TAHAPAN ANALISIS KOMPONEN UTAMA SOFTWARE R

Langkah 1: Import Data

library(readxl)
Data_Jatim <- read_excel("C:/Users/denih/Downloads/Produksi Beras Menurut Kabupaten_Kota, 2023.xlsx", sheet = 2)
Data_Jatim
## # A tibble: 38 × 10
##         X1      X2     X3    X4    X5    X6    X7    X8    X9   X10
##      <dbl>   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  53696.  17923.  92993  7322  5461  588   0.12  1.42   410 101. 
##  2 226923.  66595. 392994 32888  1750  960.  0.39  2.31   676  99.4
##  3  66331.  22049. 114875 10846  1405  741.  0.5   1.78   593 101. 
##  4 135984.  40239. 235502 24421  2678 1108.  0.6   2.67   968 100. 
##  5 138710.  36340. 240224 27633  4072 1254.  0.88  3.02   718 101. 
##  6 105976.  31268. 183534 45926  1860 1677.  0.92  4.04  1101 102. 
##  7 161312.  43919. 279366 45284  4190 2716.  0.83  6.54   782 101. 
##  8 178218.  55129. 308646 35482   333 1139.  0.64  2.74   634  97.8
##  9 356110. 120188. 616726 84519   484 2587.  0.71  6.23   781  99.3
## 10 262592.  75062. 454768 65509   645 1744.  0.76  4.2    485 100. 
## # ℹ 28 more rows

Langkah 2: Uji Multikolinearitas

Hipotesis: Ho : Tidak terdapat multikolinearitas H1 : Terdapat multikolinearitas pada salah satu variabel

Statistik Uji: Menggunakan nilai VIF

Kriteria Uji: Kriteria Umum untuk VIF VIF < 5 → Tidak ada multikolinearitas (non-multicollinearity) 5 ≤ VIF < 10 → Multikolinearitas sedang (perlu perhatian) VIF ≥ 10 → Multikolinearitas tinggi (perlu diatasi) VIF sangat besar (misalnya > 100 atau mendekati tak hingga) → Multikolinearitas ekstrim (variabel hampir sepenuhnya linier terhadap variabel lain)

library(car)
## Loading required package: carData
# Fungsi untuk menghitung VIF langsung dari matriks korelasi tanpa regresi
VIF_check <- function(data) {
  correlation_matrix <- cor(data)
  vif_values <- diag(solve(correlation_matrix))
  data_multikolinearitas <- data.frame(Variable = colnames(data), 
                                       VIF = vif_values, 
                                       result = ifelse(vif_values > 10, "multicolinearity", "non multicolinearity"))
  return(data_multikolinearitas)
}
# Menjalankan fungsi VIF_check pada dataset
vif_result <- VIF_check(Data_Jatim)

# Menampilkan hasil VIF untuk semua variabel
print(vif_result)
##     Variable          VIF               result
## X1        X1 1.028974e+12     multicolinearity
## X2        X2 1.465770e+02     multicolinearity
## X3        X3 1.028984e+12     multicolinearity
## X4        X4 8.974958e+00 non multicolinearity
## X5        X5 3.921978e+00 non multicolinearity
## X6        X6 5.623394e+05     multicolinearity
## X7        X7 4.294247e+00 non multicolinearity
## X8        X8 5.627394e+05     multicolinearity
## X9        X9 4.338049e+00 non multicolinearity
## X10      X10 1.867462e+00 non multicolinearity

Hasil Analisis: Berdasarkan tabel hasil perhitungan VIF: - X1, X2, X3, X6, dan X8 memiliki VIF yang sangat besar (lebih dari 100.000), yang menunjukkan multikolinearitas ekstrem.

Kesimpulan: - Berdasarkan hasil analisis, terdapat beberapa variabel dengan VIF yang sangat tinggi, khususnya X1, X2, X3, X6, dan X8, yang menunjukkan bahwa hipotesis nol ditolak. Artinya, terdapat masalah multikolinearitas dalam dataset. - Setelah dicoba melakukan uji asumsi diatas dan terdapat multikolinearitas maka kita bisa mereduksinya menggunakan analisis PCA.

Langkah 3: Memeriksa Kesamaan Skala Data

Keputusan: - Jika semua variabel memiliki skala yang sama (misal semuanya dalam ton atau hektar) → Gunakan matriks kovarians (Σ / var-cov) - Jika variabel memiliki skala yang berbeda (misal ton, hektar, persen, rasio, dsb.) → Lakukan standarisasi (Z-score) dan gunakan matriks korelasi (ρ / ro)

Langkah 4: Standarisasi Data (Jika Skala Berbeda)

data_scaled <- scale(Data_Jatim)
head(data_scaled)
##               X1         X2          X3            X4         X5          X6
## [1,] -0.74292317 -0.6996546 -0.74292193 -0.8312973904 -0.1072968 -0.73973830
## [2,]  0.62820291  0.5727360  0.62820272  0.4110470076 -0.4556192 -0.19539006
## [3,] -0.64291431 -0.5917913 -0.64291243 -0.6600534861 -0.4880017 -0.51525875
## [4,] -0.09159810 -0.1162756 -0.09159876 -0.0003951428 -0.3685152  0.02190966
## [5,] -0.07001532 -0.2181923 -0.07001733  0.1556875532 -0.2376713  0.23554620
## [6,] -0.32911426 -0.3507834 -0.32911332  1.0446105788 -0.4452944  0.85623507
##              X7          X8         X9        X10
## [1,] -1.1195797 -0.73707252 -0.6754647 0.84134374
## [2,] -0.8466672 -0.19551717 -0.5578712 0.08654632
## [3,] -0.7354806 -0.51801643 -0.5945639 0.73351554
## [4,] -0.6344019  0.02353892 -0.4287836 0.46394503
## [5,] -0.3513815  0.23651013 -0.5393038 1.05700015
## [6,] -0.3109500  0.85716907 -0.3699868 1.43439886

Langkah 5: Membentuk Matriks Varians-Kovarians (Σ) atau Korelasi (ρ)

cor_matrix <- round(cor(data_scaled), digits=3)
cor_matrix
##         X1     X2     X3     X4     X5     X6     X7     X8     X9    X10
## X1   1.000  0.994  1.000  0.771  0.548  0.382 -0.627  0.382 -0.581  0.174
## X2   0.994  1.000  0.994  0.774  0.566  0.387 -0.628  0.387 -0.585  0.148
## X3   1.000  0.994  1.000  0.771  0.548  0.382 -0.627  0.382 -0.581  0.174
## X4   0.771  0.774  0.771  1.000  0.075  0.558 -0.605  0.558 -0.574  0.230
## X5   0.548  0.566  0.548  0.075  1.000  0.138 -0.287  0.138 -0.313  0.086
## X6   0.382  0.387  0.382  0.558  0.138  1.000 -0.497  1.000 -0.146  0.251
## X7  -0.627 -0.628 -0.627 -0.605 -0.287 -0.497  1.000 -0.497  0.716  0.008
## X8   0.382  0.387  0.382  0.558  0.138  1.000 -0.497  1.000 -0.146  0.251
## X9  -0.581 -0.585 -0.581 -0.574 -0.313 -0.146  0.716 -0.146  1.000 -0.131
## X10  0.174  0.148  0.174  0.230  0.086  0.251  0.008  0.251 -0.131  1.000

Langkah 6: Analisis Eigen (Nilai Eigen & Vektor Eigen)

Penjelasan: - dataset_eigen <- eigen(cor_matrix) menghitung eigenvalue dan eigenvector dari matriks korelasi.

# Analisis Eigen (Nilai Eigen & Vektor Eigen)
dataset_eigen <- eigen(cor_matrix)
dataset_eigen
## eigen() decomposition
## $values
##  [1]  5.491877e+00  1.688204e+00  1.008146e+00  8.862297e-01  6.580734e-01
##  [6]  1.931654e-01  6.814340e-02  6.160996e-03  4.564491e-17 -2.933022e-16
## 
## $vectors
##             [,1]         [,2]        [,3]        [,4]        [,5]        [,6]
##  [1,] -0.3983730 -0.194556650 -0.09601912 -0.03437263 -0.26265396  0.13803415
##  [2,] -0.3990968 -0.197719212 -0.08166963 -0.06151828 -0.25509537  0.06266711
##  [3,] -0.3983730 -0.194556650 -0.09601912 -0.03437263 -0.26265396  0.13803415
##  [4,] -0.3622223  0.115155831  0.15262588  0.32790202 -0.35670344 -0.33702724
##  [5,] -0.2133307 -0.310938295 -0.41780809 -0.57568993  0.38431857 -0.22391827
##  [6,] -0.2648426  0.574678866  0.02374450 -0.23391062  0.07360146 -0.12577493
##  [7,]  0.3340237 -0.005936875 -0.41138110 -0.02920313 -0.43109108 -0.67674749
##  [8,] -0.2648426  0.574678866  0.02374450 -0.23391062  0.07360146 -0.12577493
##  [9,]  0.2896786  0.248028187 -0.24175176 -0.39394930 -0.52553951  0.50776006
## [10,] -0.1040955  0.230638721 -0.74042321  0.53799320  0.22169437  0.21631718
##              [,7]          [,8]          [,9]         [,10]
##  [1,] -0.24913687  0.3780685552  0.000000e+00  7.071068e-01
##  [2,] -0.13663327 -0.8387520138 -2.115990e-14  6.139533e-14
##  [3,] -0.24913687  0.3780685552  1.819904e-14 -7.071068e-01
##  [4,]  0.69135307  0.0769803581  2.744749e-15 -3.844147e-15
##  [5,]  0.38764687  0.0609478193  2.014384e-15 -3.427814e-15
##  [6,] -0.15193882 -0.0016382247 -7.071068e-01 -9.429957e-15
##  [7,] -0.27273809  0.0096387318 -2.064953e-16 -1.082467e-15
##  [8,] -0.15193882 -0.0016382247  7.071068e-01  8.833212e-15
##  [9,]  0.32697996  0.0006382293  4.308944e-16  7.077672e-16
## [10,]  0.03848455 -0.0297338572 -5.732310e-16  2.026157e-15

Output yang dihasilkan dari fungsi eigen terdiri atas : - $values yaitu nilai eigen yang sudah diurutkan dari yang tertinggi ke yang terendah. Nilai ini bisa digunakan untuk melihat seberapa besar variansi yang dapat dijelaskan oleh komponen utama.

Langkah 7: Menentukan Komponen Utama

Penjelasan Syntax: Proporsi Variansi - proporsi_variansi <- dataset_eigen\(values / sum(dataset_eigen\)values) menghitung proporsi variansi dari setiap komponen utama. - proporsi_variansi * 100 menampilkan persentase variansi yang dijelaskan oleh masing-masing komponen utama.

proporsi_variansi <- dataset_eigen$values / sum(dataset_eigen$values)
proporsi_variansi * 100
##  [1]  5.491877e+01  1.688204e+01  1.008146e+01  8.862297e+00  6.580734e+00
##  [6]  1.931654e+00  6.814340e-01  6.160996e-02  4.564491e-16 -2.933022e-15
sum(proporsi_variansi * 100)
## [1] 100

Langkah 8: Menentukan Jumlah Komponen Utama (K)

Analisis PCA dengan fungsi prcomp

Penjelasan syntax: prcomp() → Fungsi di R untuk Principal Component Analysis (PCA). data_scaled → Data yang sudah di-scaling (standarisasi) center = TRUE → Variabel dikurangi dengan rata-ratanya scale. = TRUE → Variabel dibagi dengan standar deviasinya

# Menjalankan PCA
dataset_pca <- prcomp(x = data_scaled, scale. = TRUE, center = TRUE)
dataset_pca
## Standard deviations (1, .., p=10):
##  [1] 2.343395e+00 1.299190e+00 1.004255e+00 9.411082e-01 8.114457e-01
##  [6] 4.395959e-01 2.612069e-01 8.044772e-02 9.463766e-04 6.970835e-07
## 
## Rotation (n x k) = (10 x 10):
##            PC1          PC2         PC3         PC4         PC5         PC6
## X1   0.3983505  0.194450694 -0.09603391 -0.03482812  0.26275990  0.13910835
## X2   0.3990600  0.197620607 -0.08146385 -0.06155178  0.25559737  0.06205622
## X3   0.3983504  0.194450742 -0.09603444 -0.03482820  0.26275997  0.13910888
## X4   0.3622538 -0.114901797  0.15240740  0.32800515  0.35621231 -0.33970527
## X5   0.2133627  0.310798931 -0.41670051 -0.57654315 -0.38468098 -0.22512576
## X6   0.2647571 -0.574974270  0.02386312 -0.23348290 -0.07372011 -0.12516172
## X7  -0.3340703  0.005792543 -0.41137250 -0.02978831  0.43067933 -0.67608318
## X8   0.2648823 -0.574818678  0.02390110 -0.23334854 -0.07386280 -0.12506850
## X9  -0.2896779 -0.248238661 -0.24124805 -0.39425323  0.52561781  0.50616916
## X10  0.1042032 -0.229907858 -0.74127089  0.53712869 -0.22151438  0.21624539
##             PC7           PC8           PC9          PC10
## X1  -0.25032816  3.768461e-01 -1.350134e-03  7.071050e-01
## X2  -0.13246490 -8.393668e-01  2.786875e-03  3.728166e-06
## X3  -0.25032698  3.768394e-01 -1.441299e-03 -7.071086e-01
## X4   0.68988188  8.081140e-02  1.464725e-04 -1.130078e-08
## X5   0.38634412  6.257962e-02  3.652914e-05  1.160415e-07
## X6  -0.15277223  6.186857e-05  7.069548e-01 -4.577168e-05
## X7  -0.27493808  9.197673e-03 -3.307971e-04 -3.231598e-07
## X8  -0.15190383 -4.724565e-03 -7.072504e-01  4.541645e-05
## X9   0.32915632  1.691853e-03  7.982039e-05  5.882571e-07
## X10  0.03971796 -2.976711e-02  1.767989e-04  4.687285e-07
# Melihat nama-nama output dalam objek PCA
names(dataset_pca)
## [1] "sdev"     "rotation" "center"   "scale"    "x"

Penjelasan tiap elemen:

Terdapat beberapa pendekatan ketika ingin menentukan jumlah komponen utama. (1) Nilai Eigen (2) Proporsi Varians dan Kumulatif Varians (3) Scree Plot

(1) Nilai Eigen

Penjelasan syntax: 1. dataset_pca\(sdev Ini adalah standar deviasi (singular values) dari masing-masing Principal Component (PC) yang dihasilkan oleh fungsi prcomp(). dataset_pca\)sdev^2

  1. dataset_pca$sdev^2 Untuk mendapatkan nilai eigen, kita perlu mengkuadratkan standar deviasi

  2. round(…, 2) Ini digunakan untuk membulatkan hasil hingga 2 desimal agar lebih mudah dibaca.

# Nilai Eigen
Nilai_Eigen <- dataset_pca$sdev^2
Nilai_Eigen
##  [1] 5.491502e+00 1.687896e+00 1.008527e+00 8.856846e-01 6.584442e-01
##  [6] 1.932445e-01 6.822903e-02 6.471835e-03 8.956286e-07 4.859254e-13

Didapatkan hasil dari eigen value yang bernilai lebih dari 1 ada tiga faktor yaitu 5.49, 1.69, 1.01. Maka jumlah faktor utama yang digunakan adalah tiga PCA

(2) Proporsi Kumulatif

# Proporsi Dan Kumulatif
summary(dataset_pca)
## Importance of components:
##                           PC1    PC2    PC3     PC4     PC5     PC6     PC7
## Standard deviation     2.3434 1.2992 1.0043 0.94111 0.81145 0.43960 0.26121
## Proportion of Variance 0.5492 0.1688 0.1008 0.08857 0.06584 0.01932 0.00682
## Cumulative Proportion  0.5492 0.7179 0.8188 0.90736 0.97321 0.99253 0.99935
##                            PC8       PC9      PC10
## Standard deviation     0.08045 0.0009464 6.971e-07
## Proportion of Variance 0.00065 0.0000000 0.000e+00
## Cumulative Proportion  1.00000 1.0000000 1.000e+00

(3) Scree Plot

# Scree Plot
# Mengambil proporsi varians dari hasil PCA
data_scree <- data.frame(
  PC = 1:length(dataset_pca$sdev),  # Komponen utama (PC1, PC2, ...)
  Variance = (dataset_pca$sdev^2) / sum(dataset_pca$sdev^2) * 100 # Proporsi varians dalam persen
)

# Ubah sumbu X menjadi faktor dengan label "PC1", "PC2", ...
data_scree$PC <- factor(data_scree$PC, labels = paste0("PC", data_scree$PC))

# Scree Plot
library(ggplot2)
ggplot(data_scree, aes(x = PC, y = Variance)) +
  geom_line(aes(group = 1), color = "red", linetype = "dashed") +
  geom_point(color = "red", size = 2) +
  theme_minimal() +
  labs(title = "Scree Plot",
       x = "Komponen Utama",
       y = "Proporsi Varians (%)")

Langkah 9: Menentukan Penciri Komponen Utama (Loading Factors)

# Penciri Komponen Utama
# Bulatkan sehingga terdapat delapan angka dibelakang koma agar lebih mudah dianalisis
Penciri_KU <- round(dataset_pca$rotation[,1:10],8)
Penciri_KU
##            PC1         PC2         PC3         PC4         PC5         PC6
## X1   0.3983505  0.19445069 -0.09603391 -0.03482812  0.26275990  0.13910835
## X2   0.3990600  0.19762061 -0.08146385 -0.06155178  0.25559737  0.06205622
## X3   0.3983504  0.19445074 -0.09603444 -0.03482820  0.26275997  0.13910888
## X4   0.3622538 -0.11490180  0.15240740  0.32800515  0.35621231 -0.33970527
## X5   0.2133627  0.31079893 -0.41670051 -0.57654315 -0.38468098 -0.22512576
## X6   0.2647571 -0.57497427  0.02386312 -0.23348290 -0.07372011 -0.12516172
## X7  -0.3340703  0.00579254 -0.41137250 -0.02978831  0.43067933 -0.67608318
## X8   0.2648823 -0.57481868  0.02390110 -0.23334854 -0.07386280 -0.12506850
## X9  -0.2896779 -0.24823866 -0.24124805 -0.39425323  0.52561781  0.50616916
## X10  0.1042032 -0.22990786 -0.74127089  0.53712869 -0.22151438  0.21624539
##             PC7         PC8         PC9        PC10
## X1  -0.25032816  0.37684606 -0.00135013  0.70710499
## X2  -0.13246490 -0.83936675  0.00278687  0.00000373
## X3  -0.25032698  0.37683941 -0.00144130 -0.70710857
## X4   0.68988188  0.08081140  0.00014647 -0.00000001
## X5   0.38634412  0.06257962  0.00003653  0.00000012
## X6  -0.15277223  0.00006187  0.70695479 -0.00004577
## X7  -0.27493808  0.00919767 -0.00033080 -0.00000032
## X8  -0.15190383 -0.00472457 -0.70725037  0.00004542
## X9   0.32915632  0.00169185  0.00007982  0.00000059
## X10  0.03971796 -0.02976711  0.00017680  0.00000047

Langkah 10: Menghitung Skor Komponen Utama

# Skor Komponen Utama
# Bulatkan sehingga terdapat delapan angka dibelakang koma agar lebih mudah dianalisis
pca_fix <- round(dataset_pca$x[,1:10],8)
pca_fix
##               PC1        PC2         PC3         PC4         PC5         PC6
##  [1,] -0.92885718  0.4517533  0.08228914  0.98028109 -1.73870381  0.83817738
##  [2,]  1.13068470  0.5070718  0.49457920  0.70139218  0.15001620  0.53091937
##  [3,] -0.87086099  0.1259094  0.15202974  1.03755407 -1.25202511  0.60268521
##  [4,]  0.19837627 -0.2031168  0.20216084  0.65240962 -0.54096092  0.35690778
##  [5,]  0.37159754 -0.5446609 -0.34360663  0.88705043 -0.64945385  0.10169237
##  [6,]  0.69548442 -1.6805052 -0.36863421  1.16953785 -0.49178174 -0.24918429
##  [7,]  2.04946542 -3.0012834 -0.15171909  0.12772019 -0.52655646 -0.61762606
##  [8,]  0.69127457  0.1447763  1.22017391  0.27867438  0.21830630 -0.04025688
##  [9,]  4.52396911 -1.8829381  0.62555949  0.26516128  1.80859963 -0.72680040
## [10,]  2.54383986 -0.9393138  0.34880986  0.93598642  0.82293923 -0.39360320
## [11,]  0.12664712  0.6873701  1.54850453  0.39150256  0.11101498 -0.01062216
## [12,] -0.53471400  0.7398668  1.78739590  0.17385828 -0.31886760 -0.24013573
## [13,]  0.08314699 -0.1321044  1.35573077  0.12969863 -0.13976000 -0.36848021
## [14,]  0.92593917 -1.0965871  0.16453693  0.42811228 -0.17751107 -0.16353240
## [15,]  0.29879296 -2.4795396 -0.41855394  0.00744751 -0.27788911  0.19008848
## [16,]  0.73379835 -0.1655940 -0.48326902  0.76291967 -0.26752295  0.26702118
## [17,]  1.30073858 -0.5326986 -0.67924497  0.89390282 -0.02331177  0.08219111
## [18,]  1.52960361  0.0522824 -0.32493260  1.09614301  0.28037927  0.41249881
## [19,]  1.08143967  1.1691543  0.91139726  0.35243964  0.51932119  0.46804063
## [20,] -0.08944967  0.9661048  1.52882167  0.09731301  0.18105499  0.18647013
## [21,]  3.26809451  1.7642316  0.44322110  0.28478912  1.73235803  0.68845029
## [22,]  4.16518295  1.7787273 -1.96580790 -1.43093115 -0.21699882  0.04224558
## [23,]  2.29873847  1.0577335 -0.80970337 -0.82018639 -0.41129973 -0.00473748
## [24,]  4.64801419  1.7091716 -1.59697170 -1.19541540  0.69087094 -0.12540322
## [25,]  1.47593573  0.5557848 -1.90332293 -0.98887168 -1.15863512  0.08236509
## [26,] -0.21262966  0.6880969  0.21505546 -1.30366139 -1.15424207 -0.47019099
## [27,] -0.55209301  0.4756656 -0.17303772 -0.59567185 -1.11181084 -0.29794220
## [28,] -1.18794785  0.5704543  1.07614452 -0.79626743 -0.83469910 -0.32283012
## [29,] -0.13163668  0.9961332  2.00882645 -2.04437832 -0.64911943 -0.59563007
## [30,] -3.31918065  0.1996715 -1.13340856  0.57744685  0.30335391 -0.05583614
## [31,] -3.56992996  0.6435121 -0.37632277  0.07692308  0.55449482 -0.11041921
## [32,] -3.27485788 -0.9292841 -0.66083584 -0.86698423  0.98561390  0.59076956
## [33,] -3.54022365  0.5146233 -0.40796298  0.00577144  0.63880746 -0.33768680
## [34,] -3.93923563  0.2639908 -1.56436906  0.26962169  1.10178075 -0.55331557
## [35,] -3.86934825  0.4762893 -0.46130976 -0.37482113  1.04111680  0.37955406
## [36,] -3.62725284  0.8166827  0.76945172 -0.88930877  0.92571160  0.05483951
## [37,] -1.41722965 -4.3402423  0.17269508 -2.70418329  0.21989744  0.78811202
## [38,] -3.07531665  0.5728107 -1.28437051  1.42702393 -0.34448793 -0.97879540
##               PC7         PC8         PC9      PC10
##  [1,]  0.19355086 -0.07960411 -0.00120324 -9.00e-08
##  [2,] -0.17069067 -0.01295924  0.00028463  1.00e-08
##  [3,] -0.05057926 -0.09889309  0.00245908 -9.90e-07
##  [4,] -0.03659608 -0.01501263 -0.00098299  5.50e-07
##  [5,] -0.03129697  0.09137001 -0.00088980  1.08e-06
##  [6,]  0.51952373  0.05275705 -0.00050888 -5.60e-07
##  [7,] -0.18052084  0.11950758 -0.00108148 -1.28e-06
##  [8,] -0.09220327 -0.02329822  0.00129324 -2.40e-07
##  [9,]  0.01433610 -0.22944253  0.00028510 -6.10e-07
## [10,]  0.24623040  0.12232706 -0.00054664  6.50e-07
## [11,]  0.15159012 -0.12471856 -0.00031628 -6.10e-07
## [12,]  0.44644136  0.07072561 -0.00066943  2.10e-07
## [13,]  0.22526509  0.05989068  0.00156698  3.30e-07
## [14,]  0.03250386 -0.07092106  0.00015390 -8.00e-08
## [15,] -0.37003016  0.01150444  0.00117827  8.90e-07
## [16,]  0.05652729 -0.04313170 -0.00048344 -3.20e-07
## [17,]  0.25937833  0.07528889  0.00161981  1.32e-06
## [18,] -0.05312913 -0.03698739 -0.00052452  7.50e-07
## [19,] -0.31749172 -0.01947976 -0.00134876 -1.40e-07
## [20,]  0.00384007  0.10590589  0.00032580 -6.40e-07
## [21,] -0.70819818  0.09639002 -0.00017242  3.00e-08
## [22,]  0.29883900 -0.15697287 -0.00002623  1.50e-07
## [23,]  0.13432798  0.10581464  0.00176461  9.00e-08
## [24,]  0.31278602  0.04720032 -0.00067444 -1.80e-07
## [25,] -0.29742921  0.11987284  0.00023259 -1.50e-06
## [26,]  0.01846756 -0.04563222 -0.00032899  3.00e-08
## [27,] -0.23746262 -0.10507166 -0.00037027  1.52e-06
## [28,] -0.07511451  0.02975259 -0.00075166 -5.00e-08
## [29,] -0.25251779 -0.00476674  0.00016969  7.50e-07
## [30,] -0.01329892 -0.02856968  0.00004015 -4.90e-07
## [31,]  0.04507570  0.00599900 -0.00069926 -4.50e-07
## [32,]  0.27173199 -0.00618463  0.00108527 -2.80e-07
## [33,] -0.05654416  0.00669634  0.00151391  4.90e-07
## [34,] -0.14982085 -0.01140814 -0.00019800  8.90e-07
## [35,]  0.35945687  0.00561478 -0.00132575  3.60e-07
## [36,]  0.19219990  0.03705100  0.00016543 -1.13e-06
## [37,] -0.15827464 -0.01903534 -0.00065262  1.40e-07
## [38,] -0.53087323 -0.03157916 -0.00038335 -6.00e-07