library(readxl)
Data_Jatim <- read_excel("C:/Users/denih/Downloads/Produksi Beras Menurut Kabupaten_Kota, 2023.xlsx", sheet = 2)
Data_Jatim
## # A tibble: 38 × 10
## X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 53696. 17923. 92993 7322 5461 588 0.12 1.42 410 101.
## 2 226923. 66595. 392994 32888 1750 960. 0.39 2.31 676 99.4
## 3 66331. 22049. 114875 10846 1405 741. 0.5 1.78 593 101.
## 4 135984. 40239. 235502 24421 2678 1108. 0.6 2.67 968 100.
## 5 138710. 36340. 240224 27633 4072 1254. 0.88 3.02 718 101.
## 6 105976. 31268. 183534 45926 1860 1677. 0.92 4.04 1101 102.
## 7 161312. 43919. 279366 45284 4190 2716. 0.83 6.54 782 101.
## 8 178218. 55129. 308646 35482 333 1139. 0.64 2.74 634 97.8
## 9 356110. 120188. 616726 84519 484 2587. 0.71 6.23 781 99.3
## 10 262592. 75062. 454768 65509 645 1744. 0.76 4.2 485 100.
## # ℹ 28 more rows
Hipotesis: Ho : Tidak terdapat multikolinearitas H1 : Terdapat multikolinearitas pada salah satu variabel
Statistik Uji: Menggunakan nilai VIF
Kriteria Uji: Kriteria Umum untuk VIF VIF < 5 → Tidak ada multikolinearitas (non-multicollinearity) 5 ≤ VIF < 10 → Multikolinearitas sedang (perlu perhatian) VIF ≥ 10 → Multikolinearitas tinggi (perlu diatasi) VIF sangat besar (misalnya > 100 atau mendekati tak hingga) → Multikolinearitas ekstrim (variabel hampir sepenuhnya linier terhadap variabel lain)
library(car)
## Loading required package: carData
# Fungsi untuk menghitung VIF langsung dari matriks korelasi tanpa regresi
VIF_check <- function(data) {
correlation_matrix <- cor(data)
vif_values <- diag(solve(correlation_matrix))
data_multikolinearitas <- data.frame(Variable = colnames(data),
VIF = vif_values,
result = ifelse(vif_values > 10, "multicolinearity", "non multicolinearity"))
return(data_multikolinearitas)
}
# Menjalankan fungsi VIF_check pada dataset
vif_result <- VIF_check(Data_Jatim)
# Menampilkan hasil VIF untuk semua variabel
print(vif_result)
## Variable VIF result
## X1 X1 1.028974e+12 multicolinearity
## X2 X2 1.465770e+02 multicolinearity
## X3 X3 1.028984e+12 multicolinearity
## X4 X4 8.974958e+00 non multicolinearity
## X5 X5 3.921978e+00 non multicolinearity
## X6 X6 5.623394e+05 multicolinearity
## X7 X7 4.294247e+00 non multicolinearity
## X8 X8 5.627394e+05 multicolinearity
## X9 X9 4.338049e+00 non multicolinearity
## X10 X10 1.867462e+00 non multicolinearity
Hasil Analisis: Berdasarkan tabel hasil perhitungan VIF: - X1, X2, X3, X6, dan X8 memiliki VIF yang sangat besar (lebih dari 100.000), yang menunjukkan multikolinearitas ekstrem.
X4 memiliki VIF mendekati 9, yang berarti masih cukup tinggi, tetapi karena di bawah 10, masih bisa dianggap “tidak mengalami multikolinearitas.”
X5, X7, X9, dan X10 memiliki VIF rendah (< 5), sehingga tidak mengalami multikolinearitas.
Kesimpulan: - Berdasarkan hasil analisis, terdapat beberapa variabel dengan VIF yang sangat tinggi, khususnya X1, X2, X3, X6, dan X8, yang menunjukkan bahwa hipotesis nol ditolak. Artinya, terdapat masalah multikolinearitas dalam dataset. - Setelah dicoba melakukan uji asumsi diatas dan terdapat multikolinearitas maka kita bisa mereduksinya menggunakan analisis PCA.
Keputusan: - Jika semua variabel memiliki skala yang sama (misal semuanya dalam ton atau hektar) → Gunakan matriks kovarians (Σ / var-cov) - Jika variabel memiliki skala yang berbeda (misal ton, hektar, persen, rasio, dsb.) → Lakukan standarisasi (Z-score) dan gunakan matriks korelasi (ρ / ro)
data_scaled <- scale(Data_Jatim)
head(data_scaled)
## X1 X2 X3 X4 X5 X6
## [1,] -0.74292317 -0.6996546 -0.74292193 -0.8312973904 -0.1072968 -0.73973830
## [2,] 0.62820291 0.5727360 0.62820272 0.4110470076 -0.4556192 -0.19539006
## [3,] -0.64291431 -0.5917913 -0.64291243 -0.6600534861 -0.4880017 -0.51525875
## [4,] -0.09159810 -0.1162756 -0.09159876 -0.0003951428 -0.3685152 0.02190966
## [5,] -0.07001532 -0.2181923 -0.07001733 0.1556875532 -0.2376713 0.23554620
## [6,] -0.32911426 -0.3507834 -0.32911332 1.0446105788 -0.4452944 0.85623507
## X7 X8 X9 X10
## [1,] -1.1195797 -0.73707252 -0.6754647 0.84134374
## [2,] -0.8466672 -0.19551717 -0.5578712 0.08654632
## [3,] -0.7354806 -0.51801643 -0.5945639 0.73351554
## [4,] -0.6344019 0.02353892 -0.4287836 0.46394503
## [5,] -0.3513815 0.23651013 -0.5393038 1.05700015
## [6,] -0.3109500 0.85716907 -0.3699868 1.43439886
cor_matrix <- round(cor(data_scaled), digits=3)
cor_matrix
## X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
## X1 1.000 0.994 1.000 0.771 0.548 0.382 -0.627 0.382 -0.581 0.174
## X2 0.994 1.000 0.994 0.774 0.566 0.387 -0.628 0.387 -0.585 0.148
## X3 1.000 0.994 1.000 0.771 0.548 0.382 -0.627 0.382 -0.581 0.174
## X4 0.771 0.774 0.771 1.000 0.075 0.558 -0.605 0.558 -0.574 0.230
## X5 0.548 0.566 0.548 0.075 1.000 0.138 -0.287 0.138 -0.313 0.086
## X6 0.382 0.387 0.382 0.558 0.138 1.000 -0.497 1.000 -0.146 0.251
## X7 -0.627 -0.628 -0.627 -0.605 -0.287 -0.497 1.000 -0.497 0.716 0.008
## X8 0.382 0.387 0.382 0.558 0.138 1.000 -0.497 1.000 -0.146 0.251
## X9 -0.581 -0.585 -0.581 -0.574 -0.313 -0.146 0.716 -0.146 1.000 -0.131
## X10 0.174 0.148 0.174 0.230 0.086 0.251 0.008 0.251 -0.131 1.000
Penjelasan: - dataset_eigen <- eigen(cor_matrix) menghitung eigenvalue dan eigenvector dari matriks korelasi.
# Analisis Eigen (Nilai Eigen & Vektor Eigen)
dataset_eigen <- eigen(cor_matrix)
dataset_eigen
## eigen() decomposition
## $values
## [1] 5.491877e+00 1.688204e+00 1.008146e+00 8.862297e-01 6.580734e-01
## [6] 1.931654e-01 6.814340e-02 6.160996e-03 4.564491e-17 -2.933022e-16
##
## $vectors
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.3983730 -0.194556650 -0.09601912 -0.03437263 -0.26265396 0.13803415
## [2,] -0.3990968 -0.197719212 -0.08166963 -0.06151828 -0.25509537 0.06266711
## [3,] -0.3983730 -0.194556650 -0.09601912 -0.03437263 -0.26265396 0.13803415
## [4,] -0.3622223 0.115155831 0.15262588 0.32790202 -0.35670344 -0.33702724
## [5,] -0.2133307 -0.310938295 -0.41780809 -0.57568993 0.38431857 -0.22391827
## [6,] -0.2648426 0.574678866 0.02374450 -0.23391062 0.07360146 -0.12577493
## [7,] 0.3340237 -0.005936875 -0.41138110 -0.02920313 -0.43109108 -0.67674749
## [8,] -0.2648426 0.574678866 0.02374450 -0.23391062 0.07360146 -0.12577493
## [9,] 0.2896786 0.248028187 -0.24175176 -0.39394930 -0.52553951 0.50776006
## [10,] -0.1040955 0.230638721 -0.74042321 0.53799320 0.22169437 0.21631718
## [,7] [,8] [,9] [,10]
## [1,] -0.24913687 0.3780685552 0.000000e+00 7.071068e-01
## [2,] -0.13663327 -0.8387520138 -2.115990e-14 6.139533e-14
## [3,] -0.24913687 0.3780685552 1.819904e-14 -7.071068e-01
## [4,] 0.69135307 0.0769803581 2.744749e-15 -3.844147e-15
## [5,] 0.38764687 0.0609478193 2.014384e-15 -3.427814e-15
## [6,] -0.15193882 -0.0016382247 -7.071068e-01 -9.429957e-15
## [7,] -0.27273809 0.0096387318 -2.064953e-16 -1.082467e-15
## [8,] -0.15193882 -0.0016382247 7.071068e-01 8.833212e-15
## [9,] 0.32697996 0.0006382293 4.308944e-16 7.077672e-16
## [10,] 0.03848455 -0.0297338572 -5.732310e-16 2.026157e-15
Output yang dihasilkan dari fungsi eigen terdiri atas : - $values yaitu nilai eigen yang sudah diurutkan dari yang tertinggi ke yang terendah. Nilai ini bisa digunakan untuk melihat seberapa besar variansi yang dapat dijelaskan oleh komponen utama.
Penjelasan Syntax: Proporsi Variansi - proporsi_variansi <- dataset_eigen\(values / sum(dataset_eigen\)values) menghitung proporsi variansi dari setiap komponen utama. - proporsi_variansi * 100 menampilkan persentase variansi yang dijelaskan oleh masing-masing komponen utama.
proporsi_variansi <- dataset_eigen$values / sum(dataset_eigen$values)
proporsi_variansi * 100
## [1] 5.491877e+01 1.688204e+01 1.008146e+01 8.862297e+00 6.580734e+00
## [6] 1.931654e+00 6.814340e-01 6.160996e-02 4.564491e-16 -2.933022e-15
sum(proporsi_variansi * 100)
## [1] 100
Analisis PCA dengan fungsi prcomp
Penjelasan syntax: prcomp() → Fungsi di R untuk Principal Component Analysis (PCA). data_scaled → Data yang sudah di-scaling (standarisasi) center = TRUE → Variabel dikurangi dengan rata-ratanya scale. = TRUE → Variabel dibagi dengan standar deviasinya
# Menjalankan PCA
dataset_pca <- prcomp(x = data_scaled, scale. = TRUE, center = TRUE)
dataset_pca
## Standard deviations (1, .., p=10):
## [1] 2.343395e+00 1.299190e+00 1.004255e+00 9.411082e-01 8.114457e-01
## [6] 4.395959e-01 2.612069e-01 8.044772e-02 9.463766e-04 6.970835e-07
##
## Rotation (n x k) = (10 x 10):
## PC1 PC2 PC3 PC4 PC5 PC6
## X1 0.3983505 0.194450694 -0.09603391 -0.03482812 0.26275990 0.13910835
## X2 0.3990600 0.197620607 -0.08146385 -0.06155178 0.25559737 0.06205622
## X3 0.3983504 0.194450742 -0.09603444 -0.03482820 0.26275997 0.13910888
## X4 0.3622538 -0.114901797 0.15240740 0.32800515 0.35621231 -0.33970527
## X5 0.2133627 0.310798931 -0.41670051 -0.57654315 -0.38468098 -0.22512576
## X6 0.2647571 -0.574974270 0.02386312 -0.23348290 -0.07372011 -0.12516172
## X7 -0.3340703 0.005792543 -0.41137250 -0.02978831 0.43067933 -0.67608318
## X8 0.2648823 -0.574818678 0.02390110 -0.23334854 -0.07386280 -0.12506850
## X9 -0.2896779 -0.248238661 -0.24124805 -0.39425323 0.52561781 0.50616916
## X10 0.1042032 -0.229907858 -0.74127089 0.53712869 -0.22151438 0.21624539
## PC7 PC8 PC9 PC10
## X1 -0.25032816 3.768461e-01 -1.350134e-03 7.071050e-01
## X2 -0.13246490 -8.393668e-01 2.786875e-03 3.728166e-06
## X3 -0.25032698 3.768394e-01 -1.441299e-03 -7.071086e-01
## X4 0.68988188 8.081140e-02 1.464725e-04 -1.130078e-08
## X5 0.38634412 6.257962e-02 3.652914e-05 1.160415e-07
## X6 -0.15277223 6.186857e-05 7.069548e-01 -4.577168e-05
## X7 -0.27493808 9.197673e-03 -3.307971e-04 -3.231598e-07
## X8 -0.15190383 -4.724565e-03 -7.072504e-01 4.541645e-05
## X9 0.32915632 1.691853e-03 7.982039e-05 5.882571e-07
## X10 0.03971796 -2.976711e-02 1.767989e-04 4.687285e-07
# Melihat nama-nama output dalam objek PCA
names(dataset_pca)
## [1] "sdev" "rotation" "center" "scale" "x"
Penjelasan tiap elemen:
Terdapat beberapa pendekatan ketika ingin menentukan jumlah komponen utama. (1) Nilai Eigen (2) Proporsi Varians dan Kumulatif Varians (3) Scree Plot
Penjelasan syntax: 1. dataset_pca\(sdev Ini adalah standar deviasi (singular values) dari masing-masing Principal Component (PC) yang dihasilkan oleh fungsi prcomp(). dataset_pca\)sdev^2
dataset_pca$sdev^2 Untuk mendapatkan nilai eigen, kita perlu mengkuadratkan standar deviasi
round(…, 2) Ini digunakan untuk membulatkan hasil hingga 2 desimal agar lebih mudah dibaca.
# Nilai Eigen
Nilai_Eigen <- dataset_pca$sdev^2
Nilai_Eigen
## [1] 5.491502e+00 1.687896e+00 1.008527e+00 8.856846e-01 6.584442e-01
## [6] 1.932445e-01 6.822903e-02 6.471835e-03 8.956286e-07 4.859254e-13
Didapatkan hasil dari eigen value yang bernilai lebih dari 1 ada tiga faktor yaitu 5.49, 1.69, 1.01. Maka jumlah faktor utama yang digunakan adalah tiga PCA
# Proporsi Dan Kumulatif
summary(dataset_pca)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 2.3434 1.2992 1.0043 0.94111 0.81145 0.43960 0.26121
## Proportion of Variance 0.5492 0.1688 0.1008 0.08857 0.06584 0.01932 0.00682
## Cumulative Proportion 0.5492 0.7179 0.8188 0.90736 0.97321 0.99253 0.99935
## PC8 PC9 PC10
## Standard deviation 0.08045 0.0009464 6.971e-07
## Proportion of Variance 0.00065 0.0000000 0.000e+00
## Cumulative Proportion 1.00000 1.0000000 1.000e+00
# Scree Plot
# Mengambil proporsi varians dari hasil PCA
data_scree <- data.frame(
PC = 1:length(dataset_pca$sdev), # Komponen utama (PC1, PC2, ...)
Variance = (dataset_pca$sdev^2) / sum(dataset_pca$sdev^2) * 100 # Proporsi varians dalam persen
)
# Ubah sumbu X menjadi faktor dengan label "PC1", "PC2", ...
data_scree$PC <- factor(data_scree$PC, labels = paste0("PC", data_scree$PC))
# Scree Plot
library(ggplot2)
ggplot(data_scree, aes(x = PC, y = Variance)) +
geom_line(aes(group = 1), color = "red", linetype = "dashed") +
geom_point(color = "red", size = 2) +
theme_minimal() +
labs(title = "Scree Plot",
x = "Komponen Utama",
y = "Proporsi Varians (%)")
# Penciri Komponen Utama
# Bulatkan sehingga terdapat delapan angka dibelakang koma agar lebih mudah dianalisis
Penciri_KU <- round(dataset_pca$rotation[,1:10],8)
Penciri_KU
## PC1 PC2 PC3 PC4 PC5 PC6
## X1 0.3983505 0.19445069 -0.09603391 -0.03482812 0.26275990 0.13910835
## X2 0.3990600 0.19762061 -0.08146385 -0.06155178 0.25559737 0.06205622
## X3 0.3983504 0.19445074 -0.09603444 -0.03482820 0.26275997 0.13910888
## X4 0.3622538 -0.11490180 0.15240740 0.32800515 0.35621231 -0.33970527
## X5 0.2133627 0.31079893 -0.41670051 -0.57654315 -0.38468098 -0.22512576
## X6 0.2647571 -0.57497427 0.02386312 -0.23348290 -0.07372011 -0.12516172
## X7 -0.3340703 0.00579254 -0.41137250 -0.02978831 0.43067933 -0.67608318
## X8 0.2648823 -0.57481868 0.02390110 -0.23334854 -0.07386280 -0.12506850
## X9 -0.2896779 -0.24823866 -0.24124805 -0.39425323 0.52561781 0.50616916
## X10 0.1042032 -0.22990786 -0.74127089 0.53712869 -0.22151438 0.21624539
## PC7 PC8 PC9 PC10
## X1 -0.25032816 0.37684606 -0.00135013 0.70710499
## X2 -0.13246490 -0.83936675 0.00278687 0.00000373
## X3 -0.25032698 0.37683941 -0.00144130 -0.70710857
## X4 0.68988188 0.08081140 0.00014647 -0.00000001
## X5 0.38634412 0.06257962 0.00003653 0.00000012
## X6 -0.15277223 0.00006187 0.70695479 -0.00004577
## X7 -0.27493808 0.00919767 -0.00033080 -0.00000032
## X8 -0.15190383 -0.00472457 -0.70725037 0.00004542
## X9 0.32915632 0.00169185 0.00007982 0.00000059
## X10 0.03971796 -0.02976711 0.00017680 0.00000047
# Skor Komponen Utama
# Bulatkan sehingga terdapat delapan angka dibelakang koma agar lebih mudah dianalisis
pca_fix <- round(dataset_pca$x[,1:10],8)
pca_fix
## PC1 PC2 PC3 PC4 PC5 PC6
## [1,] -0.92885718 0.4517533 0.08228914 0.98028109 -1.73870381 0.83817738
## [2,] 1.13068470 0.5070718 0.49457920 0.70139218 0.15001620 0.53091937
## [3,] -0.87086099 0.1259094 0.15202974 1.03755407 -1.25202511 0.60268521
## [4,] 0.19837627 -0.2031168 0.20216084 0.65240962 -0.54096092 0.35690778
## [5,] 0.37159754 -0.5446609 -0.34360663 0.88705043 -0.64945385 0.10169237
## [6,] 0.69548442 -1.6805052 -0.36863421 1.16953785 -0.49178174 -0.24918429
## [7,] 2.04946542 -3.0012834 -0.15171909 0.12772019 -0.52655646 -0.61762606
## [8,] 0.69127457 0.1447763 1.22017391 0.27867438 0.21830630 -0.04025688
## [9,] 4.52396911 -1.8829381 0.62555949 0.26516128 1.80859963 -0.72680040
## [10,] 2.54383986 -0.9393138 0.34880986 0.93598642 0.82293923 -0.39360320
## [11,] 0.12664712 0.6873701 1.54850453 0.39150256 0.11101498 -0.01062216
## [12,] -0.53471400 0.7398668 1.78739590 0.17385828 -0.31886760 -0.24013573
## [13,] 0.08314699 -0.1321044 1.35573077 0.12969863 -0.13976000 -0.36848021
## [14,] 0.92593917 -1.0965871 0.16453693 0.42811228 -0.17751107 -0.16353240
## [15,] 0.29879296 -2.4795396 -0.41855394 0.00744751 -0.27788911 0.19008848
## [16,] 0.73379835 -0.1655940 -0.48326902 0.76291967 -0.26752295 0.26702118
## [17,] 1.30073858 -0.5326986 -0.67924497 0.89390282 -0.02331177 0.08219111
## [18,] 1.52960361 0.0522824 -0.32493260 1.09614301 0.28037927 0.41249881
## [19,] 1.08143967 1.1691543 0.91139726 0.35243964 0.51932119 0.46804063
## [20,] -0.08944967 0.9661048 1.52882167 0.09731301 0.18105499 0.18647013
## [21,] 3.26809451 1.7642316 0.44322110 0.28478912 1.73235803 0.68845029
## [22,] 4.16518295 1.7787273 -1.96580790 -1.43093115 -0.21699882 0.04224558
## [23,] 2.29873847 1.0577335 -0.80970337 -0.82018639 -0.41129973 -0.00473748
## [24,] 4.64801419 1.7091716 -1.59697170 -1.19541540 0.69087094 -0.12540322
## [25,] 1.47593573 0.5557848 -1.90332293 -0.98887168 -1.15863512 0.08236509
## [26,] -0.21262966 0.6880969 0.21505546 -1.30366139 -1.15424207 -0.47019099
## [27,] -0.55209301 0.4756656 -0.17303772 -0.59567185 -1.11181084 -0.29794220
## [28,] -1.18794785 0.5704543 1.07614452 -0.79626743 -0.83469910 -0.32283012
## [29,] -0.13163668 0.9961332 2.00882645 -2.04437832 -0.64911943 -0.59563007
## [30,] -3.31918065 0.1996715 -1.13340856 0.57744685 0.30335391 -0.05583614
## [31,] -3.56992996 0.6435121 -0.37632277 0.07692308 0.55449482 -0.11041921
## [32,] -3.27485788 -0.9292841 -0.66083584 -0.86698423 0.98561390 0.59076956
## [33,] -3.54022365 0.5146233 -0.40796298 0.00577144 0.63880746 -0.33768680
## [34,] -3.93923563 0.2639908 -1.56436906 0.26962169 1.10178075 -0.55331557
## [35,] -3.86934825 0.4762893 -0.46130976 -0.37482113 1.04111680 0.37955406
## [36,] -3.62725284 0.8166827 0.76945172 -0.88930877 0.92571160 0.05483951
## [37,] -1.41722965 -4.3402423 0.17269508 -2.70418329 0.21989744 0.78811202
## [38,] -3.07531665 0.5728107 -1.28437051 1.42702393 -0.34448793 -0.97879540
## PC7 PC8 PC9 PC10
## [1,] 0.19355086 -0.07960411 -0.00120324 -9.00e-08
## [2,] -0.17069067 -0.01295924 0.00028463 1.00e-08
## [3,] -0.05057926 -0.09889309 0.00245908 -9.90e-07
## [4,] -0.03659608 -0.01501263 -0.00098299 5.50e-07
## [5,] -0.03129697 0.09137001 -0.00088980 1.08e-06
## [6,] 0.51952373 0.05275705 -0.00050888 -5.60e-07
## [7,] -0.18052084 0.11950758 -0.00108148 -1.28e-06
## [8,] -0.09220327 -0.02329822 0.00129324 -2.40e-07
## [9,] 0.01433610 -0.22944253 0.00028510 -6.10e-07
## [10,] 0.24623040 0.12232706 -0.00054664 6.50e-07
## [11,] 0.15159012 -0.12471856 -0.00031628 -6.10e-07
## [12,] 0.44644136 0.07072561 -0.00066943 2.10e-07
## [13,] 0.22526509 0.05989068 0.00156698 3.30e-07
## [14,] 0.03250386 -0.07092106 0.00015390 -8.00e-08
## [15,] -0.37003016 0.01150444 0.00117827 8.90e-07
## [16,] 0.05652729 -0.04313170 -0.00048344 -3.20e-07
## [17,] 0.25937833 0.07528889 0.00161981 1.32e-06
## [18,] -0.05312913 -0.03698739 -0.00052452 7.50e-07
## [19,] -0.31749172 -0.01947976 -0.00134876 -1.40e-07
## [20,] 0.00384007 0.10590589 0.00032580 -6.40e-07
## [21,] -0.70819818 0.09639002 -0.00017242 3.00e-08
## [22,] 0.29883900 -0.15697287 -0.00002623 1.50e-07
## [23,] 0.13432798 0.10581464 0.00176461 9.00e-08
## [24,] 0.31278602 0.04720032 -0.00067444 -1.80e-07
## [25,] -0.29742921 0.11987284 0.00023259 -1.50e-06
## [26,] 0.01846756 -0.04563222 -0.00032899 3.00e-08
## [27,] -0.23746262 -0.10507166 -0.00037027 1.52e-06
## [28,] -0.07511451 0.02975259 -0.00075166 -5.00e-08
## [29,] -0.25251779 -0.00476674 0.00016969 7.50e-07
## [30,] -0.01329892 -0.02856968 0.00004015 -4.90e-07
## [31,] 0.04507570 0.00599900 -0.00069926 -4.50e-07
## [32,] 0.27173199 -0.00618463 0.00108527 -2.80e-07
## [33,] -0.05654416 0.00669634 0.00151391 4.90e-07
## [34,] -0.14982085 -0.01140814 -0.00019800 8.90e-07
## [35,] 0.35945687 0.00561478 -0.00132575 3.60e-07
## [36,] 0.19219990 0.03705100 0.00016543 -1.13e-06
## [37,] -0.15827464 -0.01903534 -0.00065262 1.40e-07
## [38,] -0.53087323 -0.03157916 -0.00038335 -6.00e-07