), 0),
Maximum = max(BR2)
)
# Making the table
Summary_BR2_table <- gt(Summary_BR2) %>%
tab_header("Two-bedroom stats, by rent category") %>%
cols_align(align = "left") %>%
gt_theme_538
# Showing the table
Summary_BR2_table
# Downloading the ZIP code map file
download.file(
"https://www2.census.gov/geo/tiger/GENZ2020/shp/cb_2020_us_zcta520_500k.zip",
"ZCTAs2020.zip"
)
# Unzipping the ZIP code map file
unzip("ZCTAs2020.zip")
# Loading the ZIP code file into R as "ZCTAMap"
ZCTAMap <- read_sf("cb_2020_us_zcta520_500k.shp")
# Making ZIP a character variable
FMR_Nash$ZIP <- as.character(FMR_Nash$ZIP)
# Joining the files
FMR_Nash_Map <- left_join(FMR_Nash, ZCTAMap, by = c("ZIP" = "ZCTA5CE20"))
# Dropping unneeded columns
FMR_Nash_Map <- FMR_Nash_Map %>%
select(-c(AFFGEOID20, GEOID20, NAME20, LSAD20, ALAND20, AWATER20))
# Converting FMR_RuCo_Map
FMR_Nash_Map <- st_as_sf(FMR_Nash_Map)
# Adding Census estimates of rental housing
# and total housing unit counts
# Transmitting API key
# census_api_key("PasteYourAPIKeyBetweenTheseQuoteMarks")
# Fetching the Census data
Census_Data <- get_acs(
geography = "zcta",
variables = c("DP04_0047", "DP04_0045"),
year = 2023,
survey = "acs5",
output = "wide",
geometry = FALSE
)
# Making better column names
Census_Data <- Census_Data %>%
rename(
c(
"Rentals" = "DP04_0047E",
"Rentals_MOE" = "DP04_0047M",
"Households" = "DP04_0045E",
"Households_MOE" = "DP04_0045M"
)
)
# A peek at the data
glimpse(Census_Data)
# Merging FMR_Nash_Map and Census_Data
FMR_Nash_Map <- left_join(FMR_Nash_Map, Census_Data, by = c("ZIP" = "GEOID"))
# Mapping by average rent (ZIP_Average)
# with custom color palette
ZIP_Map <- mapview(
FMR_Nash_Map,
zcol = "ZIP_Average",
col.regions = brewer.pal(9, "Blues"),
layer.name = "Average rent",
popup = popupTable(
FMR_Nash_Map,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c(
"ZIP",
"Studio",
"BR1",
"BR2",
"BR3",
"BR4",
"Rentals",
"Rentals_MOE",
"Households",
"Households_MOE"
)
)
)
# Showing the map
ZIP_Map