Assignment 5
Model Fitting
## # A tibble: 6 × 18
## `Player name` position Games `At-bat` Runs Hits `Double (2B)`
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B Bonds LF 2986 9847 2227 2935 601
## 2 H Aaron RF 3298 12364 2174 3771 624
## 3 B Ruth RF 2504 8399 2174 2873 506
## 4 A Pujols 1B 3080 11421 1914 3384 686
## 5 A Rodriguez SS 2784 10566 2021 3115 548
## 6 W Mays CF 2992 10881 2062 3283 523
## # ℹ 11 more variables: `third baseman` <dbl>, `home run` <dbl>,
## # `run batted in` <dbl>, `a walk` <dbl>, Strikeouts <chr>,
## # `stolen base` <dbl>, `Caught stealing` <chr>, AVG <dbl>,
## # `On-base Percentage` <dbl>, `Slugging Percentage` <dbl>,
## # `On-base Plus Slugging` <dbl>
## [1] "Player name" "position" "Games"
## [4] "At-bat" "Runs" "Hits"
## [7] "Double (2B)" "third baseman" "home run"
## [10] "run batted in" "a walk" "Strikeouts"
## [13] "stolen base" "Caught stealing" "AVG"
## [16] "On-base Percentage" "Slugging Percentage" "On-base Plus Slugging"
##
## Call:
## glm(formula = outcome ~ `At-bat` + Hits + Runs + `Double (2B)` +
## `home run`, family = binomial, data = data)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -7.705e+02 2.274e+04 -0.034 0.973
## `At-bat` 9.701e-03 2.651e+00 0.004 0.997
## Hits 3.611e-03 1.710e+01 0.000 1.000
## Runs 1.586e-02 6.143e+00 0.003 0.998
## `Double (2B)` -4.538e-02 3.807e+01 -0.001 0.999
## `home run` 1.341e+00 4.126e+01 0.033 0.974
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 3.0723e+02 on 2499 degrees of freedom
## Residual deviance: 3.9438e-06 on 2494 degrees of freedom
## (8 observations deleted due to missingness)
## AIC: 12
##
## Number of Fisher Scoring iterations: 25
Generate Simulation Object
## [1] "clarify_sim"
Average Marginal Effects
## A `clarify_est` object (from `sim_ame()`)
## - Average marginal effect of `home run`
## - 1000 simulated values
## - 1 quantity estimated:
## E[dY/d(home run)] 1.057681e-09
Predictions and First Differences at Set Values
## A `clarify_est` object (from `sim_setx()`)
## - Predicted outcomes at specified values
## + Predictors set: At-bat, Hits
## + All others set at typical values (see `help("sim_setx")` for definition)
## - 1000 simulated values
## - 4 quantities estimated:
## At-bat = 5000, Hits = 1500 2.220446e-16
## At-bat = 10000, Hits = 1500 2.220446e-16
## At-bat = 5000, Hits = 3000 2.220446e-16
## At-bat = 10000, Hits = 3000 2.220446e-16
Discussion of Results
In this section, you should discuss the results obtained from the
clarify
package, including the average marginal effects and
predictions at set values. Compare these results with the ones you
obtained in the previous assignment and highlight any new insights
provided by the clarify
package.
Make sure to include only the essential results that support your discussion and suppress any irrelevant outputs.
Conclusion
Summarize the key findings and their implications. Discuss how the
use of the clarify
package has enhanced your understanding
of the model’s results and any potential applications of these
insights.