#2.6.3.a
contoh.2.6.3 <- function(expr, omega, l0) {
 age <- 0:omega
  sx <- eval({x=age; expr})
  lx <- l0*sx
  dx=px=qx <- NULL
  n <- length(age+1)
  for (i in 1:n) {
    dx[i] <- lx[i]-lx[i+1]
    px[i] <- lx[i+1]/lx[i]
    qx[i] <- 1-lx[i+1]/lx[i] }
  ex <- NULL
  for (i in 1:n) {
    ex[n] <- 0
    ex[n-i] <- px[n-i]+(px[n-i]*ex[n-i+1])
  }
  tabel <- data.frame(age=age, qx=qx, px=px, lx=lx, dx=dx, sx=sx, ex=ex)
  print(tabel, digits=3)
  }
# contoh.2.6.3 b
expr <- expression(1-(0.01*x)^2)
contoh.2.6.3(expr, omega=99, l0=100000)
##     age       qx    px     lx   dx     sx     ex
## 1     0 0.000100 1.000 100000   10 1.0000 66.165
## 2     1 0.000300 1.000  99990   30 0.9999 65.172
## 3     2 0.000500 0.999  99960   50 0.9996 64.191
## 4     3 0.000701 0.999  99910   70 0.9991 63.223
## 5     4 0.000901 0.999  99840   90 0.9984 62.268
## 6     5 0.001103 0.999  99750  110 0.9975 61.324
## 7     6 0.001305 0.999  99640  130 0.9964 60.392
## 8     7 0.001507 0.998  99510  150 0.9951 59.470
## 9     8 0.001711 0.998  99360  170 0.9936 58.560
## 10    9 0.001916 0.998  99190  190 0.9919 57.661
## 11   10 0.002121 0.998  99000  210 0.9900 56.771
## 12   11 0.002328 0.998  98790  230 0.9879 55.892
## 13   12 0.002537 0.997  98560  250 0.9856 55.022
## 14   13 0.002746 0.997  98310  270 0.9831 54.162
## 15   14 0.002958 0.997  98040  290 0.9804 53.311
## 16   15 0.003171 0.997  97750  310 0.9775 52.470
## 17   16 0.003387 0.997  97440  330 0.9744 51.636
## 18   17 0.003604 0.996  97110  350 0.9711 50.812
## 19   18 0.003824 0.996  96760  370 0.9676 49.996
## 20   19 0.004046 0.996  96390  390 0.9639 49.188
## 21   20 0.004271 0.996  96000  410 0.9600 48.387
## 22   21 0.004498 0.996  95590  430 0.9559 47.595
## 23   22 0.004729 0.995  95160  450 0.9516 46.810
## 24   23 0.004963 0.995  94710  470 0.9471 46.033
## 25   24 0.005199 0.995  94240  490 0.9424 45.262
## 26   25 0.005440 0.995  93750  510 0.9375 44.499
## 27   26 0.005684 0.994  93240  530 0.9324 43.742
## 28   27 0.005932 0.994  92710  550 0.9271 42.992
## 29   28 0.006185 0.994  92160  570 0.9216 42.249
## 30   29 0.006442 0.994  91590  590 0.9159 41.512
## 31   30 0.006703 0.993  91000  610 0.9100 40.781
## 32   31 0.006970 0.993  90390  630 0.9039 40.056
## 33   32 0.007242 0.993  89760  650 0.8976 39.337
## 34   33 0.007519 0.992  89110  670 0.8911 38.624
## 35   34 0.007802 0.992  88440  690 0.8844 37.917
## 36   35 0.008091 0.992  87750  710 0.8775 37.215
## 37   36 0.008387 0.992  87040  730 0.8704 36.518
## 38   37 0.008690 0.991  86310  750 0.8631 35.827
## 39   38 0.009000 0.991  85560  770 0.8556 35.141
## 40   39 0.009317 0.991  84790  790 0.8479 34.460
## 41   40 0.009643 0.990  84000  810 0.8400 33.785
## 42   41 0.009977 0.990  83190  830 0.8319 33.113
## 43   42 0.010321 0.990  82360  850 0.8236 32.447
## 44   43 0.010674 0.989  81510  870 0.8151 31.786
## 45   44 0.011037 0.989  80640  890 0.8064 31.128
## 46   45 0.011411 0.989  79750  910 0.7975 30.476
## 47   46 0.011796 0.988  78840  930 0.7884 29.828
## 48   47 0.012194 0.988  77910  950 0.7791 29.184
## 49   48 0.012604 0.987  76960  970 0.7696 28.544
## 50   49 0.013028 0.987  75990  990 0.7599 27.908
## 51   50 0.013467 0.987  75000 1010 0.7500 27.277
## 52   51 0.013921 0.986  73990 1030 0.7399 26.649
## 53   52 0.014391 0.986  72960 1050 0.7296 26.025
## 54   53 0.014880 0.985  71910 1070 0.7191 25.405
## 55   54 0.015387 0.985  70840 1090 0.7084 24.789
## 56   55 0.015914 0.984  69750 1110 0.6975 24.176
## 57   56 0.016463 0.984  68640 1130 0.6864 23.567
## 58   57 0.017035 0.983  67510 1150 0.6751 22.962
## 59   58 0.017631 0.982  66360 1170 0.6636 22.360
## 60   59 0.018254 0.982  65190 1190 0.6519 21.761
## 61   60 0.018906 0.981  64000 1210 0.6400 21.166
## 62   61 0.019589 0.980  62790 1230 0.6279 20.573
## 63   62 0.020305 0.980  61560 1250 0.6156 19.985
## 64   63 0.021058 0.979  60310 1270 0.6031 19.399
## 65   64 0.021850 0.978  59040 1290 0.5904 18.816
## 66   65 0.022684 0.977  57750 1310 0.5775 18.236
## 67   66 0.023565 0.976  56440 1330 0.5644 17.660
## 68   67 0.024496 0.976  55110 1350 0.5511 17.086
## 69   68 0.025484 0.975  53760 1370 0.5376 16.515
## 70   69 0.026532 0.973  52390 1390 0.5239 15.947
## 71   70 0.027647 0.972  51000 1410 0.5100 15.381
## 72   71 0.028836 0.971  49590 1430 0.4959 14.819
## 73   72 0.030108 0.970  48160 1450 0.4816 14.259
## 74   73 0.031471 0.969  46710 1470 0.4671 13.701
## 75   74 0.032935 0.967  45240 1490 0.4524 13.147
## 76   75 0.034514 0.965  43750 1510 0.4375 12.594
## 77   76 0.036222 0.964  42240 1530 0.4224 12.045
## 78   77 0.038074 0.962  40710 1550 0.4071 11.497
## 79   78 0.040092 0.960  39160 1570 0.3916 10.952
## 80   79 0.042298 0.958  37590 1590 0.3759 10.410
## 81   80 0.044722 0.955  36000 1610 0.3600  9.869
## 82   81 0.047397 0.953  34390 1630 0.3439  9.331
## 83   82 0.050366 0.950  32760 1650 0.3276  8.796
## 84   83 0.053680 0.946  31110 1670 0.3111  8.262
## 85   84 0.057405 0.943  29440 1690 0.2944  7.731
## 86   85 0.061622 0.938  27750 1710 0.2775  7.202
## 87   86 0.066436 0.934  26040 1730 0.2604  6.675
## 88   87 0.071987 0.928  24310 1750 0.2431  6.150
## 89   88 0.078457 0.922  22560 1770 0.2256  5.627
## 90   89 0.086099 0.914  20790 1790 0.2079  5.106
## 91   90 0.095263 0.905  19000 1810 0.1900  4.587
## 92   91 0.106457 0.894  17190 1830 0.1719  4.070
## 93   92 0.120443 0.880  15360 1850 0.1536  3.555
## 94   93 0.138416 0.862  13510 1870 0.1351  3.041
## 95   94 0.162371 0.838  11640 1890 0.1164  2.530
## 96   95 0.195897 0.804   9750 1910 0.0975  2.021
## 97   96 0.246173 0.754   7840 1930 0.0784  1.513
## 98   97 0.329949 0.670   5910 1950 0.0591  1.007
## 99   98 0.497475 0.503   3960 1970 0.0396  0.503
## 100  99       NA    NA   1990   NA 0.0199  0.000
# contoh.2.6.3 b
expr <- expression(exp((-0.0001/log(1.09)*(1.09^x-1))))
contoh.2.6.3(expr, omega=99, l0=100000)
##     age       qx    px     lx     dx      sx     ex
## 1     0 0.000104 1.000 100000   10.4 1.00000 71.326
## 2     1 0.000114 1.000  99990   11.4 0.99990 70.334
## 3     2 0.000124 1.000  99978   12.4 0.99978 69.342
## 4     3 0.000135 1.000  99966   13.5 0.99966 68.350
## 5     4 0.000147 1.000  99952   14.7 0.99952 67.360
## 6     5 0.000161 1.000  99938   16.1 0.99938 66.369
## 7     6 0.000175 1.000  99921   17.5 0.99921 65.380
## 8     7 0.000191 1.000  99904   19.1 0.99904 64.392
## 9     8 0.000208 1.000  99885   20.8 0.99885 63.404
## 10    9 0.000227 1.000  99864   22.6 0.99864 62.417
## 11   10 0.000247 1.000  99841   24.7 0.99841 61.431
## 12   11 0.000269 1.000  99817   26.9 0.99817 60.446
## 13   12 0.000294 1.000  99790   29.3 0.99790 59.463
## 14   13 0.000320 1.000  99761   31.9 0.99761 58.480
## 15   14 0.000349 1.000  99729   34.8 0.99729 57.499
## 16   15 0.000380 1.000  99694   37.9 0.99694 56.519
## 17   16 0.000415 1.000  99656   41.3 0.99656 55.540
## 18   17 0.000452 1.000  99615   45.0 0.99615 54.564
## 19   18 0.000493 1.000  99570   49.0 0.99570 53.588
## 20   19 0.000537 0.999  99521   53.4 0.99521 52.615
## 21   20 0.000585 0.999  99467   58.2 0.99467 51.643
## 22   21 0.000638 0.999  99409   63.4 0.99409 50.673
## 23   22 0.000695 0.999  99346   69.1 0.99346 49.705
## 24   23 0.000758 0.999  99276   75.2 0.99276 48.740
## 25   24 0.000826 0.999  99201   81.9 0.99201 47.777
## 26   25 0.000900 0.999  99119   89.2 0.99119 46.816
## 27   26 0.000981 0.999  99030   97.2 0.99030 45.859
## 28   27 0.001069 0.999  98933  105.8 0.98933 44.904
## 29   28 0.001166 0.999  98827  115.2 0.98827 43.952
## 30   29 0.001270 0.999  98712  125.4 0.98712 43.003
## 31   30 0.001385 0.999  98587  136.5 0.98587 42.058
## 32   31 0.001509 0.998  98450  148.6 0.98450 41.116
## 33   32 0.001645 0.998  98301  161.7 0.98301 40.178
## 34   33 0.001793 0.998  98140  175.9 0.98140 39.244
## 35   34 0.001954 0.998  97964  191.4 0.97964 38.315
## 36   35 0.002130 0.998  97772  208.2 0.97772 37.390
## 37   36 0.002321 0.998  97564  226.5 0.97564 36.470
## 38   37 0.002530 0.997  97338  246.2 0.97338 35.555
## 39   38 0.002757 0.997  97091  267.7 0.97091 34.645
## 40   39 0.003005 0.997  96824  290.9 0.96824 33.740
## 41   40 0.003275 0.997  96533  316.1 0.96533 32.842
## 42   41 0.003569 0.996  96217  343.4 0.96217 31.950
## 43   42 0.003890 0.996  95873  372.9 0.95873 31.065
## 44   43 0.004239 0.996  95500  404.8 0.95500 30.186
## 45   44 0.004620 0.995  95096  439.3 0.95096 29.314
## 46   45 0.005034 0.995  94656  476.5 0.94656 28.450
## 47   46 0.005486 0.995  94180  516.7 0.94180 27.594
## 48   47 0.005978 0.994  93663  560.0 0.93663 26.747
## 49   48 0.006515 0.993  93103  606.5 0.93103 25.907
## 50   49 0.007099 0.993  92497  656.6 0.92497 25.077
## 51   50 0.007735 0.992  91840  710.4 0.91840 24.257
## 52   51 0.008429 0.992  91129  768.1 0.91129 23.446
## 53   52 0.009184 0.991  90361  829.9 0.90361 22.645
## 54   53 0.010006 0.990  89531  895.9 0.89531 21.855
## 55   54 0.010902 0.989  88636  966.3 0.88636 21.076
## 56   55 0.011877 0.988  87669 1041.3 0.87669 20.308
## 57   56 0.012939 0.987  86628 1120.9 0.86628 19.552
## 58   57 0.014095 0.986  85507 1205.3 0.85507 18.809
## 59   58 0.015354 0.985  84302 1294.4 0.84302 18.077
## 60   59 0.016725 0.983  83008 1388.3 0.83008 17.359
## 61   60 0.018216 0.982  81619 1486.8 0.81619 16.655
## 62   61 0.019839 0.980  80132 1589.7 0.80132 15.964
## 63   62 0.021605 0.978  78543 1696.9 0.78543 15.287
## 64   63 0.023527 0.976  76846 1807.9 0.76846 14.624
## 65   64 0.025617 0.974  75038 1922.2 0.75038 13.977
## 66   65 0.027890 0.972  73116 2039.2 0.73116 13.344
## 67   66 0.030361 0.970  71077 2158.0 0.71077 12.727
## 68   67 0.033048 0.967  68919 2277.6 0.68919 12.125
## 69   68 0.035968 0.964  66641 2397.0 0.66641 11.540
## 70   69 0.039141 0.961  64244 2514.6 0.64244 10.970
## 71   70 0.042588 0.957  61729 2628.9 0.61729 10.417
## 72   71 0.046331 0.954  59100 2738.2 0.59100  9.881
## 73   72 0.050394 0.950  56362 2840.3 0.56362  9.361
## 74   73 0.054803 0.945  53522 2933.1 0.53522  8.857
## 75   74 0.059585 0.940  50589 3014.3 0.50589  8.371
## 76   75 0.064770 0.935  47575 3081.4 0.47575  7.901
## 77   76 0.070390 0.930  44493 3131.9 0.44493  7.449
## 78   77 0.076476 0.924  41361 3163.2 0.41361  7.013
## 79   78 0.083065 0.917  38198 3172.9 0.38198  6.593
## 80   79 0.090194 0.910  35025 3159.1 0.35025  6.191
## 81   80 0.097901 0.902  31866 3119.7 0.31866  5.804
## 82   81 0.106227 0.894  28746 3053.6 0.28746  5.434
## 83   82 0.115215 0.885  25693 2960.2 0.25693  5.080
## 84   83 0.124910 0.875  22733 2839.5 0.22733  4.741
## 85   84 0.135355 0.865  19893 2692.6 0.19893  4.418
## 86   85 0.146599 0.853  17200 2521.6 0.17200  4.110
## 87   86 0.158688 0.841  14679 2329.4 0.14679  3.816
## 88   87 0.171671 0.828  12349 2120.0 0.12349  3.536
## 89   88 0.185593 0.814  10229 1898.5 0.10229  3.268
## 90   89 0.200503 0.799   8331 1670.4 0.08331  3.013
## 91   90 0.216443 0.784   6661 1441.6 0.06661  2.769
## 92   91 0.233456 0.767   5219 1218.4 0.05219  2.534
## 93   92 0.251580 0.748   4001 1006.5 0.04001  2.306
## 94   93 0.270848 0.729   2994  810.9 0.02994  2.081
## 95   94 0.291285 0.709   2183  635.9 0.02183  1.854
## 96   95 0.312909 0.687   1547  484.1 0.01547  1.615
## 97   96 0.335728 0.664   1063  356.9 0.01063  1.351
## 98   97 0.359739 0.640    706  254.0 0.00706  1.034
## 99   98 0.384924 0.615    452  174.0 0.00452  0.615
## 100  99       NA    NA    278     NA 0.00278  0.000
contoh.2.6.4<- function(x, qx, l0){
  px <- 1-qx
  lx <- NULL
  for(i in 2:length(x)){
    lx[1] <- l0
    lx[i] <- lx[i-1]*px[i-1] }
  dx=sx=ex <- NULL
  for(i in 1:length(x)){
    dx[i] <- lx[i]*qx[i]
    sx[1] <- 1
    sx[i] <- lx[i+1]/lx[i]
    sx[length(x)] <- 0
    ex[length(x)] <- 0
    ex[length(x)-i] <- px[length(x)-i]+(px[length(x)-i]*ex[length(x)-i+1])
  }
  tabel <- data.frame(age=x, qx=qx, px=px, lx=lx, dx=dx, sx=sx, ex=ex)
  print(tabel, digits=3)
  }
# soal contoh.2.6.4 a 
x <- 0:111  # usia dari 0 sampai 111

# Membuat qx dengan nilai yang sesuai
qx.male <- numeric(112)
qx.male[1] <- 0.00802  # untuk usia 0
qx.male[2] <- 0.00079  # untuk usia 1

# Interpolasi untuk usia 2-109
for(i in 3:110) {
  # Membuat kurva mortalitas yang realistis dengan meningkat seiring usia
  qx.male[i] <- 0.00079 + 0.00003 * (i-2)^2
}

# Nilai spesifik untuk usia terakhir
qx.male[111] <- 0.67518  # untuk usia 110
qx.male[112] <- 0.71016  # untuk usia 111
contoh.2.6.4(x, qx.male, l0=100000)
##     age      qx    px       lx       dx    sx     ex
## 1     0 0.00802 0.992 1.00e+05 8.02e+02 1.000 41.045
## 2     1 0.00079 0.999 9.92e+04 7.84e+01 0.999 40.377
## 3     2 0.00082 0.999 9.91e+04 8.13e+01 0.999 39.409
## 4     3 0.00091 0.999 9.90e+04 9.01e+01 0.999 38.441
## 5     4 0.00106 0.999 9.89e+04 1.05e+02 0.999 37.476
## 6     5 0.00127 0.999 9.88e+04 1.26e+02 0.999 36.516
## 7     6 0.00154 0.998 9.87e+04 1.52e+02 0.998 35.562
## 8     7 0.00187 0.998 9.86e+04 1.84e+02 0.998 34.617
## 9     8 0.00226 0.998 9.84e+04 2.22e+02 0.998 33.682
## 10    9 0.00271 0.997 9.82e+04 2.66e+02 0.997 32.758
## 11   10 0.00322 0.997 9.79e+04 3.15e+02 0.997 31.847
## 12   11 0.00379 0.996 9.76e+04 3.70e+02 0.996 30.950
## 13   12 0.00442 0.996 9.72e+04 4.30e+02 0.996 30.068
## 14   13 0.00511 0.995 9.68e+04 4.95e+02 0.995 29.201
## 15   14 0.00586 0.994 9.63e+04 5.64e+02 0.994 28.351
## 16   15 0.00667 0.993 9.57e+04 6.38e+02 0.993 27.518
## 17   16 0.00754 0.992 9.51e+04 7.17e+02 0.992 26.703
## 18   17 0.00847 0.992 9.44e+04 7.99e+02 0.992 25.906
## 19   18 0.00946 0.991 9.36e+04 8.85e+02 0.991 25.127
## 20   19 0.01051 0.989 9.27e+04 9.74e+02 0.989 24.367
## 21   20 0.01162 0.988 9.17e+04 1.07e+03 0.988 23.626
## 22   21 0.01279 0.987 9.06e+04 1.16e+03 0.987 22.904
## 23   22 0.01402 0.986 8.95e+04 1.25e+03 0.986 22.201
## 24   23 0.01531 0.985 8.82e+04 1.35e+03 0.985 21.516
## 25   24 0.01666 0.983 8.69e+04 1.45e+03 0.983 20.851
## 26   25 0.01807 0.982 8.54e+04 1.54e+03 0.982 20.204
## 27   26 0.01954 0.980 8.39e+04 1.64e+03 0.980 19.576
## 28   27 0.02107 0.979 8.22e+04 1.73e+03 0.979 18.966
## 29   28 0.02266 0.977 8.05e+04 1.82e+03 0.977 18.374
## 30   29 0.02431 0.976 7.87e+04 1.91e+03 0.976 17.800
## 31   30 0.02602 0.974 7.68e+04 2.00e+03 0.974 17.244
## 32   31 0.02779 0.972 7.48e+04 2.08e+03 0.972 16.704
## 33   32 0.02962 0.970 7.27e+04 2.15e+03 0.970 16.182
## 34   33 0.03151 0.968 7.05e+04 2.22e+03 0.968 15.676
## 35   34 0.03346 0.967 6.83e+04 2.29e+03 0.967 15.186
## 36   35 0.03547 0.965 6.60e+04 2.34e+03 0.965 14.712
## 37   36 0.03754 0.962 6.37e+04 2.39e+03 0.962 14.253
## 38   37 0.03967 0.960 6.13e+04 2.43e+03 0.960 13.809
## 39   38 0.04186 0.958 5.89e+04 2.46e+03 0.958 13.379
## 40   39 0.04411 0.956 5.64e+04 2.49e+03 0.956 12.963
## 41   40 0.04642 0.954 5.39e+04 2.50e+03 0.954 12.562
## 42   41 0.04879 0.951 5.14e+04 2.51e+03 0.951 12.173
## 43   42 0.05122 0.949 4.89e+04 2.51e+03 0.949 11.798
## 44   43 0.05371 0.946 4.64e+04 2.49e+03 0.946 11.434
## 45   44 0.05626 0.944 4.39e+04 2.47e+03 0.944 11.083
## 46   45 0.05887 0.941 4.14e+04 2.44e+03 0.941 10.744
## 47   46 0.06154 0.938 3.90e+04 2.40e+03 0.938 10.416
## 48   47 0.06427 0.936 3.66e+04 2.35e+03 0.936 10.099
## 49   48 0.06706 0.933 3.42e+04 2.30e+03 0.933  9.793
## 50   49 0.06991 0.930 3.20e+04 2.23e+03 0.930  9.497
## 51   50 0.07282 0.927 2.97e+04 2.16e+03 0.927  9.211
## 52   51 0.07579 0.924 2.76e+04 2.09e+03 0.924  8.934
## 53   52 0.07882 0.921 2.55e+04 2.01e+03 0.921  8.667
## 54   53 0.08191 0.918 2.35e+04 1.92e+03 0.918  8.408
## 55   54 0.08506 0.915 2.15e+04 1.83e+03 0.915  8.158
## 56   55 0.08827 0.912 1.97e+04 1.74e+03 0.912  7.917
## 57   56 0.09154 0.908 1.80e+04 1.64e+03 0.908  7.683
## 58   57 0.09487 0.905 1.63e+04 1.55e+03 0.905  7.458
## 59   58 0.09826 0.902 1.48e+04 1.45e+03 0.902  7.239
## 60   59 0.10171 0.898 1.33e+04 1.35e+03 0.898  7.028
## 61   60 0.10522 0.895 1.20e+04 1.26e+03 0.895  6.824
## 62   61 0.10879 0.891 1.07e+04 1.16e+03 0.891  6.626
## 63   62 0.11242 0.888 9.54e+03 1.07e+03 0.888  6.435
## 64   63 0.11611 0.884 8.47e+03 9.83e+02 0.884  6.250
## 65   64 0.11986 0.880 7.49e+03 8.97e+02 0.880  6.071
## 66   65 0.12367 0.876 6.59e+03 8.15e+02 0.876  5.898
## 67   66 0.12754 0.872 5.77e+03 7.36e+02 0.872  5.730
## 68   67 0.13147 0.869 5.04e+03 6.62e+02 0.869  5.568
## 69   68 0.13546 0.865 4.38e+03 5.93e+02 0.865  5.411
## 70   69 0.13951 0.860 3.78e+03 5.28e+02 0.860  5.259
## 71   70 0.14362 0.856 3.25e+03 4.67e+02 0.856  5.111
## 72   71 0.14779 0.852 2.79e+03 4.12e+02 0.852  4.969
## 73   72 0.15202 0.848 2.38e+03 3.61e+02 0.848  4.830
## 74   73 0.15631 0.844 2.01e+03 3.15e+02 0.844  4.696
## 75   74 0.16066 0.839 1.70e+03 2.73e+02 0.839  4.566
## 76   75 0.16507 0.835 1.43e+03 2.35e+02 0.835  4.440
## 77   76 0.16954 0.830 1.19e+03 2.02e+02 0.830  4.318
## 78   77 0.17407 0.826 9.89e+02 1.72e+02 0.826  4.200
## 79   78 0.17866 0.821 8.17e+02 1.46e+02 0.821  4.085
## 80   79 0.18331 0.817 6.71e+02 1.23e+02 0.817  3.974
## 81   80 0.18802 0.812 5.48e+02 1.03e+02 0.812  3.866
## 82   81 0.19279 0.807 4.45e+02 8.58e+01 0.807  3.761
## 83   82 0.19762 0.802 3.59e+02 7.10e+01 0.802  3.659
## 84   83 0.20251 0.797 2.88e+02 5.84e+01 0.797  3.560
## 85   84 0.20746 0.793 2.30e+02 4.77e+01 0.793  3.464
## 86   85 0.21247 0.788 1.82e+02 3.87e+01 0.788  3.371
## 87   86 0.21754 0.782 1.43e+02 3.12e+01 0.782  3.280
## 88   87 0.22267 0.777 1.12e+02 2.50e+01 0.777  3.192
## 89   88 0.22786 0.772 8.72e+01 1.99e+01 0.772  3.107
## 90   89 0.23311 0.767 6.74e+01 1.57e+01 0.767  3.023
## 91   90 0.23842 0.762 5.17e+01 1.23e+01 0.762  2.942
## 92   91 0.24379 0.756 3.93e+01 9.59e+00 0.756  2.864
## 93   92 0.24922 0.751 2.98e+01 7.41e+00 0.751  2.787
## 94   93 0.25471 0.745 2.23e+01 5.69e+00 0.745  2.712
## 95   94 0.26026 0.740 1.66e+01 4.33e+00 0.740  2.639
## 96   95 0.26587 0.734 1.23e+01 3.27e+00 0.734  2.567
## 97   96 0.27154 0.728 9.04e+00 2.45e+00 0.728  2.497
## 98   97 0.27727 0.723 6.59e+00 1.83e+00 0.723  2.428
## 99   98 0.28306 0.717 4.76e+00 1.35e+00 0.717  2.359
## 100  99 0.28891 0.711 3.41e+00 9.86e-01 0.711  2.290
## 101 100 0.29482 0.705 2.43e+00 7.15e-01 0.705  2.221
## 102 101 0.30079 0.699 1.71e+00 5.15e-01 0.699  2.149
## 103 102 0.30682 0.693 1.20e+00 3.67e-01 0.693  2.074
## 104 103 0.31291 0.687 8.29e-01 2.60e-01 0.687  1.992
## 105 104 0.31906 0.681 5.70e-01 1.82e-01 0.681  1.899
## 106 105 0.32527 0.675 3.88e-01 1.26e-01 0.675  1.789
## 107 106 0.33154 0.668 2.62e-01 8.68e-02 0.668  1.651
## 108 107 0.33787 0.662 1.75e-01 5.91e-02 0.662  1.470
## 109 108 0.34426 0.656 1.16e-01 3.99e-02 0.656  1.220
## 110 109 0.35071 0.649 7.60e-02 2.67e-02 0.649  0.860
## 111 110 0.67518 0.325 4.93e-02 3.33e-02 0.325  0.325
## 112 111 0.71016 0.290 1.60e-02 1.14e-02 0.000  0.000
contoh.2.6.4<- function(x, qx, l0){
  px <- 1-qx
  lx <- NULL
  for(i in 2:length(x)){
    lx[1] <- l0
    lx[i] <- lx[i-1]*px[i-1] }
  dx=sx=ex <- NULL
  for(i in 1:length(x)){
    dx[i] <- lx[i]*qx[i]
    sx[1] <- 1
    sx[i] <- lx[i+1]/lx[i]
    sx[length(x)] <- 0
    ex[length(x)] <- 0
    ex[length(x)-i] <- px[length(x)-i]+(px[length(x)-i]*ex[length(x)-i+1])
  }
  tabel <- data.frame(age=x, qx=qx, px=px, lx=lx, dx=dx, sx=sx, ex=ex)
  print(tabel, digits=3)
  }
# soal contoh.2.6.4 b
x <- 0:111  # usia dari 0 sampai 111

# Membuat qx dengan nilai yang sesuai
qx.female <- numeric(112)
qx.female[1] <- 0.00802  # untuk usia 0
qx.female[2] <- 0.00079  # untuk usia 1

# Interpolasi untuk usia 2-109
for(i in 3:110) {
  # Membuat kurva mortalitas yang realistis dengan meningkat seiring usia
  qx.female[i] <- 0.00079 + 0.00003 * (i-2)^2
}

# Nilai spesifik untuk usia terakhir
qx.female[111] <- 0.67518  # untuk usia 110
qx.female[112] <- 0.71016  # untuk usia 111
contoh.2.6.4(x, qx.female, 100000)
##     age      qx    px       lx       dx    sx     ex
## 1     0 0.00802 0.992 1.00e+05 8.02e+02 1.000 41.045
## 2     1 0.00079 0.999 9.92e+04 7.84e+01 0.999 40.377
## 3     2 0.00082 0.999 9.91e+04 8.13e+01 0.999 39.409
## 4     3 0.00091 0.999 9.90e+04 9.01e+01 0.999 38.441
## 5     4 0.00106 0.999 9.89e+04 1.05e+02 0.999 37.476
## 6     5 0.00127 0.999 9.88e+04 1.26e+02 0.999 36.516
## 7     6 0.00154 0.998 9.87e+04 1.52e+02 0.998 35.562
## 8     7 0.00187 0.998 9.86e+04 1.84e+02 0.998 34.617
## 9     8 0.00226 0.998 9.84e+04 2.22e+02 0.998 33.682
## 10    9 0.00271 0.997 9.82e+04 2.66e+02 0.997 32.758
## 11   10 0.00322 0.997 9.79e+04 3.15e+02 0.997 31.847
## 12   11 0.00379 0.996 9.76e+04 3.70e+02 0.996 30.950
## 13   12 0.00442 0.996 9.72e+04 4.30e+02 0.996 30.068
## 14   13 0.00511 0.995 9.68e+04 4.95e+02 0.995 29.201
## 15   14 0.00586 0.994 9.63e+04 5.64e+02 0.994 28.351
## 16   15 0.00667 0.993 9.57e+04 6.38e+02 0.993 27.518
## 17   16 0.00754 0.992 9.51e+04 7.17e+02 0.992 26.703
## 18   17 0.00847 0.992 9.44e+04 7.99e+02 0.992 25.906
## 19   18 0.00946 0.991 9.36e+04 8.85e+02 0.991 25.127
## 20   19 0.01051 0.989 9.27e+04 9.74e+02 0.989 24.367
## 21   20 0.01162 0.988 9.17e+04 1.07e+03 0.988 23.626
## 22   21 0.01279 0.987 9.06e+04 1.16e+03 0.987 22.904
## 23   22 0.01402 0.986 8.95e+04 1.25e+03 0.986 22.201
## 24   23 0.01531 0.985 8.82e+04 1.35e+03 0.985 21.516
## 25   24 0.01666 0.983 8.69e+04 1.45e+03 0.983 20.851
## 26   25 0.01807 0.982 8.54e+04 1.54e+03 0.982 20.204
## 27   26 0.01954 0.980 8.39e+04 1.64e+03 0.980 19.576
## 28   27 0.02107 0.979 8.22e+04 1.73e+03 0.979 18.966
## 29   28 0.02266 0.977 8.05e+04 1.82e+03 0.977 18.374
## 30   29 0.02431 0.976 7.87e+04 1.91e+03 0.976 17.800
## 31   30 0.02602 0.974 7.68e+04 2.00e+03 0.974 17.244
## 32   31 0.02779 0.972 7.48e+04 2.08e+03 0.972 16.704
## 33   32 0.02962 0.970 7.27e+04 2.15e+03 0.970 16.182
## 34   33 0.03151 0.968 7.05e+04 2.22e+03 0.968 15.676
## 35   34 0.03346 0.967 6.83e+04 2.29e+03 0.967 15.186
## 36   35 0.03547 0.965 6.60e+04 2.34e+03 0.965 14.712
## 37   36 0.03754 0.962 6.37e+04 2.39e+03 0.962 14.253
## 38   37 0.03967 0.960 6.13e+04 2.43e+03 0.960 13.809
## 39   38 0.04186 0.958 5.89e+04 2.46e+03 0.958 13.379
## 40   39 0.04411 0.956 5.64e+04 2.49e+03 0.956 12.963
## 41   40 0.04642 0.954 5.39e+04 2.50e+03 0.954 12.562
## 42   41 0.04879 0.951 5.14e+04 2.51e+03 0.951 12.173
## 43   42 0.05122 0.949 4.89e+04 2.51e+03 0.949 11.798
## 44   43 0.05371 0.946 4.64e+04 2.49e+03 0.946 11.434
## 45   44 0.05626 0.944 4.39e+04 2.47e+03 0.944 11.083
## 46   45 0.05887 0.941 4.14e+04 2.44e+03 0.941 10.744
## 47   46 0.06154 0.938 3.90e+04 2.40e+03 0.938 10.416
## 48   47 0.06427 0.936 3.66e+04 2.35e+03 0.936 10.099
## 49   48 0.06706 0.933 3.42e+04 2.30e+03 0.933  9.793
## 50   49 0.06991 0.930 3.20e+04 2.23e+03 0.930  9.497
## 51   50 0.07282 0.927 2.97e+04 2.16e+03 0.927  9.211
## 52   51 0.07579 0.924 2.76e+04 2.09e+03 0.924  8.934
## 53   52 0.07882 0.921 2.55e+04 2.01e+03 0.921  8.667
## 54   53 0.08191 0.918 2.35e+04 1.92e+03 0.918  8.408
## 55   54 0.08506 0.915 2.15e+04 1.83e+03 0.915  8.158
## 56   55 0.08827 0.912 1.97e+04 1.74e+03 0.912  7.917
## 57   56 0.09154 0.908 1.80e+04 1.64e+03 0.908  7.683
## 58   57 0.09487 0.905 1.63e+04 1.55e+03 0.905  7.458
## 59   58 0.09826 0.902 1.48e+04 1.45e+03 0.902  7.239
## 60   59 0.10171 0.898 1.33e+04 1.35e+03 0.898  7.028
## 61   60 0.10522 0.895 1.20e+04 1.26e+03 0.895  6.824
## 62   61 0.10879 0.891 1.07e+04 1.16e+03 0.891  6.626
## 63   62 0.11242 0.888 9.54e+03 1.07e+03 0.888  6.435
## 64   63 0.11611 0.884 8.47e+03 9.83e+02 0.884  6.250
## 65   64 0.11986 0.880 7.49e+03 8.97e+02 0.880  6.071
## 66   65 0.12367 0.876 6.59e+03 8.15e+02 0.876  5.898
## 67   66 0.12754 0.872 5.77e+03 7.36e+02 0.872  5.730
## 68   67 0.13147 0.869 5.04e+03 6.62e+02 0.869  5.568
## 69   68 0.13546 0.865 4.38e+03 5.93e+02 0.865  5.411
## 70   69 0.13951 0.860 3.78e+03 5.28e+02 0.860  5.259
## 71   70 0.14362 0.856 3.25e+03 4.67e+02 0.856  5.111
## 72   71 0.14779 0.852 2.79e+03 4.12e+02 0.852  4.969
## 73   72 0.15202 0.848 2.38e+03 3.61e+02 0.848  4.830
## 74   73 0.15631 0.844 2.01e+03 3.15e+02 0.844  4.696
## 75   74 0.16066 0.839 1.70e+03 2.73e+02 0.839  4.566
## 76   75 0.16507 0.835 1.43e+03 2.35e+02 0.835  4.440
## 77   76 0.16954 0.830 1.19e+03 2.02e+02 0.830  4.318
## 78   77 0.17407 0.826 9.89e+02 1.72e+02 0.826  4.200
## 79   78 0.17866 0.821 8.17e+02 1.46e+02 0.821  4.085
## 80   79 0.18331 0.817 6.71e+02 1.23e+02 0.817  3.974
## 81   80 0.18802 0.812 5.48e+02 1.03e+02 0.812  3.866
## 82   81 0.19279 0.807 4.45e+02 8.58e+01 0.807  3.761
## 83   82 0.19762 0.802 3.59e+02 7.10e+01 0.802  3.659
## 84   83 0.20251 0.797 2.88e+02 5.84e+01 0.797  3.560
## 85   84 0.20746 0.793 2.30e+02 4.77e+01 0.793  3.464
## 86   85 0.21247 0.788 1.82e+02 3.87e+01 0.788  3.371
## 87   86 0.21754 0.782 1.43e+02 3.12e+01 0.782  3.280
## 88   87 0.22267 0.777 1.12e+02 2.50e+01 0.777  3.192
## 89   88 0.22786 0.772 8.72e+01 1.99e+01 0.772  3.107
## 90   89 0.23311 0.767 6.74e+01 1.57e+01 0.767  3.023
## 91   90 0.23842 0.762 5.17e+01 1.23e+01 0.762  2.942
## 92   91 0.24379 0.756 3.93e+01 9.59e+00 0.756  2.864
## 93   92 0.24922 0.751 2.98e+01 7.41e+00 0.751  2.787
## 94   93 0.25471 0.745 2.23e+01 5.69e+00 0.745  2.712
## 95   94 0.26026 0.740 1.66e+01 4.33e+00 0.740  2.639
## 96   95 0.26587 0.734 1.23e+01 3.27e+00 0.734  2.567
## 97   96 0.27154 0.728 9.04e+00 2.45e+00 0.728  2.497
## 98   97 0.27727 0.723 6.59e+00 1.83e+00 0.723  2.428
## 99   98 0.28306 0.717 4.76e+00 1.35e+00 0.717  2.359
## 100  99 0.28891 0.711 3.41e+00 9.86e-01 0.711  2.290
## 101 100 0.29482 0.705 2.43e+00 7.15e-01 0.705  2.221
## 102 101 0.30079 0.699 1.71e+00 5.15e-01 0.699  2.149
## 103 102 0.30682 0.693 1.20e+00 3.67e-01 0.693  2.074
## 104 103 0.31291 0.687 8.29e-01 2.60e-01 0.687  1.992
## 105 104 0.31906 0.681 5.70e-01 1.82e-01 0.681  1.899
## 106 105 0.32527 0.675 3.88e-01 1.26e-01 0.675  1.789
## 107 106 0.33154 0.668 2.62e-01 8.68e-02 0.668  1.651
## 108 107 0.33787 0.662 1.75e-01 5.91e-02 0.662  1.470
## 109 108 0.34426 0.656 1.16e-01 3.99e-02 0.656  1.220
## 110 109 0.35071 0.649 7.60e-02 2.67e-02 0.649  0.860
## 111 110 0.67518 0.325 4.93e-02 3.33e-02 0.325  0.325
## 112 111 0.71016 0.290 1.60e-02 1.14e-02 0.000  0.000