library(readxl)
AI_02 <- read_excel("AI_02.xlsx")
attach(AI_02)
summary(AI_02)
## Ednl AI_tool HoursOnAI Perceiv
## Length:1000 Length:1000 Min. :1.000 Min. :1.000
## Class :character Class :character 1st Qu.:2.000 1st Qu.:3.000
## Mode :character Mode :character Median :4.000 Median :5.000
## Mean :4.041 Mean :5.041
## 3rd Qu.:6.000 3rd Qu.:7.000
## Max. :7.000 Max. :9.000
## Purpose Satisfied Discipline Preference
## Length:1000 Min. :1.000 Length:1000 Length:1000
## Class :character 1st Qu.:2.000 Class :character Class :character
## Mode :character Median :3.000 Mode :character Mode :character
## Mean :3.067
## 3rd Qu.:4.000
## Max. :5.000
## AnyChallenge HoursSavedByAI age Effectivenes
## Length:1000 Min. : 1.000 Min. :18.00 Min. :1.000
## Class :character 1st Qu.: 3.000 1st Qu.:21.00 1st Qu.:3.000
## Mode :character Median : 5.000 Median :24.00 Median :5.000
## Mean : 5.386 Mean :23.71 Mean :5.032
## 3rd Qu.: 8.000 3rd Qu.:27.00 3rd Qu.:7.000
## Max. :10.000 Max. :29.00 Max. :9.000
## GPA
## Min. :2.010
## 1st Qu.:2.498
## Median :2.985
## Mean :3.000
## 3rd Qu.:3.510
## Max. :4.000
table(Ednl)
## Ednl
## Postgrad Researcher Undergrad
## 298 199 503
knitr::kable(table(Ednl))
Postgrad |
298 |
Researcher |
199 |
Undergrad |
503 |
knitr::kable(table(AI_tool))
Chatbot |
241 |
ChatGPT |
261 |
Copilot |
258 |
Gemini |
240 |
knitr::kable(table(HoursOnAI))
1 |
132 |
2 |
151 |
3 |
119 |
4 |
161 |
5 |
154 |
6 |
145 |
7 |
138 |
knitr::kable(table(Purpose))
Coding |
211 |
General Queries |
194 |
Problem Solving |
188 |
Research |
215 |
Writing |
192 |
knitr::kable(table(Discipline))
Arts |
239 |
Commerce |
244 |
Humanities |
272 |
STEM |
245 |
knitr::kable(table(Preference))
Interactive |
345 |
Multimedia |
341 |
Text-Based |
314 |
knitr::kable(table(AnyChallenge))
Coding |
264 |
Data Analysis |
238 |
Time Management |
243 |
Writing Clarity |
255 |
knitr::kable(table(HoursSavedByAI))
1 |
125 |
2 |
94 |
3 |
107 |
4 |
96 |
5 |
86 |
6 |
98 |
7 |
102 |
8 |
89 |
9 |
106 |
10 |
97 |
hist((age))

knitr::kable(table(Effectivenes))
1 |
117 |
2 |
101 |
3 |
96 |
4 |
104 |
5 |
124 |
6 |
131 |
7 |
109 |
8 |
122 |
9 |
96 |
hist(GPA)
Calculate quantiles.
agec<-quantile(age,c(0.25,0.5,0.75))
barplot(agec)

Age categories:
AI_02<-within(AI_02,{
age.cat<- NA
age.cat[age < 21] <- "Young"
age.cat[age >= 21 & age<24]<-"Middle"
age.cat[age >= 24 & age<27]<-"Senior"
age.cat[age >= 27]<-"Older"
})
table(AI_02$age.cat)
##
## Middle Older Senior Young
## 249 280 240 231
str(AI_02)
## tibble [1,000 × 14] (S3: tbl_df/tbl/data.frame)
## $ Ednl : chr [1:1000] "Undergrad" "Researcher" "Postgrad" "Postgrad" ...
## $ AI_tool : chr [1:1000] "Gemini" "Chatbot" "Copilot" "Chatbot" ...
## $ HoursOnAI : num [1:1000] 2 6 4 5 5 2 1 4 5 2 ...
## $ Perceiv : num [1:1000] 6 8 8 5 6 4 9 8 1 2 ...
## $ Purpose : chr [1:1000] "Research" "Writing" "Coding" "Coding" ...
## $ Satisfied : num [1:1000] 4 5 5 1 4 5 2 2 4 1 ...
## $ Discipline : chr [1:1000] "Commerce" "STEM" "Arts" "Commerce" ...
## $ Preference : chr [1:1000] "Text-Based" "Text-Based" "Interactive" "Text-Based" ...
## $ AnyChallenge : chr [1:1000] "Writing Clarity" "Time Management" "Data Analysis" "Data Analysis" ...
## $ HoursSavedByAI: num [1:1000] 2 1 7 10 9 9 3 6 7 10 ...
## $ age : num [1:1000] 20 27 26 26 22 20 19 25 23 27 ...
## $ Effectivenes : num [1:1000] 8 4 3 1 9 6 6 9 1 6 ...
## $ GPA : num [1:1000] 3.85 3 2.66 3.47 2.07 2.95 2.67 3.84 2.02 3.11 ...
## $ age.cat : chr [1:1000] "Young" "Older" "Senior" "Senior" ...
summary(AI_02$age.cat)
## Length Class Mode
## 1000 character character
boxplot(GPA~Ednl)

boxplot(GPA~AI_tool)

boxplot(GPA~HoursOnAI)

boxplot(GPA~Purpose)

boxplot(GPA~Perceiv)

boxplot(GPA~Satisfied)

boxplot(GPA~Discipline)

boxplot(GPA~Preference)

boxplot(GPA~AnyChallenge)

boxplot(GPA~HoursSavedByAI)

boxplot(GPA~Effectivenes)

boxplot(GPA~AI_02$age.cat)

Re-coding GPA into two categories - Low and High wrt mean.
AI_02<-within(AI_02,{
gpac<- "NA"
gpac[GPA< 3]<-"Low"
gpac[GPA>= 3]<-"High"
})
Tabulate gpac
summary(AI_02$gpac)
## Length Class Mode
## 1000 character character
table(AI_02$gpac)
##
## High Low
## 497 503