Lab 4 Linear Regression

Libraries

library(ISLR2)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Question 8

Part a)

lm_model <- lm(mpg ~ horsepower, data = Auto)
summary(lm_model)
## 
## Call:
## lm(formula = mpg ~ horsepower, data = Auto)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.5710  -3.2592  -0.3435   2.7630  16.9240 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 39.935861   0.717499   55.66   <2e-16 ***
## horsepower  -0.157845   0.006446  -24.49   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.906 on 390 degrees of freedom
## Multiple R-squared:  0.6059, Adjusted R-squared:  0.6049 
## F-statistic: 599.7 on 1 and 390 DF,  p-value: < 2.2e-16

i. Yes, there is a relationship between horsepower, the predictor, and the response, mpg. These two are negatively correlated.

ii. The estimate of -0.158 suggests that relationship is not super strong but still there is inversely proportional relationship.

iii. Negative

iv. We’ll use the predict function below to compute the predicted value for 98 horsepower and associated intervals.

predict(lm_model, data.frame(horsepower = 98), interval = 'confidence')
##        fit      lwr      upr
## 1 24.46708 23.97308 24.96108
predict(lm_model, data.frame(horsepower = 98), interval = 'prediction')
##        fit     lwr      upr
## 1 24.46708 14.8094 34.12476

Part b)

plot(Auto$horsepower,Auto$mpg)
abline(lm_model, lwd = 3, col = "blue")

Part c)

par(mfrow = c(2, 2)) 
plot(lm_model)

Residuals vs Fitted does show some pattern which indicates the relationship might not be entirely linear.

QQ Plot shows that residuals have a normal distribution which is good.

We can also notice one leverage point in bottom right plot and couple of outliers in top left which could be problematic.

Question 10

Part a)

multi_lm <- lm(Sales ~ Price + Urban + US, data = Carseats)
summary(multi_lm)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16

Part b)

Price has a slight negative relationship with the Sales. Urban areas also has negative relationship with Sales. Lastly, being in US positively relates to Sales.

Part c)

y = 13 - 0.054(Price) - 0.02(UrbanYes) + 1.2(USYes)

Part d)

We can reject the null that Price and USYes is zero because their associated p-values are very small.

Part e)

multi_lm_trim <- lm(Sales ~ Price + US, data = Carseats)
summary(multi_lm_trim)
## 
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16

Part f)

We can compare adjusted r squared values for both models. Model in a) has 0.2335 and model in e) has 0.2354. So clearly latter model fits the data better.

Part g)

confint(multi_lm_trim)
##                   2.5 %      97.5 %
## (Intercept) 11.79032020 14.27126531
## Price       -0.06475984 -0.04419543
## USYes        0.69151957  1.70776632

Part h)

plot(multi_lm_trim)

Yes we can see evidence of both outliers and leverage points using our diagnostic plots.

Question 14

Part a)

set.seed(1)
x1 <- runif (100)
x2 <- 0.5 * x1 + rnorm(100) / 10
y <- 2 + 2 * x1 + 0.3 * x2 + rnorm(100)

Linear model form: y = 2 + 2(x1) + 0.3(x2) + error

The regression coefficients are 2 for x1 and 0.3 for x2.

Part b)

plot(x1,x2)

We can notice that as x1 increases, x2 increases as well. So our predictors in this case are collinear.

Part c)

lm_ <- lm(y~ x1 + x2)
summary(lm_)
## 
## Call:
## lm(formula = y ~ x1 + x2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8311 -0.7273 -0.0537  0.6338  2.3359 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.1305     0.2319   9.188 7.61e-15 ***
## x1            1.4396     0.7212   1.996   0.0487 *  
## x2            1.0097     1.1337   0.891   0.3754    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.056 on 97 degrees of freedom
## Multiple R-squared:  0.2088, Adjusted R-squared:  0.1925 
## F-statistic:  12.8 on 2 and 97 DF,  p-value: 1.164e-05

Now the beta 0 is 2.13, beta 1 is 1.4396, beta 2 is 1.0097. Second predictor, x2, is farther away from the true beta 2 which was 0.3. But first predictor is also different from true B1. We reject the null B1 = 0 because p-value is <0.05, however we fail to reject the null that B2 = 0.

Part d)

lm_2 <- lm(y~ x1)
summary(lm_2)
## 
## Call:
## lm(formula = y ~ x1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.89495 -0.66874 -0.07785  0.59221  2.45560 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.1124     0.2307   9.155 8.27e-15 ***
## x1            1.9759     0.3963   4.986 2.66e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.055 on 98 degrees of freedom
## Multiple R-squared:  0.2024, Adjusted R-squared:  0.1942 
## F-statistic: 24.86 on 1 and 98 DF,  p-value: 2.661e-06

Yes we still reject the null that B1 = 0 in fact the p-value dropped further.

Part e)

lm_3 <- lm(y ~ x2)
summary(lm_3)
## 
## Call:
## lm(formula = y ~ x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.62687 -0.75156 -0.03598  0.72383  2.44890 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3899     0.1949   12.26  < 2e-16 ***
## x2            2.8996     0.6330    4.58 1.37e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.072 on 98 degrees of freedom
## Multiple R-squared:  0.1763, Adjusted R-squared:  0.1679 
## F-statistic: 20.98 on 1 and 98 DF,  p-value: 1.366e-05

We will still be rejecting the null that beta1 = 0 because p-value is small. In our first model, x2 seemed to not correlate with the response, but now it does. This could mean that there is an interaction between x1 and x2.

Part f)

I mentioned this in previous part that there seems to be an interaction effect between the predictors. When they’re alone, they seem really significant. But when taken together, they seem to cancel each other out or reduce their impact on the response.

Part g)

x1 <- c(x1, 0.1) 
x2 <- c(x2, 0.8) 
y <- c(y, 6)
lm_ <- lm(y~ x1 + x2)
summary(lm_)
## 
## Call:
## lm(formula = y ~ x1 + x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.73348 -0.69318 -0.05263  0.66385  2.30619 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.2267     0.2314   9.624 7.91e-16 ***
## x1            0.5394     0.5922   0.911  0.36458    
## x2            2.5146     0.8977   2.801  0.00614 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.075 on 98 degrees of freedom
## Multiple R-squared:  0.2188, Adjusted R-squared:  0.2029 
## F-statistic: 13.72 on 2 and 98 DF,  p-value: 5.564e-06
par(mfrow = c(2, 2)) 
plot(lm_)

In this model, this new observation is a leverage point because it changed our model significantly and it shows up on the plot (bottom-right). But it’s not an outlier as it can be seen on the top left plot.

lm_2 <- lm(y~ x1)
summary(lm_2)
## 
## Call:
## lm(formula = y ~ x1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8897 -0.6556 -0.0909  0.5682  3.5665 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.2569     0.2390   9.445 1.78e-15 ***
## x1            1.7657     0.4124   4.282 4.29e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.111 on 99 degrees of freedom
## Multiple R-squared:  0.1562, Adjusted R-squared:  0.1477 
## F-statistic: 18.33 on 1 and 99 DF,  p-value: 4.295e-05
par(mfrow = c(2, 2)) 
plot(lm_2)

For second model, new observation is both an outlier and a leverage point as can be seen from our diagnostic plots.

lm_3 <- lm(y ~ x2)
summary(lm_3)
## 
## Call:
## lm(formula = y ~ x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.64729 -0.71021 -0.06899  0.72699  2.38074 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3451     0.1912  12.264  < 2e-16 ***
## x2            3.1190     0.6040   5.164 1.25e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.074 on 99 degrees of freedom
## Multiple R-squared:  0.2122, Adjusted R-squared:  0.2042 
## F-statistic: 26.66 on 1 and 99 DF,  p-value: 1.253e-06
par(mfrow = c(2, 2)) 
plot(lm_3)

For this model, our new observation is not an outlier but it is a leverage point.