x=c(10,2,5,6,8,9)
y=c(40,10,25,26,30,45)
cor(x,y)
## [1] 0.9493806
Dado que la correlacion es igual 0.9493806, esto significa que la relacion entre el gasto y el ingreso es alta y es directamente proporcional
data1=data.frame(x,y)
library(ggplot2)
ggplot(data1, aes(x,y))+
geom_jitter(color="chartreuse4")+
geom_smooth(method=lm, color="black")
## `geom_smooth()` using formula = 'y ~ x'
modelo= lm(y ~ x)
summary(modelo)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## 1 2 3 4 5 6
## -2.6154 -0.7385 2.3077 -0.6769 -4.6462 6.3692
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.7692 4.7384 0.584 0.59031
## x 3.9846 0.6592 6.045 0.00378 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.339 on 4 degrees of freedom
## Multiple R-squared: 0.9013, Adjusted R-squared: 0.8767
## F-statistic: 36.54 on 1 and 4 DF, p-value: 0.003779
El intercepto es igual 2.7692 lo cual significa que cuando el agsto es cero el ingreso esperado es de 2.7692 por toro lado, la pendiente es igual a 3.9846, lo cual indica
x=c(1,3,4,4,6,8,10,10,11,13)
y=c(80,97,92,102,103,111,119,123,117,136)
cor(x,y)
## [1] 0.9645646
Dado que la correlacion es igual 0.964, esto significa que la relacion entre el gasto y el ingreso es alta y es directamente proporcional
data2=data.frame(x,y)
library(ggplot2)
ggplot(data2, aes(x,y))+
geom_jitter(color="chartreuse4")+
geom_smooth(method=lm, color="black")
## `geom_smooth()` using formula = 'y ~ x'
modelo2= lm(y ~ x)
summary(modelo2)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.00 -3.25 -1.00 3.75 6.00
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 80.0000 3.0753 26.01 5.12e-09 ***
## x 4.0000 0.3868 10.34 6.61e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.61 on 8 degrees of freedom
## Multiple R-squared: 0.9304, Adjusted R-squared: 0.9217
## F-statistic: 106.9 on 1 and 8 DF, p-value: 6.609e-06
El intercepto es igual a 80 lo cual nos dice que cuando los años de experiencia son 0 el ingreso esperado es 80 mil, por otro lado su pendiente es 4 entnoces que por cada aumento en los años de experiencia, el ingreso a umenta en 4 mil por cada año
80+(4*5)
## [1] 100
80+(4*7)
## [1] 108
80+(4*9)
## [1] 116
podemos observar las ventas en funcion de la experiencia de los vendedores de 5, 7 y 9 años de experiencia