Rata-rata dari contoh acak yang berasal dari sebaran apapun memiliki sebaran normal jika ukuran contohnya sangat besar Jika contoh acak diambil dari populasi dengan mean μ dan ragam σ2, maka semakin besar ukuran contoh, sebaran dari x¯ akan semakin mendekati sebaran normal dengan mean μ dan ragam σ2n ## Algoritma Tentukan ukuran contoh (n) Tentukan sebaran data Ulang k kali Ambil n contoh acak dari sebaran data yang sudah ditentukan Hitung rataannya lalu simpan Periksa sebaran dari k rataan
par(mfrow=c(3,1))
library(probs)
## Warning: package 'probs' was built under R version 4.4.3
##
## Attaching package: 'probs'
## The following objects are masked from 'package:base':
##
## intersect, setdiff, union
set.seed(123)
populasi = rgeom(20, 0.1)
n1 = 2
contoh_geo1 = urnsamples(populasi, size = n1, replace = F, ordered = F)
mean_geo1 = matrix(apply(contoh_geo1, 1, mean))
n2 = 5
contoh_geo2 = urnsamples(populasi, size = n2, replace = F, ordered = F)
mean_geo2 = matrix(apply(contoh_geo2, 1, mean))
n3 = 10
contoh_geo3 = urnsamples(populasi, size = n3, replace = F, ordered = F)
mean_geo3 = matrix(apply(contoh_geo3, 1, mean))
hist(mean_geo1,main = paste("Hampiran Normal Terhadap Geometrik (n = 2)"),xlab = "xbar")
hist(mean_geo2,main = paste("Hampiran Normal Terhadap Geometrik (n = 5)"),xlab = "xbar")
hist(mean_geo3,
main = "Hampiran Normal Terhadap Geometrik (n = 10)",
xlab = "xbar")
Tujuannya adalah untuk menunjukkan bagaimana distribusi rata-rata sampel x¯dari distribusi geometrik mendekati distribusi normal ketika ukuran sampel (n) meningkat
set.seed(123)
populasi_exp = rexp(20)
n1 = 2
contoh_exp1 = urnsamples(populasi_exp, size = 2, replace = F, ordered = F)
mean_exp1 = matrix(apply(contoh_exp1, 1, mean))
n2 = 5
contoh_exp2 = urnsamples(populasi_exp, size = 5, replace = F, ordered = F)
mean_exp2 = matrix(apply(contoh_exp2, 1, mean))
n3 = 10
contoh_exp3 = urnsamples(populasi_exp, size = 10, replace = F, ordered = F)
mean_exp3 = matrix(apply(contoh_exp3, 1, mean))
hist(mean_exp1,
main = "Hampiran Normal Terhadap Eksponensial (n = 2)",
xlab = "xbar")
hist(mean_exp2,main = paste("Hampiran Normal Terhadap Eksponensial (n = 5)"),xlab = "xbar")
hist(mean_exp3,main = paste("Hampiran Normal Terhadap Eksponensial (n = 10)"),xlab = "xbar")
set.seed(123)
populasi_runif = runif(20)
n1 = 2
contoh_unif1 = urnsamples(populasi_runif, size = 2, replace = F, ordered = F)
mean_unif1 = matrix(apply(contoh_unif1, 1, mean))
n2 = 5
contoh_unif2 = urnsamples(populasi_runif, size = 5, replace = F, ordered = F)
mean_unif2 = matrix(apply(contoh_unif2, 1, mean))
n3 = 10
contoh_unif3 = urnsamples(populasi_runif, size = 10, replace = F, ordered = F)
mean_unif3 = matrix(apply(contoh_unif3, 1, mean))
hist(mean_unif1,main = paste("Hampiran Normal Terhadap Seragam (n = 2)"),xlab = "xbar")
hist(mean_unif2,main = paste("Hampiran Normal Terhadap Seragam (n = 5)"),xlab = "xbar")
hist(mean_unif3,main = paste("Hampiran Normal Terhadap Seragam (n = 10)"),xlab = "xbar")
Kesimpulan = semakin besar ukuran contoh, maka sebaran rata rata dari contoh acak yang berasal dari sebaran geometrik, eksponensial, maupun yang lainnya.
set.seed(1299)
populasi_rnorm = rnorm(20,5,sqrt(12)) # Membangkitkan bil. acak ~ Normal (miu = 5, sigma2 =12)
n1 = 3
contoh_norm1 = urnsamples(populasi_rnorm, size = 3, replace = F, ordered = F)
mean_norm1 = matrix(apply(contoh_norm1, 1, mean))
mean_xbar1 = mean(mean_norm1)
var_xbar1 = var(mean_norm1)
n2 = 4
contoh_norm2 = urnsamples(populasi_rnorm, size = 4, replace = F, ordered = F)
mean_norm2 = matrix(apply(contoh_norm2, 1, mean))
mean_xbar2 = mean(mean_norm2)
var_xbar2 = var(mean_norm2)
n3 = 15
contoh_norm3 = urnsamples(populasi_rnorm, size = 15, replace = F, ordered = F)
mean_norm3 = matrix(apply(contoh_norm3, 1, mean))
mean_xbar3 = mean(mean_norm3)
var_xbar3 = var(mean_norm3)
hist(mean_norm1,main = paste("(n = 3)"),xlab = "xbar")
hist(mean_norm2,main = paste("(n = 4)"),xlab = "xbar")
hist(mean_norm3,main = paste("(n = 15)"),xlab = "xbar")
hasil = data.frame("."=c("mean","varian"),"Populasi"=c(5,12),"n=3"=c(mean_xbar1,var_xbar1),"n=4"=c(mean_xbar2,var_xbar2),"n=15"=c(mean_xbar3,var_xbar3))
hasil
## . Populasi n.3 n.4 n.15
## 1 mean 5 4.809415 4.809415 4.8094152
## 2 varian 12 4.547044 3.207524 0.2672558
kesimpulannya = Berdasarkan hasil di atas, contoh acak yang diambil dari populasi dengan mean dan ragama maka semakin besar ukuran contohnya.
#1. Sebaran Normal
library(probs)
set.seed(123)
n = 10
populasi1 = rnorm(20)
mean_pop1 = mean(populasi1)
sampel_normal1 = urnsamples(populasi1, size = 10, replace = F, ordered = F)
mean_normal1 = matrix(apply(sampel_normal1, 1, mean))
median_normal1 = matrix(apply(sampel_normal1, 1, median))
harapan_mean_norm1 = mean(mean_normal1)
harapan_median_norm1 = mean(median_normal1)
harapan_mean_norm1
## [1] 0.1416238
harapan_median_norm1
## [1] 0.1174878
#2. Sebaran Eksponensial
library(probs)
set.seed(123)
n = 10
populasi2 = rexp(20)
mean_pop2 = mean(populasi2)
sampel_exp1 = urnsamples(populasi2, size = 10, replace = F, ordered = F)
mean_exp1 = matrix(apply(sampel_exp1, 1, mean))
median_exp1 = matrix(apply(sampel_exp1, 1, median))
harapan_mean_exp1 = mean(mean_exp1)
harapan_median_exp1 = mean(median_exp1)
harapan_mean_exp1
## [1] 0.8111726
harapan_median_exp1
## [1] 0.4931612
#3. Uniform
library(probs)
set.seed(123)
n = 10
populasi3 = runif(20)
mean_pop3 = mean(populasi3)
sampel_unif1 = urnsamples(populasi3, size = 10, replace = F, ordered = F)
mean_unif1 = matrix(apply(sampel_unif1, 1, mean))
median_unif1 = matrix(apply(sampel_unif1, 1, median))
harapan_mean_unif1 = mean(mean_unif1)
harapan_median_unif1 = mean(median_unif1)
harapan_mean_unif1
## [1] 0.5508084
harapan_median_unif1
## [1] 0.5504018
hasil = data.frame("Hasil"=c("mean_populasi","harapan_mean_contoh","harapan_median_contoh"),"Sebaran Normal"=c(mean_pop1,harapan_mean_norm1,harapan_median_norm1),"Sebaran Eksponensial"=c(mean_pop2,harapan_mean_exp1,harapan_median_exp1),"Sebaran Seragam"=c(mean_pop3,harapan_mean_unif1,harapan_median_unif1))
hasil
## Hasil Sebaran.Normal Sebaran.Eksponensial Sebaran.Seragam
## 1 mean_populasi 0.1416238 0.8111726 0.5508084
## 2 harapan_mean_contoh 0.1416238 0.8111726 0.5508084
## 3 harapan_median_contoh 0.1174878 0.4931612 0.5504018
Kesimpulan : 1. Berdasarkan output di atas, dengan populasi terhingga maupun tak hingga serta tiga sebaran yang berbeda, nilai harapan median contoh tetap berbeda dengan μ dan nilai harapan rataan contoh (x¯) mendekati sama (pada populasi tak hingga) bahkan sama persis dengan nilai parameter rataan populasi μ (pada populasi terhingga) sehingga penduga tak bias bagi μ adalah (x¯) 2. Pada populasi terhingga, percontohan bersifat unik artinya tidak ada percontohan yang berulang sehingga dapat dipastikan kombinasi contoh hanya muncul satu kali sehingga nilai parameter dan nilai harapan penduga parameter yang tak bias sama persis. 3. Pada populasi tak hingga, percontohan yang terambil secara acak merupakan sebagian dari keseluruhan kemungkinan percontohan yang ada sehingga nilai parameter dan nilai harapan penduga parameter yang tak bias tidak sama persis, namun sangat mendekati.
# POPULASI TERHINGGA
#Sebaran Normal
set.seed(888)
n = 10
populasi = rnorm(20)
sigma2 = var(populasi)*(20-1)/20 #fungsi var pada R adalah varian contoh (penyebut n-1) sehingga perlu dikali (n-1)/n
library(probs)
sampel = urnsamples(populasi, size = 10, replace = F, ordered = F)
## Pembagi (n-1)
s2.n1 = matrix(apply(sampel, 1, var))
E.s2.n1 = mean(s2.n1)
## Pembagi (n)
s2.n = s2.n1*(10-1)/10
E.s2.n = mean(s2.n)
#Sebaran Eksponensial
set.seed(888)
n = 10
populasi2 = rexp(20)
sigma2.exp = var(populasi2)*(20-1)/20
library(probs)
sampel_exp = urnsamples(populasi2, size = 10, replace = F, ordered = F)
## Pembagi (n-1)
s2.n1.exp = matrix(apply(sampel_exp, 1, var))
E.s2.n1.exp = mean(s2.n1.exp)
## Pembagi (n)
s2.n.exp = s2.n1.exp*(10-1)/10
E.s2.n.exp = mean(s2.n.exp)
hasil_ragam = data.frame( "." = c("ragam populasi","nilai harapan ragam contoh (n-1)","nilai harapan ragam contoh (n)"),
"Sebaran Normal" = c(sigma2, E.s2.n1, E.s2.n),"Sebaran Eksponensial" = c(sigma2.exp, E.s2.n1.exp, E.s2.n.exp))
hasil_ragam
## . Sebaran.Normal Sebaran.Eksponensial
## 1 ragam populasi 1.298573 1.750903
## 2 nilai harapan ragam contoh (n-1) 1.366919 1.843056
## 3 nilai harapan ragam contoh (n) 1.230227 1.658750
Kesimpulan : 1. Berdasarkan output di atas, dengan skenario populasi terhingga dan dua sebaran yang berbeda, nilai harapan ragam contoh dengan penyebut n−1 harusnya lebih mendekati nilai parameter daripada nilai harapan ragam contoh dengan penyebut n. Hal ini menunjukkan bahwa penduga tak bias bagi ragam populasi (σ2) adalah s2 dengan penyebut adalah n−1, meskipun masih terdapat celah perbedaan (tidak 100% tak berbias).
Pada populasi terhingga, percontohan bersifat unik artinya tidak ada percontohan yang berulang sehingga dapat dipastikan kombinasi contoh hanya muncul satu kali. Jika pada penduga mean nilai parameter dan statistik penduga tak bias sama persis, pada penduga ragam ini hal tersebut tidak berlaku karena perhitungan ragam populasi perlu dikali dengan faktor koreksi (n−1)n sedangkan perhitungan ragam contoh (dengan penyebut n−1) tidak perlu mengalikan dengan faktor koreksi.
Pada populasi tak hingga, percontohan yang terambil secara acak merupakan sebagian dari keseluruhan kemungkinan percontohan yang ada. Namun, dalam hal ini nilai parameter ragam dan nilai harapan penduga tak biasnya tidak sama persis, hanya mendekati.
Apa arti dari SK 95%? - SK 95% bagi θ : Kita percaya 95% bahwa selang a sampai b memuat nilai parameter θ yang sebenarnya - SK 95%: Jika kita melakukan 100 kali percontohan acak dan setiap percontohan acak dibuat selang kepercayaannya, maka dari 100 SK yang terbentuk, ada 95 SK yang mencakup parameter sedangkan sisanya sebanyak 5 SK tidak mencakup parameter.
n1 = 10
k = 100 #ulangan
alpha = 0.05
mu = 50
std = 10
set.seed(123)
sampel.norm1 = matrix(rnorm(n1*k,mu,std),k)
xbar.norm1 = apply(sampel.norm1,1,mean)
s.norm1 = apply(sampel.norm1,1,sd)
SE.norm1 = s.norm1/sqrt(n1)
z.norm1 = qnorm(1-alpha/2)
SK.norm1 = (xbar.norm1-z.norm1*SE.norm1 < mu & mu < xbar.norm1+z.norm1*SE.norm1)
x.norm1 = sum(SK.norm1)/k #proporsi banyaknya SK yang memuat mu
n2 = 30
k = 100 #ulangan
alpha = 0.05
mu = 50
std = 10
set.seed(123)
sampel.norm2 = matrix(rnorm(n2*k,mu,std),k)
xbar.norm2 = apply(sampel.norm2,1,mean)
s.norm2 = apply(sampel.norm2,1,sd)
SE.norm2 = s.norm2/sqrt(n2)
z.norm2 = qnorm(1-alpha/2)
SK.norm2 = (xbar.norm2-z.norm2*SE.norm2 < mu & mu < xbar.norm2+z.norm2*SE.norm2)
x.norm2 = sum(SK.norm2)/k #proporsi banyaknya SK yang memuat mu
n3 = 100
k = 100 #ulangan
alpha = 0.05
mu = 50
std = 10
set.seed(123)
sampel.norm3 = matrix(rnorm(n3*k,mu,std),k)
xbar.norm3 = apply(sampel.norm3,1,mean)
s.norm3 = apply(sampel.norm3,1,sd)
SE.norm3 = s.norm3/sqrt(n3)
z.norm3 = qnorm(1-alpha/2)
SK.norm3 = (xbar.norm3-z.norm3*SE.norm3 < mu & mu < xbar.norm3+z.norm3*SE.norm3)
x.norm3 = sum(SK.norm3)/k #proporsi banyaknya SK yang memuat mu
hasil_selang_kepercayaan = data.frame("n" =c(10,30,100),"Ketepatan SK Sebaran Normal"=c(x.norm1, x.norm2, x.norm3))
hasil_selang_kepercayaan
## n Ketepatan.SK.Sebaran.Normal
## 1 10 0.93
## 2 30 0.93
## 3 100 0.96
matplot(rbind (xbar.norm2-z.norm2*SE.norm2, xbar.norm2+z.norm2*SE.norm2), rbind(1:k,1:k), col=ifelse(SK.norm2,"blue","red"), type = "l", lty = 1,main='Selang Kepercayaan 95% (n=100)', xlab='SK', ylab='banyak ulangan')
abline(v=mu)
Simulasi dilakukan sebanyak k=100 kali, sehingga ada 100 selang kepercayaan yang dihasilkan.
Tujuan gambar ini adalah untuk memvisualisasikan seberapa sering selang kepercayaan berhasil menangkap nilai rata-rata populasi (μ)
Garis vertikal di x=50 mengartikan nilai rata-rata populasi (μ=50). Selang kepercayaan yang berhasil menangkap μ akan melintasi garis ini.
Garis Horizontal mengartikan bahwa setiap garis mewakili selang kepercayaan dari satu sampel. Jika garis tersebut melintasi garis vertikal di x=50, artinya selang kepercayaan tersebut berhasil menangkap μ
Semakin besar ukuran contoh (n), maka proporsi SK yang memuat nilai parameter semakin mendekati kebenaran (1-alpha)
# Interval Kepercayaan
library(car)
## Warning: package 'car' was built under R version 4.4.3
## Loading required package: carData
data("Prestige")
# Menghitung rata-rata
m <- mean(Prestige$income)
m
## [1] 6797.902
# Menghitung standar error
p <- dim(Prestige)[1]
se <- sd(Prestige$income)/sqrt(p)
se
## [1] 420.4089
# Menghitung nilai kritis t
tval <- qt(0.975, df=p-1)
# Menghitung interval kepercayaan
cat(paste("KI: [", round(m-tval*se, 2),",",round(m+tval*se,2),"]"))
## KI: [ 5963.92 , 7631.88 ]
Artinya, dengan tingkat kepercayaan 95%, rata-rata pendapatan populasi berada dalam rentang 5963.92 hingga 7631.88.