Nations HW

Author

Han Le

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.1
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
setwd("C:/Users/hanle/Desktop/Han Le - Intro to Data/intro2r")
nations <- read_csv("nations.csv")
Rows: 5275 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): iso2c, iso3c, country, region, income
dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
nations_gdp <- nations |>
  mutate(gdp = (gdp_percap * population) / 1000000000000)
#Graph 1

nations_countries <- nations_gdp |>
  filter(country == "China" | 
           country == "Germany" | 
           country == "Japan" | 
           country == "United States")


ggplot(nations_countries, aes(x = year, y = gdp, color = country)) +
  geom_line() +
  geom_point() +
  scale_color_brewer(palette = "Set1") +
  labs(title = "China's Rise to Become the Largest Economy", 
       x = "Year", 
       y = "GDP (Trillions of $)")+
  theme_minimal()

#Graph 2

nations_region <- nations_gdp |>
  group_by(region, year) |>
  summarise(GDP = sum(gdp, na.rm = TRUE))
`summarise()` has grouped output by 'region'. You can override using the
`.groups` argument.
ggplot(nations_region, aes(x = year, y = GDP, fill = region)) +
  geom_area(color = "white") +
  scale_fill_brewer(palette = "Set2") +
  labs(title = "GDP by World Bank Region", 
       x = "Year", 
       y = "GDP ($ trillion)") +
  theme_minimal()